
ALGORITHMS FOR EFFECTIVE
QUERYING OF GRAPH-BASED PATHWAY

DATABASES

a thesis

submitted to the department of computer engineering

and the institute of engineering and science

of bilkent university

in partial fulfillment of the requirements

for the degree of

master of science

By

Ahmet Çetintaş

July, 2007

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Uğur Doğrusöz(Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. İsmail Hakkı Toroslu

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Asst. Prof. Dr. Ali Aydın Selçuk

Approved for the Institute of Engineering and Science:

Prof. Dr. Mehmet B. Baray
Director of the Institute

ii

ABSTRACT

ALGORITHMS FOR EFFECTIVE QUERYING OF
GRAPH-BASED PATHWAY DATABASES

Ahmet Çetintaş

M.S. in Computer Engineering

Supervisor: Assoc. Prof. Dr. Uğur Doğrusöz

July, 2007

As the scientific curiosity shifts toward system-level investigation of genomic-

scale information, data produced about cellular processes at molecular level has

been accumulating with an accelerating rate. Graph-based pathway ontologies

and databases have been in wide use for such data. This representation has made

it possible to programmatically integrate cellular networks as well as investigating

them using the well-understood concepts of graph theory to predict their struc-

tural and dynamic properties. In this regard, it is essential to effectively query

such integrated large networks to extract the sub-networks of interest with the

help of efficient algorithms and software tools.

Towards this goal, we have developed a querying framework along with a num-

ber of graph-theoretic algorithms from simple neighborhood queries to shortest

paths to feedback loops, applicable to all sorts of graph-based pathway databases

from PPIs to metabolic pathways to signaling pathways. These algorithms can

also account for compound or nested structures present in the pathway data, and

have been implemented within the querying components of Patika (Pathway

Analysis Tools for Integration and Knowledge Acquisition) tools and have proven

to be useful for answering a number of biologically significant queries for a large

graph-based pathway database.

Keywords: Graph Algorithms, Graph Querying, Biological Pathways, Pathway

Databases.

iii

ÖZET

ÇİZGE TABANLI YOLAK VERİ TABANLARININ
ETKİN SORGULANMASI İÇİN ALGORİTMALAR

Ahmet Çetintaş

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Doç. Dr. Uğur Doğrusöz

Temmuz, 2007

Bilimsel merak, kalıtım-ölçekli bilginin sistem seviyesindeki araştırmalarına

yönelirken, molekül düzeyindeki hücresel süreçler hakkında üretilen veriler

hızlanan bir oranla artmaktadır. Çizge tabanlı yolak ontolojiler ve veri tabanları

bu tarz bilgiler için geniş bir kullanım alanına sahiptir. Bu gösterim, hücresel

ağların programlı bir şekilde bütünleştirilmesinin yanı sıra yapısal ve dinamik

özelliklerini tahmin etmeye yönelik olarak çizge teorinin iyi anlaşılmış kavramları

kullanılarak araştırılmasını mümkün kılmaktadır. Bu kapsamda, böyle bütünleşik

geniş ağların, ilgili alt-ağların etken algoritmalar ve yazılım araçlarının yardımıyla

seçilerek çıkarılması amacıyla, etkili olarak sorgulanması zaruridir.

Bu amaçla, protein-protein etkileşiminden, metabolik yolaklara hatta sinyal

yolaklarına her türlü çizge tabanlı yolak veri tabanlarına uygulanabilir olmak

üzere, basit komşuluk sorgularından en kısa yol yolaklarına ve geri besleme

döngülerine pek çok çizge teorik algoritmalar beraberinde bir sorgulama çerçevesi

geliştirdik. Bu algoritmalar ayrıca yolak veritabanı içinde mevcut bileşik veya

birbirinin içine yerleştirilmiş yapıları da oluşturulabilir ve Patika (Entegrasyon

ve Bilgi Kazanma için Yolak Analiz Araçları) yazılımlarının sorgulama unsurları

içerisinde uygulanmıştır. Ayrıca, sözkonusu algoritmaların geniş bir çizge tabanlı

yolak veritabanı için biyolojik olarak önem arz eden pek çok sorgunun cevap-

landırılması için kullanışlı olduğu görülmüştür.

Anahtar sözcükler : Çizge Algoritmaları, Çizge Sorgulama, Biyolojik Yolaklar,

Yolak Veri Tabanları.

iv

Acknowledgement

I would like to express my deepest gratitude to my supervisor Assoc. Prof.

Uğur Doğrusöz for his invaluable support, continuous encouragement and incred-

ible effort in the supervision of the thesis. It was a wonderful opportunity to work

with him.

I would like to thank Prof. Dr. İsmail Hakkı Toroslu and Asst. Prof. Dr. Ali

Aydın Selçuk for accepting to read and review the thesis.

I wish to thank Emek Demir and Özgün Babur for their constructive and

critical comments. I also wish to thank Çağrı Aksay, Gözde Çözen, Çağatay

Bilgin, Hilmi Yıldırım, Hande Küçük and Serhat Tekin for their contributions. I

wish to thank all other members of PATIKA team. It was a great experience to

be a member of such a friendly team.

Finally, a special thank goes to my wife Öznur for her encouragement, support

and patience in every step of my study.

This thesis was supported by TUBITAK (Scientific and Technical Research

Council of Turkey) with National Scholarship Programme for MSc Students.

v

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Contribution . 3

1.3 Organization of the Thesis . 4

2 Theory and Background 5

2.1 Preliminary Definitions . 5

2.2 Graph Representation of Pathways 6

2.3 Patika Architecture . 7

3 Related Work 9

4 Method 12

4.1 Neighborhood . 12

4.2 Graph of Interest . 13

4.3 Common Regulation . 17

vi

CONTENTS vii

4.4 Shortest Path . 19

4.5 Feedback . 22

4.6 Stream . 25

4.7 Subgraph Matching . 27

4.8 Compound Structures & Ubiquitous Entities 28

5 Implementation 30

5.1 Patika . 30

5.1.1 Model Layer . 30

5.1.2 Concrete Implementations 30

5.1.3 Patika Graphs and Excision Support 32

5.1.4 Patika Server Architecture 33

5.1.5 Clients . 34

5.2 Patika Query Framework . 34

5.2.1 Query Structures . 35

5.2.2 Query Execution and Data Flow 44

5.2.3 Query User Interface . 50

5.2.4 Query Framework Deployment 71

6 Test Results and Performance 75

7 Conclusion and Future Work 79

List of Figures

1.1 Sample pathways represented by Patika ontology. (left) Canoni-

cal wnt pathway containing examples of compound structures such

as regular abstractions (e.g. “protein degradation”), homology

abstractions (e.g. 5 wnt genes), and molecular complexes (e.g.

APC:Axin). (right) Partial human interaction networks contain-

ing PPIs and transcriptional regulation interactions of proteins

CRK and SP1, respectively. 2

1.2 Conceptual illustration of how pathways are assumed to be already

integrated in the knowledgebase (bottom part, where each pathway

is color-coded uniquely), which is typically on disk, and how the

sub-network of interest (parts of three different original pathways)

may be extracted and presented to the user as a result of a query. 3

4.1 2-neighborhood (yellow) of proteins SCH1 and PTEN (green) in a

partial PPI network. Notice that only the edges leading to these

neighbors (i.e. visited during traversal) are highlighted. 13

4.2 (upper-left) A PPI network with proteins of interest CRK and

CRKL (green); (upper-right) Graph of interest (yellow) formed

by using paths of length up to 3 (k = 3) between nodes of interest

(green); (bottom) Graph of interest with k = 2 (k = 1 returns no

results). 14

viii

LIST OF FIGURES ix

4.3 Common regulators, with path limit 2, of small molecules contain-

ing the word “lauro” in their name (cyan) in this partial mechanis-

tic pathway are found to be a single node representing a molecular

complex (green). The paths from the common regulator to the

target nodes are highlighted (yellow). 18

4.4 Shortest paths (yellow) between bioentities whose names start with

“PPA” (cyan) and those whose names contain “ESR” (green) with

(left) d = 0 and (right) d = 2. Notice that the length of a shortest

path between these two node sets is k = 2. 19

4.5 Positive feedback (yellow) of a specified Citrate state in mitochon-

dria (green) with up to length 10; the result contains two feedback

cycles, one in mitochondria (of length 10) and one through cyto-

plasm (of length 8). 22

4.6 (left) Up (green) and down (cyan) stream of protein “a” (yellow)

in a partial mechanistic pathway. (right) Unambiguous positive

upstream of node “a” (yellow) contains node “b” (green) only, as

node “c” is on both positive and negative paths leading to node “a”. 26

4.7 Traversal reaching complex “c1” from the transition on the left will

continue to transition on the right if and only if “Link Members of

Complex” option is true. 29

4.8 Whether or not state “a” is in the 4-neighborhood (green) of state

“c” (yellow) depends on whether traversal over ubiques (“ubique

x” in this case) is allowed. Obviously, in this case it is allowed. . . 29

5.1 Class hierarchy of the primary Patika objects. 31

5.2 The class diagram of field query nodes. A composite pattern was

used for arbitrary nesting of query objects. 37

LIST OF FIGURES x

5.3 General state diagram of FieldQueryParser, for parsing the

Patika query languages field queries. 37

5.4 State diagram of the FieldQueryParser, for deciding on which

condition to create. Through composite conditions it is possible to

specify arbitrarily nested object relations. 38

5.5 Query and Query Result Hierarchy 40

5.6 Query Composition . 41

5.7 Data Flow of Query Framework in Patika 45

5.8 Sequence diagram showing that agent emek is running a server side

query . 49

5.9 Sample query tree to find the union of 1-neighborhood of the

objects on the shortest path from states whose name starts with

“Fas” to states whose name starts with “RB” with the shortest

path from states whose name starts with “Fas” to states whose

name starts with “JNK1” . 50

5.10 Mechanistic view of the result of the following sample query: paths-

of-interest (yellow) with source of all mechanistic nodes whose

names contain “caspase-8” (green) and target for those whose

names contain “bax” (cyan) with limit 8; Highlight Legend Di-

alog for this query shown on right. 51

5.11 The user is asked to agree to run the Patika Query Applet. . . . 52

5.12 The Query Dialog consists of a toolbar (top) and panels for query

forest (left) and parameters (right). 52

5.13 The source of a Neighborhood query is set through the pop-up

menu of its ‘source’ query node. 53

LIST OF FIGURES xi

5.14 The user can specify whether the query is to execute on the data-

base or the view. 53

5.15 The query rooted at the OR query is executed when the user

presses associated button. 53

5.16 Sample Query Result Dialog . 54

5.17 Sample Query Highlight Legend Dialog, where the last query is a

shortest path query, and source, target and result (shortest paths)

objects are highlighted with distinct colors (green, cyan and yellow,

respectively). 54

5.18 You may constrain your query to a Patika object of a specific type. 55

5.19 All states of protein ‘tp53’ (yellow) as obtained by a ‘States of a

Bioentity’ query . 56

5.20 Sources (yellow) of protein ‘tp53’ (green) as obtained by a ‘Sources

of a Bioentity’ query . 56

5.21 Products (yellow) of DNA ‘tp53’ (green) as obtained by a ‘Products

of a Bioentity’ query . 57

5.22 Queries can be combined through logical operators: Search for

all PatikaNode’s whose description contains ‘colon cancer’ or ID

equals 3835 authored by Joe Smith. 57

5.23 Advanced Query Options Dialog is used to set traversal options

for ubiques and abstractions. 58

5.24 Whether or not ‘a’ is in the 4-neighborhood (green) of ‘c’ (yellow)

depends on whether traversal over ubiques (‘ubique x’ in this case)

is allowed. Obviously, in this case it is allowed. 58

5.25 Sample Neighborhood Query Dialog for 1-neighborhood of protein

bioentities whose names start with ‘crk’ 59

LIST OF FIGURES xii

5.26 1-neighborhood of protein bioentities whose names start with ‘crk’

(result of the query in Figure 5.25) 59

5.27 Immediate neighbors (yellow) of protein ‘CRKL’ (green) may be

queried using its popup menu . 60

5.28 Sample GoI Query Dialog . 60

5.29 Result of the query in Figure 5.28: GoI (yellow) of protein bioen-

tities whose names start with ‘crk’ (cyan) where limit is 3 (left)

and where limit is 2 (right). Notice that each protein on the GoI

(yellow) is on at least one path between two source nodes (cyan)

whose length is at most limit. 61

5.30 Sample PoI Query Dialog . 61

5.31 Result of the query in Figure 5.30: PoI (yellow) between mech-

anistic nodes whose names contain ‘caspase-8’ (green) and those

whose names contain ‘bax’ (cyan) 62

5.32 Sample Common Regulator Query Dialog 62

5.33 Result of the sample common regulator query in Figure 5.32, where

we find common regulators (green) of the simple states whose

names contain ‘lauro’ (cyan); paths leading from common regu-

lators to the targets are shown in yellow. 63

5.34 Sample Shortest Paths Query Dialog 64

5.35 Result of the sample shortest paths query in Figure 5.34, where

we find directed shortest paths (yellow) from simple states whose

names contain ‘caspase’ (green) to simple states whose names con-

tain ‘bad’ (cyan) . 65

5.36 Sample Feedback Query Dialog 65

LIST OF FIGURES xiii

5.37 Result of the sample feedback query in Figure 5.36, where we look

for positive feedback (yellow) of a given Citrate state (with spec-

ified ID) in mitochondria (green) with up to length 10; the result

contains two feedback cycles, one in mitochondria (of length 10)

and one through cytoplasm (of length 8). 66

5.38 Sample Stream Query Dialog . 66

5.39 Result of the sample stream query in Figure 5.38, where we look for

unambiguous positive upstream, with limit 4, (yellow) of complexes

whose names start with ‘active caspase’ (green) 67

5.40 Query for simple states whose name starts with ‘FASL’ 68

5.41 Result (yellow) of the FAS Ligand query in Figure 5.40 68

5.42 Query for Caspase complexes, which does not contain words ‘pre-

cursor’, ‘pro-caspase’ or ‘procaspase’ 69

5.43 Result (green) of Caspase query in Figure 5.42 added to the exist-

ing model . 69

5.44 Shortest path query using the previous queries as source and target;

the query limits the distance to 5 and considers directions. 70

5.45 Result of the shortest path query in Figure 5.44; we find that the

two shortest paths (yellow) from FAS Ligand (green) to Caspase

complexes (cyan) goes to Caspase-8 dimer in cytoplasm, each with

2 transitions (4 steps). 70

5.46 Shortest path query with further distance set to 8 71

5.47 Result of the shortest path query in Figure 5.46. Paths of length up

to 12 (yellow) are found between source (green) and target (cyan)

sets, since the shortest path length is 4. 72

LIST OF FIGURES xiv

5.48 A GoI query where the previous FAS Ligand and Caspase complex

queries are gathered into an OR query and used as seed (molecules

of interest) . 72

5.49 Result of the GoI query in Figure 5.48 73

5.50 Deployment Diagram of Query Framework in Patika 74

6.1 Result set size vs. execution time for GoI algorithm 76

6.2 Distance (k) vs. execution time for GoI algorithm for various

source set sizes (|S|) . 76

6.3 Shortest length vs. total execution time of the shortest-path algo-

rithm . 77

6.4 Distance (k) vs. execution time for CR algorithm for various source

set sizes (|S|) . 78

6.5 Distance (k) vs. execution time for Stream algorithm for various

source set sizes (|S|) . 78

Chapter 1

Introduction

1.1 Motivation

Human genome is expected to create an extremely complex network of informa-

tion, composed of hundred thousands of different molecules and factors [3, 18].

Knowing the exact map of this network is very important since it will poten-

tially explain the mechanisms of life processes as well as disease conditions. Such

knowledge will also serve as a key for further biomedical applications such as de-

velopment of new drugs and diagnostic approaches. In this regard, a cell can be

considered as an inherently complex multi-body system. In order to make useful

deductions about such a system, one needs to consider cellular pathways as an

interconnected network rather than separate pathways.

Our knowledge about cellular processes is increasing at a rapidly growing

pace. Novel large scale analysis methods are already applied to yeast to provide

data about the yeast proteome [16, 27]. However, most of the time these data

are in fragmented and incomplete forms. One of the most important challenges

in bioinformatics is to represent and integrate this type of knowledge. Efficient

construction and use of such a knowledge base depends highly on a strong on-

tology (i.e., a structured semantic encoding of knowledge). This knowledge base

then can act as a blueprint for simulations and other analysis methods, enabling

1

CHAPTER 1. INTRODUCTION 2

us to understand and predict the behavior of a cell much better.

Figure 1.1: Sample pathways represented by Patika ontology. (left) Canon-
ical wnt pathway containing examples of compound structures such as regular
abstractions (e.g. “protein degradation”), homology abstractions (e.g. 5 wnt
genes), and molecular complexes (e.g. APC:Axin). (right) Partial human in-
teraction networks containing PPIs and transcriptional regulation interactions of
proteins CRK and SP1, respectively.

Conventional approaches for representation of cellular pathways are based on

pathway drawings composed of still images. Although easy to create, such draw-

ings are often not reusable and the ontologies used are far from being uniform

and consistent, highly depending on implicit conventions rather than explicit,

formal rules. Recently this has resulted in a major shift in the use of more formal

ontologies and dynamic representation of pathways that support programmatic

integration and manipulation of pathways regardless of the underlying ontology.

Among these, graphs, one of the most common discrete mathematical struc-

tures [6], have been most popular for “in-silico” modeling of biological pathways,

from metabolic pathways to gene regulatory networks, from protein-protein in-

teraction networks to signaling pathways [2, 10, 20, 15]. Such modeling is crucial

for the field of systems biology, which deals with a systems-level understanding

of biological networks.

CHAPTER 1. INTRODUCTION 3

1.2 Contribution

In this thesis, we present a framework for querying a compound graph-based

pathway database as well as a number of graph algorithms needed to implement

these graph-based queries. We assume a database in which pathways are stored

in an integrated manner, as opposed to a list of independent pathways. Thus, a

query to the database is performed over this integrated, higher level (Figure 1.2)

network of pathways, and aims to find a sub-network of interest, requiring a rich

set of graph algorithms.

Figure 1.2: Conceptual illustration of how pathways are assumed to be already
integrated in the knowledgebase (bottom part, where each pathway is color-coded
uniquely), which is typically on disk, and how the sub-network of interest (parts
of three different original pathways) may be extracted and presented to the user
as a result of a query.

This framework and associated graph algorithms have been implemented as

part of a new version of the bioinformatics tool Patikaweb [11]. The range of

graph-theoretic queries described as part of our framework is among the most

comprehensive ones built so far, and to the best of our knowledge, it is the first

querying framework taking into account compound structures (i.e. grouping of or

abstractions of biological objects to an arbitrary level of depth) in a graph-based

knowledgebase.

CHAPTER 1. INTRODUCTION 4

1.3 Organization of the Thesis

The thesis is organized as follows: Chapter 2 introduces background information

on graphs, use of graphs representing pathways and an overlook to the Patika

system. Chapter 3 summarizes the studies in the literature on pathway querying

and similar graph algorithms on pathway databases. In Chapter 4, the approach

and the algorithms that are developed for pathway analysis are described. Chap-

ter 5 includes the software architecture that is implemented in the Patika system.

In Chapter 6, execution times of all algorithms implemented are discussed and

results are given. Finally, Chapter 7 concludes the thesis.

Chapter 2

Theory and Background

2.1 Preliminary Definitions

Let G = (V, E) be a graph with a non-empty node set V and an edge set E. An

edge e = {x, y} or simply xy joining nodes x and y is said to be incident with

both x and y. Node x is called a neighbor of y and vice versa.

A path between two nodes n0 and nk is a non-empty graph P = (V, E) with

V = {n0, n1, . . . , nk} and E = {n0n1, n1n2, . . . , nk−1nk}, where ni are all distinct.

n0 and nk are called the end points of path P . Therefore, we can write P as an

ordered set of nodes P = n0n1 . . . nk. The length of a path P denoted by |P | is

the number of edges on the path.

A path is said to be directed if all its ordered edges are directed in the same

direction. A directed path P is called an incoming (outgoing) path of node n if

P ends at target (starts at source) node n.

A directed path is called positive (negative) if it contains an even (odd) number

of inhibitors (i.e. inhibition edges).

An incoming (outgoing) path of a node is a directed path ending at (starting

with) that node.

5

CHAPTER 2. THEORY AND BACKGROUND 6

Let A and B be set of nodes. Then an A-B path is a path with its ends in A

and B, respectively, and no node of P other than its ends is from either set A or

B. An A-path is a path where one of the end nodes is from vertex set A, and no

other nodes and interactions are from set A.

A path C with identical end nodes is called a cycle.

A directed cycle is called positive feedback (negative feedback) if it contains an

even (odd) number of inhibitors.

The distance between dG(x, y) between two nodes x and y in graph G is the

length of a shortest x-y path in G.

If G′ = (V ′, E ′) is a subgraph of G = (V, E), and G′ contains all the edges

xy ∈ E with x, y ∈ V ′, then G′ is an induced subgraph of G; we say that V ′

induces G′ in G and write G′ = G[V ′].

If node x is the starting node of a directed path that ends up at node y, then

node y is said to be a target of node x; similarly, node x is said to be a regulator

of node y.

2.2 Graph Representation of Pathways

Querying framework and the algorithms described in this thesis have all been de-

signed and implemented assuming the Patika ontology [10], which shows utmost

similarity to standard representations such as BioPAX [5] and SBGN [22]. How-

ever, the results should be able to be applied to most other graph-based pathway

representations without difficulty.

Patika ontology is based on a qualitative two-level model. At the entity level,

interactions and relations can be addressed in an abstract manner, where the ex-

act state of the related parties is unknown, such as protein-protein interactions,

inferred relations and literature-derived information. At the state/transition or

mechanistic level, each entity is associated with a set of states interacting with

CHAPTER 2. THEORY AND BACKGROUND 7

each other via transitions. This level can capture more detailed information such

as compartments, molecular complexes and different types of biological events

(e.g. covalent modification, transportation and association). This two-level on-

tology elegantly covers most biological pathway-related phenomena and is capable

of integrating information present in the literature and molecular biology data-

bases. Additionally, the Patika ontology uses the notion of compound graphs

to represent abstractions, which are logical groupings that may be used to han-

dle the complex and incomplete nature of the data. Figure 1.1 shows example

pathways drawn at biological entity and state/transition levels.

More formally, a compound pathway graph CG = (G, I) [10] is a 2-tuple of a

pathway graph G and a directed acyclic inclusion graph I, where

• V (G) = V is the union of nodes denoting bioentities, states, transitions,

molecular complexes, and abstractions of five distinct types: regular, incom-

plete state, incomplete transition, homology state, and homology transition;

• E(G) is the union of interaction edges of various types (such as PPI edges

at bioentity level and activator edges between a state and a transition),

some of which are directed;

• V (I) = V (G);

• E(I) is the union of inclusion edges for defining compound structures (mole-

cular complexes and abstractions).

In order for a compound pathway graph CG = (G, I) to comply with the

Patika ontology, it needs to satisfy certain additional invariants such as regular

abstractions cannot have a direct interaction (edge).

2.3 Patika Architecture

Patika is a project of a multi-component environment for cellular pathway data

analysis and collaborative construction, which is in progress since 2000. Different

CHAPTER 2. THEORY AND BACKGROUND 8

Patika tools for varying purposes with different user interface have been devel-

oped. While Patika 1.0 and Patikapro are standalone applications, Patikaweb

serves as a thin client web application. Patikaweb is actually a limited version

of Patikapro. Beta version Patika 1.0 beta and Patikaweb 2.1 are released

softwares and a professional version Patikapro is currently under development.

Patika has a client-server type architecture. Client side component is a visual

editor for pathway construction and analysis. Server side maintains the database

where the big picture(i.e., the main repository for pathway data storage) is stored,

and coordinates submission process and user communication.

Pathway editor component of Patika is based on Tom Sawyer Software’s1

graph visualization libraries, and implemented using Java technology.

The incorporated graph model is based on Patika ontology. The pathway

graph has a two layer representation in the architecture, subject graph and view

graphs. Each working instance of the editor has exactly one subject graph, which

is a related sub-graph of the database. Multiple number of view graphs may be

generated as desired based on a single subject graph.

1http://www.tomsawyer.com

Chapter 3

Related Work

Graphs have been used in a variety of ways in analyzing cellular networks. In [2]

they list three levels of increasing complexity for such analysis, where network

topology (global structural properties), interaction patterns (local structural con-

nectivity) and network decomposition (hierarchical functional organization) are

addressed at each level, respectively. The representation of such complex net-

works as graphs has made it possible to investigate the topology and function

of these networks using the well-understood concepts of graph theory to predict

their structural and dynamic properties or detect special structures or properties

in them. In addition, this representation has made the systematic (i.e. program-

matic) integration of these complex networks feasible. A comprehensive survey

of such prediction, detection and reconstruction methods can be found in [2].

Lately, an extension of this graph representation, namely hierarchically struc-

tured graphs or simply compound graphs, where a node of a biological network may

recursively contain or include a sub-network of somehow a logically similar group

of biological objects [12, 10]. This extension brings in many benefits in modeling,

integration, querying and visualization of biological pathways, most important

one being reduction of complexity of large networks through decomposition of

the network into distinct components or modules.

There is also a great deal of work on querying of occurrences of sub-structures

9

CHAPTER 3. RELATED WORK 10

(from specified subgraphs to special sub-structures) such as graphlets or motifs

in graph-based data, including pathways [2]. Most approaches employ some kind

of a graph matching algorithm to find one or all (exact or inexact) instances of

the specified subgraph [25, 26, 24]. Yet some others take a comparative approach

toward interpreting molecular networks, contrasting and aligning networks of

different species and molecular types, and under varying conditions [23].

There exists a heuristic approach in which a merged representation of the two

networks being compared is created and then a greedy algorithm is applied for

identifying the conserved subnetworks embedded in the merged representation,

called a network alignment graph. When there exists a one-to-one correspon-

dence between molecules across the two networks, identifying subnetworks in the

alignment is simple, however, in general there may be a complex many-to-many

correspondence [23, 19].

Use of graph algorithms such as shortest paths between a specified pair of

objects in a graph database has been in use for quite a while [14], and their use in

graph-based pathway databases have caught attention in recent years [17, 8, 4].

In [14], they define a query language including an operation for finding shortest

paths between two simple objects, which are used as the start and target nodes of

the search, respectively. Also query has parameter of path type defining a precise

structure for the resulting sequence, according to the types of nodes and edges

on the path. However, the query language was defined only in fragments, no

implementation has been mentioned. Also different path finding and feedback

queries are defined for pathway databases in query languages such as PQL [17]

and GraphDB [14]. For example, ‘Retrieval of a connected graph that includes a

set of specified interactions’ and ‘Retrieval of cycles that include a set of specified

interactions’ queries can be expressed, but cannot be computed in PQL, stated

as future work.

Path finding in biological networks has some special problems such as highly

connected nodes called ubiques. These ubiquitous nodes lead path finding algo-

rithms to the irrelevant paths. Therefore two approaches can be applied: first

approach is filtering out the selection of these highly connected nodes, and second

CHAPTER 3. RELATED WORK 11

approach is computing the shortest paths on the weighted metabolic graph where

each node is assigned a weight equal to its connectivity in the network [8].

Chapter 4

Method

After a careful requirements analysis, we have come up with the following initial

set of graph algorithms that might be of use to people querying cellular pathway

databases. This set is, by no means, exhaustive, and may easily be extended.

4.1 Neighborhood

One very simple yet quite powerful operation on graphs is finding the neighbors

of a specified source node within a certain distance. k-neighborhood of a node

set S can be defined as

NB(S, k) = S ∪ {x | x is on an S-path P ∧ |P | ≤ k}

Figure 4.1 explains this operation with an example.

k-neighborhood of a node set can be found by running a regular BFS with the

seed taken as the specified source node set. All nodes reached within k iterations

are in the resulting neighborhood. This operation takes time linear in the number

of neighbors plus the total number of edges incident upon these neighbors.

Biological Significance: Neighborhood query relies on the graph-theoretic ar-

gument above, but takes a different point of view. It finds out objects that are

12

CHAPTER 4. METHOD 13

Figure 4.1: 2-neighborhood (yellow) of proteins SCH1 and PTEN (green) in a
partial PPI network. Notice that only the edges leading to these neighbors (i.e.
visited during traversal) are highlighted.

closest to the given target(s), thus returns a functional neighborhood(as stated

in [9]). This query answers questions like:

• In which pathways does my protein take part?

• With which states does this molecule interact?

• What are the other actors taking part in this process?

• Which proteins catalyze this reaction?

4.2 Graph of Interest

Given a graph G and a set of nodes of interest S (e.g. genes of interest), this

operation is to find in G all paths of length at most k between any two nodes of

the specified node set. The subgraph of G induced by the nodes of the resulting

set gives the graph of interest. More formally,

GoI(S, k) = G[B], where B = {x | x is on an S-S path P ∧ |P | ≤ k}.

CHAPTER 4. METHOD 14

Figure 4.2: (upper-left) A PPI network with proteins of interest CRK and
CRKL (green); (upper-right) Graph of interest (yellow) formed by using paths
of length up to 3 (k = 3) between nodes of interest (green); (bottom) Graph of
interest with k = 2 (k = 1 returns no results).

As the name suggests, this operation is aimed at finding a “minimal” subgraph

comprising all the nodes of interest complemented by the “missing links” among

these nodes. The parameter k defines how long the paths linking nodes of interest

to form a graph of interest is allowed to be. Figure 4.2 explains this operation

with an example. Below is the pseudo code for this operation. Here two separate

BFS are to be run in forward and reverse directions and combined to form a

candidate set. The nodes in this candidate set satisfying the maximum path

length constraint are put in a result set, which is to be “purified” by a post-

processing phase (algorithm purify) during which degree 1 nodes that do not

CHAPTER 4. METHOD 15

lie on paths between source set nodes (effectively subgraphs that are trees in the

result set) are pruned.

algorithm GraphOfInterest(S, k)

1 C := GoI-BFS(S, k, fwd) ∪ GoI-BFS(S, k, rev)

2 for q ∈ C do

3 if q.label(fwd) + q.label(rev) ≤ k then

4 R := R ∪ {q}
5 R := purify(S, R)

6 return R

algorithm GoI-BFS(S, k, dir)

1 Add all nodes in set S to queue Q

2 Initialize dir labels of all nodes in S to zero

3 T := ∅
4 while Q 6= ∅ do

5 n1 := Q.dequeue()

6 for e ∈ n1.incidentEdges() do

7 if dir = fwd then

8 e.label(dir):= n1.label(dir) +1

9 else

10 e.label(dir):= n1.label(dir)

11 n2 := e. otherEnd(n2)

12 T := T ∪ {e, n2}
13 if n2.label(dir) > n1.label(dir) +1 then

14 n2.label(dir) := n1.label(dir) +1

15 if n2.label(dir) < k and n2 /∈ S then

16 Q.enqueue(n2)

17 return T

algorithm Purify(S, T , R)

CHAPTER 4. METHOD 16

1 Remove all orphan edges from R

2 for n ∈ R do

3 while n not in S or T do

4 N := Number of edges of n which are in R

5 if N = 1 then

6 Say e is that only edge

7 Remove n and e from R

8 n := e.getOtherEnd(n)

9 else if N = 0 then

10 Remove n from R

11 break

12 else

13 break

The complexity of this operation is clearly linear in the number of nodes in

the k-neighborhood of nodes of interest.

Paths-of-Interest (PoI) query, on the other hand, does the same thing from

a specified set of source molecules to a specified set of target molecules. More

formally,

PoI(S, T, k) = G[B], where B = {x | x is on an S-T path P ∧ |P | ≤ k}.

algorithm PathsOfInterest(S, T , k)

1 C := GoI-BFS(S, k, fwd) ∪ GoI-BFS(T , k, rev)

2 for q ∈ C do

3 if q.label(fwd) + q.label(rev) ≤ k then

4 R := R ∪ {q}
5 R := purify(S, T , R)

6 return R

CHAPTER 4. METHOD 17

Biological Importance: Although this query does not attempt to answer a

specific question, it allows a quick and easy way for the user the fetch subgraph,

that is potentially most interesting for them based on a set of initial nodes.

Compared to a neighborhood query, GoI has the specific advantage of filtering

out dangling subgraphs that is connected to only one “interest node”. GoI is also

useful in analyzing microarray data as when given a set of correlated genes, it

brings in paths between those genes(as stated in [9]).

4.3 Common Regulation

Common target (regulator) of a source node set S is the set of nodes that are

targets (regulators) of all nodes in S. More formally, common targets CT(S) of

a source node set S with path length limit k is defined as

CT(S, k) = {x | ∀a ∈ S (∃P P is from a to x ∧ |P | ≤ k)}

Common regulators CR(S, k) of a set S can be defined similarly. Figure 4.3 shows

an example of this operation. Below is a pseudo code of this algorithm. Input

parameter dir specifies whether we are asking for targets or regulators, requiring

a forward or reverse BFS, respectively. Algorithm CR-BFS simply increases the

reached count of nodes in the k-neighborhood of seed node n1, and the nodes

reached during such searches are combined in a candidate set. Only the nodes in

the candidate set reached from all source nodes are selected to form a result set.

algorithm CommonRegulation(S, k, dir)

1 C := R := ∅ // candidate and results sets, respectively

2 for n1 ∈ S do

3 C := C ∪ CR-BFS(n1, k, dir)

4 for n2 ∈ C do

5 if n2.label(reached) = |S| then

6 R := R ∪ {n2}
7 return R

CHAPTER 4. METHOD 18

Figure 4.3: Common regulators, with path limit 2, of small molecules containing
the word “lauro” in their name (cyan) in this partial mechanistic pathway are
found to be a single node representing a molecular complex (green). The paths
from the common regulator to the target nodes are highlighted (yellow).

This operation takes O(|S| · |NB(S, k)|) time as we perform a BFS for each

node in S.

In addition, one might require such paths leading to targets or originating

from regulators to be positive or negative. For instance, common targets of

source nodes S reached by positive paths of length up to k only, denoted by

CT+(S, k), might be of interest. However, we conjecture that complexity of such

an operation is asymptotically higher.

Biological Importance: This query becomes important when analyzing cor-

related events, like microarray expression levels. It finds common regula-

tors/targets, that can possibly explain observed correlation(as stated in [9]). This

query answers questions like:

• Why are the expression levels of these two genes correlated?

• Why are the final phenotypes of these two different signals the same?

CHAPTER 4. METHOD 19

Figure 4.4: Shortest paths (yellow) between bioentities whose names start with
“PPA” (cyan) and those whose names contain “ESR” (green) with (left) d = 0
and (right) d = 2. Notice that the length of a shortest path between these two
node sets is k = 2.

4.4 Shortest Path

Given source and target sets S and T , finding shortest S-T paths is a commonly

used graph operation [7]. This operation might be constrained by a parame-

ter denoting the maximum length of such paths. In addition, a parameter for

“relaxing” the shortest requirement might also be useful. Thus, for instance,

the shortest paths between two node sets S and T with maximum length k and

further distance d can be defined formally as

SP(S, T, k, d) = {P | P is an S − T path ∧
|P | ≤ min(l + d, k) ∧ l is the length of a shortest path}

Figure 4.4 illustrates this with an example.

Below is the pseudo-code for finding SP(S, T, k, d), where mod specifies

whether edges are to be treated directed or undirected.

algorithm ShortestPaths(S, T , k, d, mod)

1 if S ∩ T 6= ∅ then

CHAPTER 4. METHOD 20

2 return S ∩ T

3 else

4 R := SP-BFS(S, T , k, d, mod)

5 return BuildUpAndEnumPaths(S, T , R)

algorithm BuildUpAndEnumPaths(S, T , R)

1 for n ∈ R do

2 Construct a new path p for n

3 Add all nodes in set R to queue Q

4 W := ∅
5 while Q 6= ∅ do

6 n1 := Q.dequeue()

7 for n2 ∈ n1.neighbors(mod) do

8 if n2.label() = n1.label()−1 then

9 W := W ∪ { (n1, n2) }
10 if n2 /∈ W and n2.label()6= 0 then

11 W := W ∪ {n2}
12 Q.enqueue(n2)

13 if n2 is first neighbor then

14 concatenate n2 to paths of n1

15 else

16 clone all paths of n1 and add to paths of n2

17 Update path list of n2

18 Update sign of paths of n2 with edge (n1, n2)

19 return W , paths

Here, SP-BFS runs a breadth-first search starting with nodes in set S in

provided mod, up to maximum depth k and returns the reached nodes in T . The

complexity of the provided version of the algorithm is O(l + |NB(S, k)|), where

l is the total length of the paths enumerated. Notice that the above algorithm

enumerates all shortest paths. If it suffices to find all the nodes and edges on such

paths, rather than listing individual paths, BuildUpAndEnumPaths may be

simplified.

CHAPTER 4. METHOD 21

In the context of pathways, one might be interested in positive

(SP+(S, T, k, d)) or negative shortest A-B paths in a given pathway graph.

Another type of operation that might be useful is finding first k shortest paths

between specified node sets. More formally

k-SP+(A, B, k) = {P1, P2, · · · , Pk} where

Pi, i = 1, · · · , k, is a positive A−B path and∑k
i=1 |Pi| is minimum over all path sets of size k

Notice that this path set is not necessarily unique.

Biological Significance: It is commonly accepted that graph theoretic distance

of two nodes is correlated with their functional distance. This argument is a long

one and is beyond the scope of this document. But to put it simply it has three

basis(as stated in [9]):

• In a small-world graph evolved with node duplication events (most biolog-

ical networks, including reaction networks fall into this category), graph

theoretic distance correlates with evolutionary distance.

• Shorter the graph theoretic distance between two nodes, more likely that

they are co-regulated, because there are less (control) reactions between

them.

• Evolutionarily a very long path with many redundant intermediates should

be suboptimal. Intermediates that do not perform control and amplifica-

tion of the signal, are simply unnecessary vulnerable spots reducing the

robustness of the system.

Assuming the above statement is true, and then this query answers the following

questions:

• What are the possible route(s) that this protein governs this process?

• How are pathway A and pathway B linked?

CHAPTER 4. METHOD 22

Figure 4.5: Positive feedback (yellow) of a specified Citrate state in mitochondria
(green) with up to length 10; the result contains two feedback cycles, one in
mitochondria (of length 10) and one through cytoplasm (of length 8).

• What is the most possible route for this signal to be transmitted to the

nucleus?

4.5 Feedback

This operation results in a list of positive or negative cycles that contain a speci-

fied node. For instance, positive feedback of a node a with maximum length k is

defined as

FB+(a, k) = {C | C is a positive cycle ∧ a is on C ∧ |C| ≤ k}

Figure 4.5 illustrates this with an example.

Our algorithm is based on generating all cycles starting from a given set

of source nodes in a directed graph as described in [21]. These cycles can be

generated by a depth-first search, in which edges are added to a path until a

cycle is produced. If a cycle is found, maximum length is exceeded or a dead-end

is reached the algorithm backtracks and continues with the next possible edge.

The algorithm picks a node from the source set as the source (s) and builds

CHAPTER 4. METHOD 23

a directed path sn1n2n3 · · ·nk. A cycle is found if the next vertex nk+1 equals s.

After generating this cycle the next edge going out of nk is explored. If all edges

going out from nk have been explored, the algorithm backs up to the previous

vertex nk−1 and continues. This process continues until we try to back up past

the source node s. At that point all cycles involving s have been discovered, so s

can be removed from the graph and the process can be repeated until the source

set becomes empty.

To prevent traversing cycles originating at a vertex ni during the search rooted

at s, all vertices on the current path are marked as “unavailable” as extensions

of that path. For this, we maintain a flag, which is set to false as soon as n is

appended to the current path. That node will remain unavailable until we have

backed up past n to its previous vertex on the graph. If the current path up to

n did not lead to a cycle, it will remain unavailable even if we back up past it.

This prevents redundant dead-end searches. Vertex n will, however, be marked

available if a cycle could not be found due to cycle length limit since it is possible

for a shorter path to form a cycle by going through n.

algorithm Feedback(S, k, desiredSign)

1 path := Empty Stack

2 cycleList := Empty List

3 for n1 ∈ S do

4 Reset all node flags except removed flag

5 sign := +1 // initially zero inhibitors (even)

6 n1.inprocess := true // finds all cycles s is involved with

7 Cycle(n1, 1, sign)

8 n1.inprocess := false // process finished

9 n1.removed := true

algorithm Cycle(n1, currLength, sign)

1 flag := false

CHAPTER 4. METHOD 24

2 path.push(n1)

3 n1.available := false

4 if currlength < k then

5 for n2 ∈ n1.neighbors with n2.removed = false do

6 if n2 is an inhibitor then

7 sign := -sign

8 if n2.inProcess then // found a cycle

9 if sign = desiredSign then // check if its sign is as desired

10 currCycle := Create list using path

11 currCycle.add(w)

12 cycleList.add(currCycle)

13 flag := true // found a cycle containing v

14 else if w.available then

15 g := Cycle(n2, currlength + 1, sign)

16 flag := flag or g

17 else if There are edges going out of n1 then

18 flag := true

19 if flag then

20 Unmark(n1)

21 else

22 for n2 ∈ n1.neighbors with n2.removed = false do

23 n2.UnavailablePredecessors.add(v)

24 path.pop() // backtrack

25 return flag

algorithm Unmark(n1)

1 n1.available := true

2 for n2 ∈ n1.UnavailablePredecessors

3 n1.UnavailablePredecessors.remove(n2)

4 if !n2.available

5 Unmark(n2)

CHAPTER 4. METHOD 25

Similar to the basis operation given in [21], this algorithm is of O(|NB(S, k)| ·
(c+1)) time complexity, where c is the total number of positive or negative cycles

generated.

Biological Significance: Feedback loops are an important apparatus used by

cellular networks. They can have signal amplifying or stabilizing roles. This

query answers questions like(as stated in [9]):

• How is the concentration of this molecule stabilized?

• How does this signal gets amplified?

4.6 Stream

k upstream (downstream) of a node a is composed of the nodes on the incoming

(outgoing) paths to a with length at most k. Positive (negative) upstream of a

node a is composed of the nodes on the incoming path that activates (inhibits)

(in case of a mechanistic pathway, the preceding transition of) node a. Thus, for

instance, k positive upstream of a node a can be formally described as

ST-up+(a, k) = {x | x is on a positive incoming path P of a ∧ |P | ≤ k}

A node b might be in both the positive and negative up or downstream of an-

other node a, making those streams (or associated positive and negative paths)

ambiguous. Those nodes in the upstream (downstream) of a node a that lead to

(reached from) node a with only positive paths form the unambiguous positive

upstream (downstream) of node a. Figure 4.6 illustrates this with examples.

The algorithm performs a brute-force traversing of all the nodes in the k-

neighborhood of the source node. It is based on a depth-first search, however,

after the recursive processing of a node finishes, that node is marked as unvisited

CHAPTER 4. METHOD 26

Figure 4.6: (left) Up (green) and down (cyan) stream of protein “a” (yellow) in
a partial mechanistic pathway. (right) Unambiguous positive upstream of node
“a” (yellow) contains node “b” (green) only, as node “c” is on both positive and
negative paths leading to node “a”.

again, potentially leading to multiple visits of nodes and edges. More specifically,

every node and edge is processed as many times as the number of different ways

they can be reached from source node. In other words, every possible path with

length limit from the source node is examined to determine whether it makes a

suitable stream or not. Below is the pseudo code for finding positive or negative

up or downstream of a desired node with a limited specified distance.

algorithm Stream(v, currLength, maxLength, currSign, desiredSign, dir)

1 v.available := false

2 if currLength < maxLength then

3 for w ∈ v.neighbors(dir) do

4 if w is an inhibitor then

5 currSign := −currSign

6 if currSign = desiredSign then

7 R := R ∪ {w}
8 else

9 A := A ∪ {w}
10 if w.available = true then // prevents infinite loop

11 Stream(v, currLength + 1, maxLength,

currSign, desiredSign, dir)

12 v.available := true

13 return R, A

CHAPTER 4. METHOD 27

Naturally, the time complexity of this algorithm is exponential in the number

of nodes and edges in the k-neighborhood of the source node in the worst case.

Our experiments show, however, execution time should be acceptable for most

interactive applications for small values of k (say up to 10).

Biological Significance: Analyzing upstream and downstream nodes of a mole-

cule is important to be able to retrieve cause/effect relationships, which are crit-

ical in diagnosis or drug design. This query answers questions like(as stated

in [9]):

• What activated this protein?

• Which processes are affected if this gene is knocked down?

• What are the downstream effects of this drug?

Also in the unambiguous stream case, we require that there are no routes with

conflicting effects between the source and target, i.e. all paths are of the same

sign. This way we can say unambiguously that to our best knowledge source

affects the target in this manner.

All query operations described earlier, make use of traversals over a set of

pathway objects of interest. Traversal over pathway objects represented with

some sort of a compound structure (e.g. regular abstractions or molecular com-

plexes) calls for a special mechanism as there might be some kind of an equivalence

relation between the compound and its members.

4.7 Subgraph Matching

Roughly, a graph G1 = (V1, E1) is said to be isomorphic to another graph G2 =

(V2, E2) if one can define a mapping between V1 and V2 such that neighborhood

relations of each node in V1 is exactly the same as those of the corresponding

node in V2. Exact graph matching problem is given a data graph G (e.g. pathway

CHAPTER 4. METHOD 28

knowledgebase) and a model graph H (e.g. pathway to be searched), finding a

subgraph or subgraphs of G that are isomorphic to H.

In cases no isomorphism is expected between a data graph G and a model

graph H, one might be interested in finding the best matching between them (or

H and a subgraph of G), leading to a class of problems known as inexact graph

matching. In that case, the matching aims at finding a non-bijective correspon-

dence between H and G′ ⊂ G.

Even though most flavors of the graph matching problems are NP-

complete [13, 1], there has been a long history of research, mostly focusing on

exact subgraph matching. Approximations and restricted versions of the problem

have been attacked using various alignment techniques allowing node mismatches

and gaps [25, 26, 24]. However, all such methods have suffered from efficiency,

which was partially compensated by various indexing techniques.

4.8 Compound Structures & Ubiquitous Enti-

ties

We handle this using some traversal options and decide how the traversal should

continue when it reaches a compound structure or a member of the compound

structure. The list of options can be characterized into two:

• Link a compound structure and its members: For instance, should reaching

a homology state be interpreted as reaching its members as well (the genes

that are homologous) and vice versa.

• Link members of a compound structure: For instance, should reaching a

member of a molecular complex be interpreted as reaching all members

of this complex (thus the traversal should be able to continue from other

members as in Figure 4.7).

CHAPTER 4. METHOD 29

Remember that we assume six distinct types of compound structures: five kinds

of abstractions and molecular complexes as defined earlier. For some of these

structures, a user-customized option might not be necessary. For instance, reach-

ing a member of a regular abstraction should rarely be interpreted as reaching

all the other members of that abstraction.

Figure 4.7: Traversal reaching complex “c1” from the transition on the left will
continue to transition on the right if and only if “Link Members of Complex”
option is true.

Another type of a biological entity that requires special attention is ubiquitous

or simply ubique molecules; that is states with very high degree. For instance

a ubiquitous molecule such as ATP might be involved in potentially hundreds

if not thousands of reactions at mechanistic level. So, one might prefer not

to link two reactions whose only common actors are these kinds of molecules.

Therefore traversal over ubiquitous molecules can also be controlled by user-

customizable options. Figure 4.8 explains this with an example. Modification

to earlier algorithms for handling ubique molecules is similar to the mechanism

described for compound structures.

Figure 4.8: Whether or not state “a” is in the 4-neighborhood (green) of state
“c” (yellow) depends on whether traversal over ubiques (“ubique x” in this case)
is allowed. Obviously, in this case it is allowed.

Chapter 5

Implementation

5.1 Patika

This section briefly describes the implementation of Patika ontology.

5.1.1 Model Layer

Model layer defines first class objects as interfaces, allowing a greater flexibility for

its implementors. We assume that the reader already has an acquaintance with

the ontology so we do not further explain its concepts, unless an implementation

specific explanation is required.

An overview graph of first class objects are given in Figure 5.1. Since abstrac-

tions are cross-cutting concerns they were implemented with multiple inheritance.

5.1.2 Concrete Implementations

There are three concrete model implementations, DB (Database) level, S (Sub-

ject) level and V (View) level.

30

CHAPTER 5. IMPLEMENTATION 31

Figure 5.1: Class hierarchy of the primary Patika objects.

CHAPTER 5. IMPLEMENTATION 32

DB-Level: The server side employs an MVC framework and DB-level acts as

the model layer, providing the Patika Model interface which is used for manipu-

lating data. DB level is also a DAO(Data Access Object) layer hiding persistence

related details from the user, and provides the same consistent Patika Model

interface. The DB level relies on an in house graph implementation and provides

persistence and querying logic.

S-Level: The S-level relies on Tom Sawyer Software’s1 graph libraries for

defining an abstract Patika graph. S-level is a model layer and contains only

topology of the graph and the related data. In a sense, S level acts as a cached

subgraph of the database and a temporary storage for user created objects and

user modifications.

V-Level: V-level defines a compound graph which again relies on Tom Sawyer

Software’s graph libraries. V-level is a view layer and contains all the drawing in-

formation. However each manipulation that is made to the model is delegated to

the S layer, which in turn updates views accordingly. V-level provides extra facil-

ities for managing the visualization such as collapsing compound nodes, fetching

and merging more objects from the subject graph and laying out external data

on them such as expression levels from a microarray experiment.

5.1.3 Patika Graphs and Excision Support

A PatikaGraph is a set of PatikaNode’s and Interaction’s. The interface Patik-

aGraph is implemented in all model layers as DBPatikaGraph, SPatikaGraph and

VPatikaGraph. At each layer the PatikaGraph contains same layered PatikaN-

odes and Interactions. In our implementation, field queries are direct methods of

PatikaGraph, and all the queries and query results uses PatikaGraph effectively

in all phases of execution and visualization.

Not all subgraphs of a Patika graph is valid. Some Patika objects depend on

other objects for being valid, the latter being called a prerequisite of the former.

1http://www.tomsawyer.com

CHAPTER 5. IMPLEMENTATION 33

Some example dependency relations are:

• All interactions must have their sources and targets in the view, and if both

its source and target is in the view, so must the interaction.

• Each transition must have all of its substrates and products in the view.

Although effectors are optional. A transition with missing substrates and

products is wrong, in the sense that it clearly violated chemical paradigm.

On the other hand leaving out effectors makes it simply partial.

• All states must have their bioentity in the graph.

• All complexes must have their complexes member states in the graph and

vice versa.

• All abstractions must have their members in the graph. The reverse does

not hold.

All Patika objects know and can provide a list of their prerequisites.

5.1.4 Patika Server Architecture

Patika software contains a server side component which provides Web services

for persistence, querying and integration and two clients for serving different use

cases. All clients talk with the server using the same XML based interface over

HTTP. Patikapro is the heavy client, which is a Java application aimed at users

whose primary use case is to edit or extensively analyze the data. On the other

hand, Patikaweb is targeted for users who are more interested in read-only access

to the database for rapid knowledge-acquisition.

Postgresql is used for main database. It is the most advanced and second

most popular open source relational DBMS. It is considered as a slow database,

but is ACID compliant and quite stable. It is quite isolated from the system

by hibernate layer, so we could switch it by simply changing configuration files

anytime.

CHAPTER 5. IMPLEMENTATION 34

Underlying container is Tomcat2, although server can also be configured to

run on a J2EE server and a JTA data source, if a clustered environment is needed.

Hibernate3 is the current ORM (Object to Relational Mapping) tool. Hi-

bernate is a powerful, high performance object/relational persistence and query

service for Java. Hibernate allows developing persistent objects using plain old

Java classes and relations - including association, inheritance, polymorphism,

composition and the Java collections framework.

Spring4 is a layered Java/J2EE framework, providing several commonly oc-

curring structures in J2EE servers. Spring framework is used for three things:

Implementing the IoC pattern for a modular server design, a flexible MVC and

managing and isolating Hibernate.

5.1.5 Clients

Patika has two different clients, Patikaweb and Patikapro. Overall architec-

ture of these clients are fairly similar, the only difference in their modus operandi

is that Patikaweb has a three-tier architecture, where the most editor operations

are done on the so-called bridge, whereas Patikapro sports a plain two-tier ar-

chitecture, where all editor operations are done a heavy Java application. Mostly

due to keep the client thin and high performance, Patikaweb provides only read-

access to the database and does not allow users to modify queried models.

5.2 Patika Query Framework

This section explains the implementation details of Patika Query Framework.

Firstly the structures used to hold the query data are mentioned, then the exe-

cution scenario is described over the query components. Lastly, the Query User

2http://www.jakarta.org/tomcat
3http://www.hibernate.org
4http://www.springframework.org

CHAPTER 5. IMPLEMENTATION 35

Interface is illustrated.

5.2.1 Query Structures

There is a separate query object for each type of query, which collects the nec-

essary information and executes the required query. The general structure of

query objects is stored in Query interface and all query objects implement this

interface. There are also QueryResult objects which store the results of execu-

tions. Execution of the queries depends on the type of the query. Algorithmic

queries simply run the corresponding algorithm. Field queries use the associated

method directly, implemented in PatikaGraph (See Field Queries Document).

The networking between client and server for these queries is done via XML files.

5.2.1.1 Query Types

Field Query

These queries are the simplest queries that ask only the object with given field

information. Field queries are composed of clauses and conditions. Clauses are

the structures in which conditions and clauses are conjunct with ORs and ANDs,

using a composite pattern. There are several kinds of conditions.

• String condition in which it is checked whether a field is equal to the spec-

ified string

• Integer condition in which it is checked whether a field is equal to the

specified integer

• Object condition in which it is checked whether a field is equal to the spec-

ified object. These conditions are not directly created directly by the user,

but it is required to check an object is equal to the result of another query,

like joins in database queries.

CHAPTER 5. IMPLEMENTATION 36

from ComplexMemberState where BioEntity =

{ from BioEntity where Name = ? }

The above query written in PatikaFieldQuery language is an example to

an object condition in which a string condition is used as an object. This

query should get ComplexMemberStates of which have BioEntity’s naming

smt.

• List condition in which it is checked whether a field which is a list of some-

thing (integer, string or object) has any specified query. List conditions are

as object conditions have at least one condition inside.

from BioEntity where Names has any ?

The above query is an example to a list condition which consists a string

condition inside. Bioentities has a an array of Names which are simple

strings, a bioentity is chosen if it has any value equal to the specified string

in its Names string.

from Complex where MemberStates has any

{ from ComplexMemberState where BioEntity =

{ from BioEntity where Names has any ? } }

The above query is a list condition query and if one of its MemberStates

is equal to the inner condition (an object condition consist of a list con-

dition of a string condition), it is chosen. Figure 5.2.1.1 summarizes the

aforementioned classes.

These strings are then parsed and transformed into several field query ob-

jects. A FieldQueryParser object takes a string and then parses it producing

an AbstractSyntaxNode instance (or rather an instance of one of its subclass)

which further may include more clauses and conditions by composition. State

diagrams in Figures 5.3 and 5.4 depicts the details of field query parsing.

Field queries are interpreted differently at server and client side. This is

achieved by making polymorphing calls to PatikaGraph interface. At the client

CHAPTER 5. IMPLEMENTATION 37

Figure 5.2: The class diagram of field query nodes. A composite pattern was
used for arbitrary nesting of query objects.

Figure 5.3: General state diagram of FieldQueryParser, for parsing the Patika
query languages field queries.

CHAPTER 5. IMPLEMENTATION 38

Figure 5.4: State diagram of the FieldQueryParser, for deciding on which con-
dition to create. Through composite conditions it is possible to specify arbitrarily
nested object relations.

CHAPTER 5. IMPLEMENTATION 39

side iteratively all of the Patika objects should be sent to the evaluate method of

this AbstractSyntaxNode one by one, and the list of the ones which return true,

should be returned as the result of the query. A visitor pattern was implemented

to achieve polymorphism between different S-level objects. Client side does not do

anything for the performance, all queries have O(n) time complexity and there is

no query optimizer. On the server side interpretation is even more simple. Since

our Patika Field Query Language is similar but not equal to the Hibernate

Query Language (HQL), conversion from our language to HQL can be done with

little effort. An AbstractSyntaxNode object has an SynthesizeHibernateQuery

method, which can do this conversion, then only remains running of this query

via hibernate query, with its full performance benefits.

Algorithmic (Pathway) queries

These types of queries include mostly the graph theoretic queries and the

queries that ask about the pathway information. Examples include shortest path,

neighborhood, and common regulation. Patika query system defines different

graph theoretic queries for different biological problems.

Logical queries

These queries allow performing negation, union and intersection operations

on other query results. AND query operates as a intersection while OR query has

a union meaning.

5.2.1.2 Query Tree

Each query has a tree structure. The set parameters of a query are given by

another query, and therefore these subqueries become the child queries of root

query. The leaves of the query tree is always Field queries. Since the result of all

queries are a set of PatikaObjects every query can be a child query. For example,

a ShortestPathQuery has a source set and a target set as input parameters. These

sets are given as different Field queries. During execution, ShortestPathQuery

has to wait for the results of these child Field queries.

CHAPTER 5. IMPLEMENTATION 40

Figure 5.5: Query and Query Result Hierarchy

5.2.1.3 Classes

Query Classes

Each query class implements the Query interface. The XML file that is re-

ceived from the client is converted to a concrete Java object at the server side.

This part is handled by JAXB. JAXB converts the XML representation of a

query to an object that is a respective subclass of Query instance. This query

object either instantiates a new respective Algorithm for that query and exe-

cutes the query by the run method of the Algorithm or the Query object can

directly execute the query possibly by calling another method of a class without

using any Algorithm object. The class hierarchy is given in Figure 5.5 and class

composition is given in Figure 5.6.

The methods for the Query interface are:

• executeQuery():QueryResult

CHAPTER 5. IMPLEMENTATION 41

Figure 5.6: Query Composition

• getList():List

executeQuery method executes the query and builds the QueryResult for future

uses. getList method returns the result of the query as a List. If the query is

executed, the result list is returned. If the query is not executed, first the query

is executed and then the resulting list is returned. This list is obtained from the

QueryResult object. This method reduces the overhead of re-executing the same

query to get the same result. In the query tree, the execution of the query is

in the post order. That is for a shortest path, first the source node is retrieved

as a field query then the target node is retrieved as a field query; and finally

an instance of a ShortestPathAlgorithm class is created and executed with the

source and the target sets. However, if the set of nodes are known they do not

need to be queried. So there are two constructors; one, which takes a FieldQuery

instance and the other which takes a set of nodes. This situation is similar in

other Query objects.

Query Result Classes

CHAPTER 5. IMPLEMENTATION 42

There is a QueryResult class to hold the result of the queries. QueryResult

class holds source, target, result sets and a model (i.e. PatikaGraph) of the result.

The model of the result is the excised graph of the result set from database.

In general, QueryResult class is sufficient to store the results of the queries.

However, if more information should be stored, there are extended QueryResult

classes like NeighborhoodQueryResult class. Examples of such information are

list of paths, cycles and neighborhood classes. For handling these cases, there

exists a list of lists structure in behind. This structure is not in Java classes

but in XML forms, however it directly affects the QueryResult class design and

worth to mention in this section.

List of lists: There is not a common output structure for the results of the

queries. Some of the queries can return only one node (like GetByPIDQuery)

whereas the others can return ‘list of nodes’ or ‘list of list of nodes’. As an exam-

ple if the getList method returns a list that is composed of PatikaObjects

to get the result of the ShortestPathQuery there occurs a problem. The

ShortestPathAlgorithm gets a list of target nodes and a list of source nodes

as inputs to determine the shortest path from these source nodes to targets. The

problem is that there can be more than one path in the result. So there is a

problem of how to return these paths. If only one list is used to store the result

then the paths are merged together and the client cannot unmerge this structure

and the result of the query cannot be viewed correctly. In order to construct a

standard structure for all types of query results, list of list structure is used. List

of lists structure can hold all three types of query results: only one object, a list

of objects and a list of lists of objects.

If there exists a different type of list, then a special XML conversion is needed

and a new derived class should be created. By this design, QueryResult structure

is extremely generic in the ability of storing different types of results such as paths

and cycles.

Model: There will also be the model of the resulting set which is a concrete

PatikaGraph object. The model part is actually optional, since when the user

makes query on local machine then there is no need to store the model in the

CHAPTER 5. IMPLEMENTATION 43

query result. However, if the user runs a query from database, the excised model

should be stored in the QueryResult so that the user can reach the resulting

objects.

5.2.1.4 XML Formats

XML Representation of a query simply holds all the information to define that

query. The definition includes the subqueries, query parameters, and traversal

options. Query parameters vary according to the query type. Parameter examples

are distance limit, directed or not and positive or negative paths. Traversal

options describe how the graph algorithms will traverse over the compound and

ubique structures.

XML representation of the result of a query is composed of three parts: the

object ID lists, list of lists and the model. In object ID lists are ID lists of source,

target and result set objects. The list of lists structure could be just a single

list of objects or multiple lists of objects such as multiple paths or cycles. In

the model part all the information about these objects are listed. The objects

that are not int the result of the query but required because of the restrictions of

Patika graph structure are also listed in the model part (i.e. the existence of a

transition lead all of its products and substrates to be included in the model).

5.2.1.5 Conversion between XML and Java classes

Jaxb (Java APIs for XML Binding) will be used to convert both XML definitions

to Java objects and Java objects to XML definitions. A schema that defines

the valid XML files will be formed to check if the given XML file is valid or

not. After defining the schema, given a valid XML file, Jaxb can convert this

XML file to either Java classes or interfaces. However, if the schema should

have complicated types (such as a whole graph model in query results) there

should be converter classes that uses the XML Schema Definition to create the

corresponding concreter Java class. In our implementation, query classes are

CHAPTER 5. IMPLEMENTATION 44

converted via using the easy JAXB facility, while the query result classes has

special converter classes for this conversion task.

5.2.2 Query Execution and Data Flow

Patika Query Framework aims to provide users with a strong yet easy to use

tool for retrieving and analyzing pathway graphs. Queries in Patika can be

very complicated, due to the nesting structure. Therefore, it is worth to mention

about the execution scenario.

In the query scenario, server receives an HTTP request to the query URL.

Servlet reads the query in the XML format, dispatches correct controller which

in turn unmarshals Query type objects from the XML and runs them against the

database. All queries return a set of Patika objects and some query specific

result data e.g. in the case of shortest paths a set of lists describing paths found.

However a set of Patika objects does not necessarily reflect a consistent view.

The minimal consistent subgraph of the database containing the set is determined

and copied into a DBPatikaGraph, forming a model. This model is marshaled into

XML and finally the XML is sent back to the client. On the client side the graph

is unmarshaled from XML. Already existing objects are detected, their version is

checked and if outdated they are updated, new objects are merged to the model.

The resulting view is incrementally laid out.

Patika query component has several layers and Figure 5.7 shows order of the

data flow of query execution through these layers. The components are explained

in flow order as follows.

5.2.2.1 Query User Interface

As the queries in Patika will be constructed according to user needs, a user

interface layer works in client side to get the inputs of queries from user. This

layer allows the user to select the type, inputs and other query-specific attributes

from a dialog. When the query result is found (client side query) or taken from

CHAPTER 5. IMPLEMENTATION 45

Figure 5.7: Data Flow of Query Framework in Patika

CHAPTER 5. IMPLEMENTATION 46

Query Proxy (server side query), this layer is responsible of retrieval of the query

result to the user. Details of Query User Interface will be explained later.

5.2.2.2 Query Proxy

As some queries run in server side, the constructed queries with the help of Query

Dialog should be sent to the main server to be evaluated. At those times, the

queries are converted to XML format (i.e. marshaled) and sent to the main

server from client computers. Query Proxy component is responsible from this

operation. When the query is evaluated in server side and the result of the query

is received from the server, Query Proxy makes the reverse operation and converts

the XML data to its original form. When the operation is completed, it sends

the query result to Query Interface.

5.2.2.3 Query Controller

Query Controller works in server side and is responsible for evaluating the queries

that come from client side. To achieve this, it first converts the XML formatted

query to its original form (i.e. unmarshalls it) and then creates a Query object

using the parameters. When the query result is found, it converts the result to

XML format and sends to Query Proxy.

5.2.2.4 Query

Query is the object constructed by client or server side that contains all the in-

formation (i.e. type, running environment, predicates, etc.) about the query

created by the user. Also the Query Results are included in this component.

Query component sends a Query Result object to the Query Controller. Dur-

ing the evaluation the Queries and Query Results are concrete objects of Java

classes as mentioned above, however they are in XML format in traveling between

components.

CHAPTER 5. IMPLEMENTATION 47

5.2.2.5 Query Algorithms

Query Algorithms are needed for evaluation of queries. As the query types, input

parameters and evaluation criteria change from query to query, query algorithm

design and implementations differ between them. So, there exist different algo-

rithms for query evaluation. One exception is that field queries do not need any

Query Algorithm objects; they are straightforward and evaluated directly using

the graph model in client side or server side.

Every query can also receive result of another query as input. In this context,

it is possible to create nested queries, which provides querying also according

to non primitive fields. For example, by using nested field queries, users can

inquire ComplexMemberStates whose BioEntities have name something. In

that example, the inner primitive field query, returns bioentities according to

their names.

5.2.2.6 Patika Graph Model

The queries of Patika run on the graph model in both client and server sides. If

the query will run on view or subject graph, graph model on client side is used

as the environment to run the query. However, if the database will be used as

the environment; the server side graph model is used.

Queries can be grouped into three class: field queries, algorithmic queries and

logical queries. Patika system allows composing and combining them, allowing

a very powerful querying system.

5.2.2.7 Server Side Query Sequence

Figure 5.8 is the sequence diagram for query execution in the server side. Using

the parameters taken from the user, through a GUI, the query is constructed,

converted to a custom XML format and sent to server side by Query Proxy. In

the server side, Query Manager unmarshals the XML and creates a Query object.

CHAPTER 5. IMPLEMENTATION 48

Once the query object is created, it is run on database either after the creation

of an appropriate algorithm or directly (if it is a Field Query).

CHAPTER 5. IMPLEMENTATION 49

F
ig

u
re

5.
8:

S
eq

u
en

ce
d
ia

gr
am

sh
ow

in
g

th
at

ag
en

t
em

ek
is

ru
n
n
in

g
a

se
rv

er
si

d
e

q
u
er

y

CHAPTER 5. IMPLEMENTATION 50

The result of the query needs to be sent back to client side and same steps are

followed in the reverse order. Query Manager marshals the result of the query

into XML format and sends to Query Proxy. Query Proxy unmarshalls the query

result and passes the query result to the Query Interface.

5.2.3 Query User Interface

Figure 5.9: Sample query tree to find the union of 1-neighborhood of the objects
on the shortest path from states whose name starts with “Fas” to states whose
name starts with “RB” with the shortest path from states whose name starts
with “Fas” to states whose name starts with “JNK1”

Querying component of Patika supports both SQL-like queries and an ar-

ray of graph-theoretic queries for finding shortest paths, feedback loops, posi-

tive/negative paths, common regulations, or graph of interest based on user’s

genes of interest. For utmost flexibility, the queries are allowed to be recursively

organized into a tree, where result of one query might be source and/or target to

another. In addition, queries may be related to each other through “AND” and

“OR” operators. Figure 5.9 shows a sample query prepared in the Query Dialog.

A query may be executed not only on the database but also on the currently

loaded pathway model. After the execution of a query initiated from the query

dialog finishes, the returning result (i.e. pathway model) is summarized by the

Query Result Dialog.

Once retrieved from the database, the query results may be merged to the

CHAPTER 5. IMPLEMENTATION 51

Figure 5.10: Mechanistic view of the result of the following sample query: paths-
of-interest (yellow) with source of all mechanistic nodes whose names contain
“caspase-8” (green) and target for those whose names contain “bax” (cyan) with
limit 8; Highlight Legend Dialog for this query shown on right.

user’s current view and highlighted to provide an incremental user-friendly re-

trieval and analysis interface. Notice that the results can be viewed in either

or both of bioentity and mechanistic levels. Figure 5.10 shows a sample query

result; interpretation of highlight colors can be made using the Query Highlight

Legend Dialog. Alternatively query results may form a new pathway model from

scratch. Constructed models can be saved in XML, exported to standard formats

such as BioPAX and SBML or converted to static images. The query interface

of Patikawebhas been implemented as an applet (Figure 5.11 and Figure 5.12).

In Patikapro, the interface is again a windows application. The interface details

will be explained over the Patikawebversion.

The initial query node of the query forest must be constructed by using the

‘New Query’ tool in the toolbar. Its sub-queries or parameters may be constructed

by the pop-up menu of a query node (Figure 5.13).

The user may choose whether the query is to run on the database or the view

(i.e. local/current model) (Figure 5.14).

CHAPTER 5. IMPLEMENTATION 52

Figure 5.11: The user is asked to agree to run the Patika Query Applet.

Figure 5.12: The Query Dialog consists of a toolbar (top) and panels for query
forest (left) and parameters (right).

When the user clicks on the ‘Execute Query’ button, the query tree rooted at

the currently selected query node of the query forest is executed (Figure 5.15).

5.2.3.1 Query Results

After the execution of a query initiated from the Query Dialog finishes, the re-

turning result (i.e. pathway model) is summarized by the Query Result Dialog

(Figure 5.16).

A number of statistics about the result is displayed in this dialog:

CHAPTER 5. IMPLEMENTATION 53

Figure 5.13: The source of a Neighborhood query is set through the pop-up menu
of its ‘source’ query node.

Figure 5.14: The user can specify whether the query is to execute on the database
or the view.

• Mechanistic nodes/edges (number of nodes/edges at the mechanistic level)

• Bioentity nodes/edges (number of bioentities/interactions at the bioentity

level)

If the user does checks the ‘Replace Current Model with Results’ option,

then the previous pathway model and its views are discarded and the pathway

Figure 5.15: The query rooted at the OR query is executed when the user presses
associated button.

CHAPTER 5. IMPLEMENTATION 54

Figure 5.16: Sample Query Result Dialog

Figure 5.17: Sample Query Highlight Legend Dialog, where the last query is a
shortest path query, and source, target and result (shortest paths) objects are
highlighted with distinct colors (green, cyan and yellow, respectively).

model of the query results is displayed. If this option is unchecked, resulting

model is merged into the existing one, possibly modifying both views. The user

may opt to highlight the new objects (pathway objects that were not part of

the previous model but belongs to the model of the query result) in the views

displayed. Normally a separate color is used for different roles in the resulting

model. For instance in a neighborhood query, the source nodes are highlighted

with a distinct color, whereas neighbors are highlighted with a different common

color. The colors are pulled out of a fix color set sequentially. The legend for the

highlight colors of the last query may be reached through ‘View | Query Highlight

Legend’. A sample highlight legend is shown in Figure 5.17.

If the user checks ‘Layout’, then the associated view is also laid out.

CHAPTER 5. IMPLEMENTATION 55

Figure 5.18: You may constrain your query to a Patika object of a specific type.

5.2.3.2 Persisting Queries

You may persist the constructed queries locally on disk for later use clicking on

the save tool in the Query Dialog toolbar. The default extension for XML based

Patika queries is ‘.pql’. Note that it’s the query tree rooted at the selected query

object that is saved on disk, not the entire query forest or the entire associated

query tree.

To reload a previously saved query, click on the load tool in the Query Dialog

toolbar, and point to the proper ‘.pql’ file. This will not destroy the current query

forest but add a new query tree at the very end.

5.2.3.3 Basic Queries

Field Query

The simplest query type that can be performed in Patika through the query

framework is the field query. Following fields of objects can be queried: name,

Patika ID, Author ID, description, version and GO terms. In most queries in-

cluding the field query, you can specify and constrain the search to a Patika ob-

ject type using the Patika object tree (Figure 5.18). Please refer to Chapter 5.1

on Patika Model Implementation for a better understanding of the Patika

object tree.

CHAPTER 5. IMPLEMENTATION 56

Figure 5.19: All states of protein ‘tp53’ (yellow) as obtained by a ‘States of a
Bioentity’ query

Figure 5.20: Sources (yellow) of protein ‘tp53’ (green) as obtained by a ‘Sources
of a Bioentity’ query

States of a Bioentity

This query is used to find all states of a specified set of bioentities in the

current model or the database. For instance, all available states of protein ‘tp53’

can be obtained through this query as shown in Figure 5.19.

Sources of a Bioentity

This query may be used to find all source bioentities of a specified set of

bioentities in the current model or the database. As shown in Figure 5.20, DNA

‘tp53’ is found as the only source bioentity of protein ‘tp53’ in Patika database.

Products of a Bioentity

This query may be used to find all product bioentities of a specified set of

bioentities in the current model or the database.

CHAPTER 5. IMPLEMENTATION 57

Figure 5.21: Products (yellow) of DNA ‘tp53’ (green) as obtained by a ‘Products
of a Bioentity’ query

Figure 5.22: Queries can be combined through logical operators: Search for all
PatikaNode’s whose description contains ‘colon cancer’ or ID equals 3835 au-
thored by Joe Smith.

5.2.3.4 Logical Queries

Queries can be combined using logical operators. In addition, most queries are

defined recursively taking the result of another query as input (Figure 5.22).

5.2.3.5 Advanced Queries

More advanced graph algorithms that involve traversal starting with a set of

source and/or target objects are explained in this section.

Advanced Query Options

Below are some common traversal options valid for all advanced queries. These

options can be accessed and set through the button ‘Options’ on the right hand

side of each query panel (Figure 5.23).

Traversal Over Ubiques Traversal over ubiquitous molecules may be

CHAPTER 5. IMPLEMENTATION 58

Figure 5.23: Advanced Query Options Dialog is used to set traversal options for
ubiques and abstractions.

Figure 5.24: Whether or not ‘a’ is in the 4-neighborhood (green) of ‘c’ (yellow)
depends on whether traversal over ubiques (‘ubique x’ in this case) is allowed.
Obviously, in this case it is allowed.

avoided by un-checking ‘Follow Ubiques’ flag in Options Dialog. Since such mole-

cules are involved in potentially hundreds if not thousands of reactions at mecha-

nistic level, one might prefer not to link two reactions whose only common actors

are these kinds of molecules.

Traversal Over Abstractions These options decide how the traversal

should continue, when it reaches an abstraction or a member of an abstraction.

For instance, reaching a member of a complex molecule should often be inter-

preted as reaching all members of this complex; thus the traversal should be able

to continue from another member.

Neighborhood Query

Neighborhood query (NB) results in a set of molecules that are at most a

specified distance from the source set (Figure 5.25).

CHAPTER 5. IMPLEMENTATION 59

Figure 5.25: Sample Neighborhood Query Dialog for 1-neighborhood of protein
bioentities whose names start with ‘crk’

Figure 5.26: 1-neighborhood of protein bioentities whose names start with ‘crk’
(result of the query in Figure 5.25)

• limit specifies the maximum distance of a molecule from a source molecule

to be considered as part of the result of this query.

There are shortcuts for the neighborhood query in the pop up menu of nodes in

the currently displayed view. When you select ‘Find Neighbors in View’ or ‘Find

Neighbors in Database’ item in the pop up, a neighborhood query, respectively

on the current view or the database, is performed where the source is the field

query with the ID of the hit object, and limit is 1.

Graph/Paths of Interest

Graph-of-Interest (GoI) query aims at completing the ‘missing links’ (and

molecules on these links) among a set of molecules of interest that is no longer

than a specified limit (Figure 5.28).

CHAPTER 5. IMPLEMENTATION 60

Figure 5.27: Immediate neighbors (yellow) of protein ‘CRKL’ (green) may be
queried using its popup menu

Figure 5.28: Sample GoI Query Dialog

• limit specifies the maximum length of a missing link from a molecule in the

specified source set to a molecule in the same set to be considered as part

of the result of this query. Paths-of-Interest (PoI) query, on the other hand,

does the same thing from a specified set of source molecules to a specified

set of target molecules (Figure 5.30).

• limit specifies the maximum length of a missing link between a molecule in

the source set and a molecule in target set to be considered as part of the

result of this query.

Common Target / Regulator

If node A is the starting node of a directed path that ends up in node B,

then node B is said to be a target of node A; similarly, node A is said to be a

regulator of node B. In this context, common target of a source molecule set S is

the set of molecules that are targets of all molecules in S. Similarly, the common

regulator of a target molecule set S is the set of molecules that are regulators

CHAPTER 5. IMPLEMENTATION 61

Figure 5.29: Result of the query in Figure 5.28: GoI (yellow) of protein bioentities
whose names start with ‘crk’ (cyan) where limit is 3 (left) and where limit is 2
(right). Notice that each protein on the GoI (yellow) is on at least one path
between two source nodes (cyan) whose length is at most limit.

Figure 5.30: Sample PoI Query Dialog

of all molecules in S. This query results in a set of molecules that are common

targets (regulators) of all the molecules in the source (target) set (Figure 5.32).

• limit specifies the maximum distance of a target (regulator) molecule from a

source (target) molecule to be considered as part of the result of this query.

• direction specifies whether we are interested in finding targets or regulators.

• include regulation paths specifies whether the actual paths from the given

molecule set to the targets (or from the regulators to the given molecules)

are to be included as part of the result.

CHAPTER 5. IMPLEMENTATION 62

Figure 5.31: Result of the query in Figure 5.30: PoI (yellow) between mechanistic
nodes whose names contain ‘caspase-8’ (green) and those whose names contain
‘bax’ (cyan)

Shortest Paths

This query may be used to find the shortest paths (that is, pathways of short-

est length) between two sets of pathway objects (i.e., source and target sets) (Fig-

ure 5.34). The user may specify source and target object sets by other Patika

queries (e.g., field queries).

• limit specifies the maximum length of a path to be considered as a result

of this query.

Figure 5.32: Sample Common Regulator Query Dialog

CHAPTER 5. IMPLEMENTATION 63

Figure 5.33: Result of the sample common regulator query in Figure 5.32, where
we find common regulators (green) of the simple states whose names contain
‘lauro’ (cyan); paths leading from common regulators to the targets are shown in
yellow.

• directed is used to specify whether the edge (interaction) direction (e.g.,

product edge of a mechanistic view, going from the associated transition to

the product state) is to be taken into account or not.

• further distance allows selection of paths that are longer than the shortest

path(s) up to a certain length.

Feedback Query

This query results in a list of positive or negative cycles that contain a specified

node and can be used in studying cellular networks (Figure 5.36). These queries

can have signal amplifying and stabilizing roles and may help answer questions

such as ‘How is the concentration of a molecule stabilized?’ and ‘How did a signal

get amplified?’

• limit specifies the maximum length of a cycle to be considered as a result

of this query.

• sign tells whether we should filter the resulting cycles to be restricted to

the positive or negative ones only.

CHAPTER 5. IMPLEMENTATION 64

Figure 5.34: Sample Shortest Paths Query Dialog

Stream Query

This query may be used for analyzing upstream and downstream of a molecule

(Figure 5.38). It has a significant role in retrieving cause/effect relationships

which are essential for diagnosis, following up the development of certain events

and drug design. In addition, these queries can provide answers to questions such

as:

• Which molecule activates this protein/molecule?

• Which processes are affected if this molecule/gene is knocked down?

• What are the downstream/upstream effects of certain drugs/molecules?

The query is constructed by defining a source set as a sub-query, typically a field

query, from the query dialog. The user also specifies the sign (i.e., positive or

negative) of the path, and a threshold for the path length from the source or to

the target. All nodes that have an outgoing/incoming path (for upstream and

downstream, respectively) satisfying the constraints are returned, and highlighted

with a different color.

• direction is used to specify whether we are to find the upstream of target

objects or the downstream of source objects.

CHAPTER 5. IMPLEMENTATION 65

Figure 5.35: Result of the sample shortest paths query in Figure 5.34, where
we find directed shortest paths (yellow) from simple states whose names contain
‘caspase’ (green) to simple states whose names contain ‘bad’ (cyan)

Figure 5.36: Sample Feedback Query Dialog

• limit specifies the maximum length of a path to be considered as part of

the result of this query.

• sign tells whether we should filter the resulting paths to be restricted to the

positive or negative ones only.

• ambiguity specifies whether or not ambiguous streams (multiple paths of

conflicting sign with same source and destination) should be part of the

result.

CHAPTER 5. IMPLEMENTATION 66

Figure 5.37: Result of the sample feedback query in Figure 5.36, where we look
for positive feedback (yellow) of a given Citrate state (with specified ID) in mi-
tochondria (green) with up to length 10; the result contains two feedback cycles,
one in mitochondria (of length 10) and one through cytoplasm (of length 8).

5.2.3.6 Sample Session

Following is a sample session in which subsequent queries and complexity man-

agement operations are performed to form a model that might be of use to a

Patikawebuser. Suppose the user is studying the effects of FAS Ligand on apop-

tosis. One good way to start is by searching for the relations between FAS Ligand

and the Caspase complexes in the cell. In order to find out the states of FAS

Ligand in the cell, we perform the query in Figure 5.40, where we ask for simple

Figure 5.38: Sample Stream Query Dialog

CHAPTER 5. IMPLEMENTATION 67

Figure 5.39: Result of the sample stream query in Figure 5.38, where we look for
unambiguous positive upstream, with limit 4, (yellow) of complexes whose names
start with ‘active caspase’ (green)

states whose names start with ‘FASL’.

We see six states highlighted in the result of the query (Figure 5.41). One

is the free extracellular FAS Ligand, and remaining ones are members of several

complexes spanning the cytoplasmic membrane. And we may check how many

Caspase complexes we have in the database, which are not a precursor or a pro-

caspase (Figure 5.42).

Caspase query returns a total of 11 complex molecules, which are all in cy-

toplasm (Figure 5.43). Now we know that the database contents that we want

to ‘start from’ and we want to ‘reach to’. The most popular query for finding

relatively short paths between source and target molecules is the ‘Shortest Path

Query’ described earlier. We may use the previous FAS Ligand and Caspase field

queries as the source and target fields of the shortest path query (Figure 5.44).

CHAPTER 5. IMPLEMENTATION 68

Figure 5.40: Query for simple states whose name starts with ‘FASL’

Figure 5.41: Result (yellow) of the FAS Ligand query in Figure 5.40

Result of the shortest path query retrieves paths of length 4 (Figure 5.45).

These are paths involving the FAS Ligand complex on the cytoplasmic membrane

and the Caspase-8 dimer in cytoplasm. This picture might be very helpful but

it still has many missing relations. There are several ways to obtain a more

complete picture. First alternative is to use the shortest path query with the

”Further Distance” parameter. Figure 5.46 shows the same query with further

distance set to 8. Since the shortest path length is 4, this query would bring us

the paths from source to target nodes of length at most 12. Figure 5.47 shows

the resulting model.

Another way of doing the same query is to use a ‘Paths-of-Interest’ (PoI) query

with limit 12. Since this query will bring all paths of length at most 12, between

CHAPTER 5. IMPLEMENTATION 69

Figure 5.42: Query for Caspase complexes, which does not contain words ‘pre-
cursor’, ‘pro-caspase’ or ‘procaspase’

Figure 5.43: Result (green) of Caspase query in Figure 5.42 added to the existing
model

source and target sets, the result will be identical to the previous shortest path

query with further distance 8. Thus PoI query is simply a more convenient way

of querying paths when we have a good estimation of the length of the shortest

path. When finding paths between source and target sets is not sufficient, the

user has the option to do a Graph-of-Interest (GoI) query. GoI query aims at

completing the ‘missing links’ (and molecules on these links) among a set of

molecules of interest that is no longer than a specified limit. So a “minimal”

graph including the specified objects of interest can be constructed through this

query. Figure 5.48 shows a directed GoI query with limit 5, where the previous

source and target sets are joined into an OR query as molecules of our interest.

Since the GoI query finds all paths between a number of seed nodes (not

from a specified source to specified target), the result contains more paths, not

necessarily depicting a direction in the information flow. In the resulting model

(Figure 5.49) we see that there are two isolated components. First one contains

CHAPTER 5. IMPLEMENTATION 70

Figure 5.44: Shortest path query using the previous queries as source and target;
the query limits the distance to 5 and considers directions.

Figure 5.45: Result of the shortest path query in Figure 5.44; we find that the
two shortest paths (yellow) from FAS Ligand (green) to Caspase complexes (cyan)
goes to Caspase-8 dimer in cytoplasm, each with 2 transitions (4 steps).

the previous FAS Ligand path we have found. We see that an additional Cas-

pase complex is connected; however, the graph does not imply that this new

Caspase complex has been involved in the FAS Ligand signaling process. Second

component contains all other Caspase complexes. Notice that only two Caspase

complexes have a relation with FAS Ligand signaling process in the database (at

least within the distance we have specified); the user may choose to concentrate

on these for further analysis.

CHAPTER 5. IMPLEMENTATION 71

Figure 5.46: Shortest path query with further distance set to 8

5.2.4 Query Framework Deployment

Figure 5.50 depicts how the system will be deployed and especially how the in-

teraction will be provided during server side query execution. Thin Bridge has

an HTTP communication with Web Browser. Both Heavy and Thin Clients have

many-to-one HTTP communication with server, Patika Server. Patika Server

is deployed upon Tomcat Servlet which instantiates Query Controller according

to the type of HTTP request coming from clients. In client sides if the query is

to be run on server side, the relevant query data is converted into Patika XML

and then Query Jaxb which is deployed under Query Controller processes that

data by reconverting.

In Patika Server, Spring Controller is deployed which includes Query Con-

troller and Submission components. Under Query Controller, after Query Jaxb

component instantiates Query, that query is executed by using Query Algorithms

which access Patika Model and the result is held in QueryResult. Persistence

component of Patika Server is deployed with the collaboration of Spring and

Hibernate. In Persistence component a PostgreSql Relational Database Manage-

ment System is installed. Hibernate Object Relational Mapping access database

via JDBC and configures Hibernate XML map during run-time. In DB Model

component HibernateAccessorGraph access to ORM via Spring ORM Support.

Patika Model, which is accessible from Query Controller, is an instance of that

DB Model. Spring View component is instantiated by Spring Controller when it

CHAPTER 5. IMPLEMENTATION 72

Figure 5.47: Result of the shortest path query in Figure 5.46. Paths of length up
to 12 (yellow) are found between source (green) and target (cyan) sets, since the
shortest path length is 4.

Figure 5.48: A GoI query where the previous FAS Ligand and Caspase complex
queries are gathered into an OR query and used as seed (molecules of interest)

is needed to send the query result to the clients. In Spring View, Patika Jaxb

accesses the Query Result structure and converts it into Patika XML. Then the

client gets that Patika XML to display in its view.

CHAPTER 5. IMPLEMENTATION 73

Figure 5.49: Result of the GoI query in Figure 5.48

CHAPTER 5. IMPLEMENTATION 74

Figure 5.50: Deployment Diagram of Query Framework in Patika

Chapter 6

Test Results and Performance

We have performed a number of experiments to test the performance of our algo-

rithms using the implementation within Patikaweb. The tests were performed

on an ordinary personal computer using a randomly created integrated path-

way knowledgebase, consisting of about 20,000 pathway nodes and 30,000 edges.

The knowledgebase was assumed to be held in memory, however. So it should

be expected that these algorithms will execute slower on pathway databases on

disk. However, with the success of current high performance object/relational

persistence and query services such as Hibernate, the slowdown should not be

dramatic.

Our experiments have revealed that our theoretical analysis is in line with the

results of our implementation. Below we detail out some of them.

One set of experiments we have performed was for computing the graph of

interest GoI(S, k). Remember that the time complexity of this algorithm is linear

in the number of nodes in the k-neighborhood of nodes of interest or the size of the

result set as Figure 6.1 verifies. We have also measured k versus execution time

with random source sets of various sizes. As Figure 6.2 illustrates, independent

of the source set size, execution time increases rapidly (but not exponentially) up

until a certain distance (between 12 and 15) after which, it remains constant. One

might expect an exponential increase in the number of nodes reached (and thus

75

CHAPTER 6. TEST RESULTS AND PERFORMANCE 76

Figure 6.1: Result set size vs. execution time for GoI algorithm

the execution time) as distance increases; however, in practice, potentially all of

the neighbors of a newly visited node might already have been visited, avoiding

a combinatorial increase. And after a certain number of steps all nodes would

have been already visited.

Figure 6.2: Distance (k) vs. execution time for GoI algorithm for various source
set sizes (|S|)

Another set of experiments we have performed was for computing shortest

paths SP(S, T, k, d). Remember that time complexity of this algorithm is O(l +

|NB(S, k)|), where l is the total length of the paths enumerated. Here l can be

exponential in the size of the graph in the worst case. However, our experiments

show that on the average that is not the case and l is dominated by the second

term. The reason for this situation is that, roughly speaking, if the shortest length

between sets is “too long” then the number of paths found is small, and similarly

if number of paths found is large then shortest length between sets is short.

Obviously, l equals number of paths found times shortest path length between

CHAPTER 6. TEST RESULTS AND PERFORMANCE 77

sets. Therefore there is a trade off between number of paths and shortest length

between sets, and this hides the exponential behavior expected in the worst case.

Figure 6.3 shows the plot of the shortest path length versus execution time for

the shortest path algorithm. However, if we do not enumerate individual paths,

Figure 6.3: Shortest length vs. total execution time of the shortest-path algorithm

then the algorithm should behave linear in the number of k-neighborhood of the

source set, where k is the shortest length between sets.

Time complexity of computing common regulation CR(S, k) is O(|S| ·
|NB(S, k)|). Experiments also support this complexity as shown in Figure 6.4.

While the distance limit k is fixed and the source set size increases slightly, the al-

gorithms behaves linear as the |NB(S, k)| term does not change much for different

values of |S|. With different fixed k limits, linear behavior of the computing can

also be seen. Also the aggregate execution time is fairly sufficient for interactive

usage.

For the Stream algorithm, it is very important to have a reasonable execution

time, since its time complexity is non-polynomial. Our experiments show that

this algorithm is sufficiently fast for interactive usage. In Figure 6.5, the execution

times of Stream algorithm are illustrated. The experiments are done with fixed

k. As it can be seen, even if the source set size and distance limit k are both

large, the execution time reaches up to no more than 10 seconds.

CHAPTER 6. TEST RESULTS AND PERFORMANCE 78

Figure 6.4: Distance (k) vs. execution time for CR algorithm for various source
set sizes (|S|)

Figure 6.5: Distance (k) vs. execution time for Stream algorithm for various
source set sizes (|S|)

Chapter 7

Conclusion and Future Work

In this thesis, we have presented a querying framework along with a number of

graph theoretic algorithms applicable to all sorts of graph-based pathway data-

bases. The framework provides both querying and query result visualization

through a user friendly interface.

The queries are designed for answering a number of biologically significant

queries for large graph-based pathway databases. Towards this goal, the queries of

Neighborhood, Graph of Interest, Shortest Paths, Common Regulation, Feedback

and Stream are described with formal graph definitions. Beyond these algorithmic

queries, basic field and logical queries are also provided for utmost utility.

Neighborhood, Graph of Interest, Shortest Path and Common Regulation

algorithms are based on breadth first graph traversal with novel node labeling

techniques for handling sign of paths and filtering out irrelevant paths. While

Common Regulation has super-linear complexity, other BFS-based algorithms are

linear in the number of nodes and edges in the k-neighborhood of given source

sets.

Feedback algorithm is a modified version of the algorithm of generating all

cycles mentioned in [21] which is based on depth first graph traversal. The

contribution of our algorithm is to be able to put a constraint on the length and

79

CHAPTER 7. CONCLUSION AND FUTURE WORK 80

the sign of cycles. Stream algorithm is optimal despite its exponential complexity.

The experimental results also show these two algorithms are fairly satisfactory in

execution time.

The main contribution of our work to the field is a whole framework provid-

ing advanced query creation, execution and query result visualization with use

of graph-theoretic algorithms for biological analysis over an integrated pathway

database with support for compound structures.

However, there is space for improvement. As future work, we may look at

ways to speed up our algorithms as they are destined to be part of interactive

systems. Also visualization and query interface may be improved for more user

friendly software. Most importantly, there may be defined new and powerful

queries such as subgraph matching with efficient algorithms.

Bibliography

[1] A. M. Abdulkader. Parallel Algorithms for Labelled Graph Matching. PhD

thesis, School of Mines, Colorado, 1998. Understanding and Analysis, MIUA

2001.

[2] T. Aittokallio and B. Schwikowski. Graph-based methods for analysing net-

works in cell biology. Briefings in Bioinformatics, 7(3):243–255, 2006.

[3] M. Arnone and E. Davidson. The hardwiring of development: organization

and function of genomic regulatory systems. Development, 124(10):18511864,

1997.

[4] M. Baitaluk, M. Sedova, A. Ray, and A. Gupta. BiologicalNetworks: vi-

sualization and analysis tool for systems biology. Nucleic Acids Research,

34(Web-Server-Issue):466–471, 2006.

[5] BioPAX. Biological pathways exchange, 2007. http://www.biopax.org.

[6] J. A. Bondy and U. S. R. Murty. Graph Theory with Applications. McMillan,

1976.

[7] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms.

McGraw-Hill, 1985.

[8] D. Croes, F. Couche, S. J. Wodak, and J. van Helden. Metabolic PathFind-

ing: inferring relevant pathways in biochemical networks. Nucleic Acids

Research, 33:W326, 2005.

[9] E. Demir. An Ontology for Computer-Aided Modeling of Cellular Processes.

PhD thesis, Department of Computer Engineering, Bilkent University, 2005.

81

BIBLIOGRAPHY 82

[10] E. Demir, O. Babur, U. Dogrusoz, A. Gursoy, A. Ayaz, G. Gulesir, G. Ni-

sanci, and R. Cetin-Atalay. An ontology for collaborative construction and

analysis of cellular pathways. Bioinformatics, 20(3):349–356, 2004.

[11] U. Dogrusoz, E. Erson, E. Giral, E. Demir, O. Babur, A. Cetintas, and

R. Colak. PATIKAweb: a Web interface for analyzing biological pathways

through advanced querying and visualization. Bioinformatics, 22(3):374–

375, 2006.

[12] K. Fukuda and T. Takagi. Knowledge representation of signal transduction

pathways. Bioinformatics, 17(9):829–837, 2001.

[13] M. R. Garey and D. S. Johnson. Computers and Intractability, A Guide to

the Theory of NP-completeness. Freeman, San Francisco, 1979.

[14] R. Gting. GraphDB: Modeling and querying graphs in databases. In Proc

20th Int. Conf. on Very Large Databases, pages 297–308, Santiago, Chile,

Sept. 1994.

[15] R. Hofestädt and S. Thelen. Qualitative modeling of biochemical networks.

In Silico Biology, 1:39–53, 1998.

[16] T. Ito, T. Chiba, R. Ozawa, M. Yoshida, M. Hattori, and Y. Sakaki. A

comprehensive two-hybrid analysis to explore the yeast protein interactome.

Proceedings of the National Academy of Sciences, 98:4569–4574, 2001.

[17] U. Leser. A query language for biological networks. Bioinformatics, 21(2):33–

39, 2005.

[18] G. Miklos and G. Rubin. The role of the genome project in determining gene

function: insights from model organisms. Cell, 86(4):521–529, 1996.

[19] H. Ogata, W. Fujibuchi, S. Goto, and M. Kanehisa. A heuristic graph com-

parison algorithm and its application to detect functionally related enzyme

clusters. Nucleic Acids Res., 28(20):40214028, 2000.

[20] V. N. Reddy, M. L. Mavrovouniotis, and M. N. Liebman. Petri net represen-

tations in metabolic pathways. In 1st International Conference on Intelligent

Systems for Molecular Biology, pages 328–336, 1993.

BIBLIOGRAPHY 83

[21] E. M. Reingold, J. Nievergelt, and N. Deo. Combinatorial Algorithms :

Theory and Practice. Prentice-Hall, 1977.

[22] SBGN. Systems biology graphical notation, 2007. http://www.sbgn.org.

[23] R. Sharan and T. Ideker. Modeling cellular machinery through biological

network comparison. Nature Biotechnology, 24(4):427–433, April 2006.

[24] T. Shlomi, D. Segal, E. Ruppin, and R. Sharan. QPath: a method for query-

ing pathways in a protein-protein interaction network. BMC Bioinformatics,

7:199, 2006.

[25] Y. Tian, R. C. McEachin, C. Santos, D. J. States, and J. M. Patel. SAGA: a

subgraph matching tool for biological graphs. Bioinformatics, 23(2):232–239,

2007.

[26] K. Y. Yip, H. Yu, P. M. Kim, M. Schultz, and M. Gerstein. The tYNA

platform for comparative interactomics: a web tool for managing, comparing

and mining multiple networks. Bioinformatics, 22(23):2968–2970, 2006.

[27] H. Zhu, M. Bilgin, R. Bangham, D. Hall, A. Casamayor, P. Bertone, N. Lan,

R. Jansen, S. Bidlingmaier, T. Houfek, T. Mitchell, P. Miller, R. Dean,

M. Gerstein, and M. Snyder. Global analysis of protein activities using

proteome chips. Science, 293:2101–2105, 2001.

