
PIPELINED FISSION FOR STREAM
PROGRAMS WITH DYNAMIC

SELECTIVITY AND PARTITIONED STATE

a thesis submitted to

the graduate school of engineering and science

of bilkent university

in partial fulfillment of the requirements for

the degree of

master of science

in

computer engineering

By
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ABSTRACT

PIPELINED FISSION FOR STREAM PROGRAMS
WITH DYNAMIC SELECTIVITY AND PARTITIONED

STATE

Habibe Güldamla Özsema

M.S. in Computer Engineering

Advisor: Asst. Prof. Dr. Buğra Gedik

Co-Advisor: Assoc. Prof. Dr. Özcan Öztürk

December, 2014

There is an ever increasing rate of digital information available in the form of

online data streams. In many application domains, high throughput processing

of such data is a critical requirement for keeping up with the soaring input rates.

Data stream processing is a computational paradigm that aims at addressing this

challenge by processing data streams in an on-the-fly manner.

In this thesis, we study the problem of automatically parallelizing data stream

processing applications to improve throughput. The parallelization is automatic

in the sense that stream programs are written sequentially by the application

developers and are parallelized by the system. We adopt the asynchronous data

flow model for our work, where operators often have dynamic selectivity and are

stateful. We solve the problem of pipelined fission, in which the original sequential

program is parallelized by taking advantage of both pipeline and data parallelism

at the same time. Our solution supports partitioned stateful data parallelism

with dynamic selectivity and is designed for shared-memory multi-core machines.

We first develop a cost-based formulation to express pipelined fission as an op-

timization problem. The bruteforce solution of this problem takes a very long

time for moderately sized stream programs. Accordingly, we develop a heuristic

algorithm that can quickly, but approximately, solve this problem. We provide

an extensive evaluation studying the performance of our solution, including sim-

ulations and experiments with an industrial-strength Data Stream Processing

Systems (DSPS). Our results show good scalability for applications that contain

sufficient parallelism, closeness to optimal performance for the algorithm.

Keywords: Data Stream Processing, Parallelization, Pipelining, Fission.
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ÖZET

DEVİNGEN SEÇİCİ VE BÖLÜMLÜ DURUMSAL VERİ
KATARI PROGRAMLARI İÇİN ARDIŞIK

DÜZENLENMİŞ FİZYON

Habibe Güldamla Özsema

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Danışmanı: Y. Doç. Dr. Buğra Gedik

Tez Eş Danışmanı: Doç. Dr. Özcan Öztürk

Aralık, 2014

Günümüzde, çevrimiçi veri katarı formatında bulunan kullanılabilir dijital bilgi

gittikçe artan bir orana sahiptir. Birçok uygulama alanında, bu tür verilerin

yüksek üretilen iş kapasiteli olarak işlenmesi, yükselen girdi oranlarına ayak uy-

durmak için kritik bir gerekliliktir.Veri katarı işleme, bu zorluğu veriyi annda

işleme tarzı ile ele almayı amaçlayan bir hesaplama örneklemidir.

Bu tez, veri katarı işleme uygulamalarının otomatik bir şekilde paralelleştirilme

problemini, üretilen işi arttırarak nasıl çözüleceğini gösterir. Paralelleştirme

işlemi, veri katarı uygulamalarının, uygulama geliştiricileri tarafından sırasıyla

yazılması ve sistem tarafından paralelleştirilmesi şeklinde otomatiktir. Bu tezde,

devingen seçici ve durumsal işleçler kullanılan eşzamansız veri akş modeli benim-

senmiştir. Ardışık düzenlenmiş fizyon problemi, orijinal sıralı programda ardışık

düzenlenmiş ve veri paralelleştirmesinden faydalanarak çözülmüştür. Ardışık

düzenlenmiş fizyon çözümü, bölümlü durumsal veri paralelleştirmeyi destekle-

mektedir ve paylaşımlı bellekli çok çekirdekli makineler için tasarlanmıştır.

İlk olarak ardışık düzenlenmiş fizyon problemi, maliyet tabanlı formülasyonla op-

timizasyon problemine indirgenmiştir. Bu problemin kapsamlı çözümü çok zaman

aldığı için, bu problemi hızlı ve yaklaşık olarak çözen bulgusal çözüm önerilmiştir.

Tezde önerilen yaklaşımın, simülasyonlarla ve endüstriyel Veri Katarı İşleme Sis-

temleri (VKİS) ile kapsamlı olarak değerlendirilmesi yapılmıştır. Elde edilen

sonuçların, yeterli paralelleştirme içeren programlar için iyi bir ölçeklenebilirlik

ve optimum performansa yakınlık sağladığı görülmüştür.

Anahtar sözcükler : Veri Katarı İşleme, Paralelleştirme, Ardışık Düzenleme,Fizyon.
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Chapter 1

Introduction

We are experiencing a data deluge due to the ever increasing rate of digital

data produced by various software and hardware sensors present in our highly

instrumented and interconnected world. This data often arrives in the form of

continuous streams. Examples abound, such as ticker data [1] in financial mar-

kets, call detail records [2] in telecommunications, production line diagnostics [3]

in manufacturing, and vital signals [4] in healthcare. Accordingly, there is an in-

creasing need to gather and analyze data streams in near real-time, detect emerg-

ing patterns and outliers, and take automated action. Data stream processing

systems (DSPSs) [5, 6, 7, 8, 9] enable carrying out these tasks in a natural way,

by taking data streams through a series of analytic operators. In contrast to the

traditional store-and-process model of data management systems, DSPSs rely on

the process-and-forward model and are designed to provide high throughput and

timely response.

Since performance is one of the fundamental motivations for adopting the stream

processing model, optimizing the throughput of stream processing applications

is an important goal of many DSPSs. In this thesis, we study the problem of

pipelined fission, that is automatically finding the best configuration of com-

bined pipeline and data parallelism in order to optimize application throughput.

Pipeline parallelism naturally occurs in stream processing applications [10]. As

one of the stages is processing a data item, the previous stage can concurrently
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process the next data item in line. Data parallelization, aka. fission, involves

replicating a stage and concurrently processing different data items using these

replicas. Typically, data parallelism opportunities in streaming applications need

to be discovered (to ensure safe parallelization) and require runtime mechanisms,

such as splitting and ordering, to enforce sequential semantics [11, 12].

Our goal in this thesis is to determine how to distribute processing resources

among the data and pipeline parallel aspects within the stream program, in order

to best optimize the throughput. While pipeline parallelism is very easy to take

advantage of, the amount of speed-up that can be obtained is limited by the

pipeline depth. On the other hand, data parallelism, when applicable, can be

used to achieve higher levels of scalability. Yet, data parallelism has limitations as

well. First, the mechanisms used to establish sequential semantics (e.g., ordering)

have overheads that increase with the number of replicas used. Second, and more

importantly, since data parallelism is applied to a subset of operators within

the chain topology, the performance is still limited by other operators for which

data parallelism cannot be applied (e.g., because they are stateful). The last

point further motivates the importance of pipelined fission, that is the need for

performing combined pipeline and data parallelism.

The setting we consider in this thesis is multi-core shared-memory machines.

We focus on streaming applications that possess a chain topology, where multiple

stages are organized into a series, each stage consuming data from the stage before

and feeding data into the stage after. Each stage can be a primitive operator,

which is an atomic unit, or a composite [13] operator, which can contain a more

complex sub-topology within. In the rest of the thesis, we will simply use the

term operator to refer to a stage. The pipeline and data parallelism we apply are

all at the level of these operators.

Our work is applicable to and is designed for DSPSs that have the following

properties:

• Dynamic selectivity: If the number of input data items consumed and/or

the number of output data items produced by an operator are not fixed and

may change depending on the contents of the input data, the operator is said
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to have dynamic selectivity. Operators with dynamic selectivity are prevalent in

data-intensive streaming applications. Examples of such operators include data

dependent filters, joins, and aggregations.

• Backpressure: When a streaming operator is unable to consume the input

data items as fast as they are being produced, a bottleneck is formed. In a

system with backpressure, this eventually results in an internal buffer to fill up,

and thus an upstream operator blocks while trying to submit a data item to the

full buffer. This is called backpressure, and it recursively propagates up to the

source operators.

• Partitioned processing: A stream that multiplexes several sub-streams,

where each sub-stream is identified by its unique value for the partitioning key,

is called a partitioned stream. An operator that independently processes indi-

vidual sub-streams within a partitioned stream is called a partitioned operator.

Partitioned operators could be stateful, in which case they maintain independent

state for each sub-stream. DSPSs that support partitioned processing can ap-

ply fission for partitioned stateful operators — an important class of streaming

operators [14, 15].

There are several challenges in solving the pipelined fission problem we have

outlined. First, we need to formally define what a valid parallelization configu-

ration is with respect to the execution model used by the DSPS. This involves

defining the restrictions on the mapping between threads and parallel segments

of the application. Second, we need to model the throughput as a function of

the pipelined fission configuration, so as to compare different pipelined fission

alternatives among each other. Finally, even for a small number of operators,

processor cores, and threads, there are combinatorially many valid pipelined fis-

sion configurations. It is important to be able to quickly locate a configuration

that provides close to optimal throughput. There are two strong motivations for

this. The first is to have a fast edit-debug cycle for streaming applications. The

second is to have low overhead for dynamic pipelined fission, that is being able

to update the parallelization configuration at run-time. Note that, the optimal

pipelined fission configuration depends on the operator costs and selectivities,
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which are often data dependent, motivating dynamic pipelined fission. In this

thesis, our focus is on solving the pipelined fission problem in a reasonable time,

with high accuracy with respect to throughput.

Our solution involves three components. First, we define valid pipelined fission

configurations based on application of fusion and fission on operators. Fusion

is a technique used for minimizing scheduling overheads and executing stream

programs in a streamlined manner [16, 17]. In particular, series of operators that

form a pipeline are fused and executed by a dedicated thread, where buffers are

placed between successive pipelines. On the other hand, using fission, series of

pipelines that form a parallel region are replicated to achieve data parallelism.

Second, we model concepts such as operator compatibility (used to define parallel

regions), backpressure (key factor in defining throughput), and system overheads

like the thread switching and replication costs (factors impacting the effectiveness

of parallelization), and use these to derive a formula for the throughput.

Last, and most importantly, we develop a heuristic algorithm to quickly locate a

pipelined fission configuration that provides close to optimal performance. The

algorithm relies on three main ideas: The first is to form regions based on the

longest compatible sequence principle, where compatible means that a formed

region carries properties that make it amenable to data parallelism as a whole.

The second is to divide regions into pipelines using a greedy bottleneck resolv-

ing procedure. This procedure performs iterative pipelining, using a variable

utilization-based upper bound as the stopping condition. The third is another

greedy step, which resolves bottlenecks by increasing the number of replicas of a

region.

We evaluate the effectiveness of our solution based on extensive analytic experi-

mentation. We also use IBM’s SPL language and its runtime system to perform

an empirical evaluation. Our SPL-based evaluation shows that we can quickly

locate a pipelined fission configuration that is within 5 to 10% of the optimal

using our heuristic algorithm.

In summary, we make the following contributions:
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• We formalize the pipelined fission problem for streaming applications that

are organized as a series of stages and can potentially exhibit dynamic

selectivity, backpressure, and partitioned processing.

• We model the throughput of pipelined fission configurations and cast the

problem of locating the best configuration as a combinatorial optimization

one.

• We develop a three-stage heuristic algorithm to quickly locate a close to

optimal pipelined fission configuration and evaluate its effectiveness using

analytical and empirical experiments.

The rest of this thesis is organized as follows. Chapter 2 lays the necessary back-

ground for our work. Chapter 3 presents our model for capturing the throughput

of a given parallelization configuration that involves pipeline as well as data par-

allelism. It also formalizes our problem as a combinatorial optimization one.

Chapter 4 presents our heuristic solution to the problem of quickly finding a

close to optimal pipelined fission configuration. Chapter 5 presents our evalua-

tion, including analytical as well as empirical results. Chapter 6 overviews related

work and Chapter 7 concludes the thesis.
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Chapter 2

Background

In this section, we summarize the terminology used for the pipelined fission prob-

lem, and outline a system execution model that will guide the problem formula-

tion and solution used in the rest of the thesis.

2.1 Terminology and Definitions

A stream graph is a set of operators connected to each other via streams. As

mentioned earlier, we consider graphs with chain topology in this work. Figure 2.1

summarizes the terminology used to define our pipelined fission problem.

There are two operator properties that play an important role in pipelined fission,

namely selectivity and state.

• Selectivity of an operator is the number of items it produces per number of

items it consumes. It could be less than one, in which case the operator is

selective; it could be equal to one, in which case the operator is one-to-one;

or it could be greater than one, in which case the operator is prolific.

• State specifies whether and what kind of information is maintained by the

operator across firings. An operator could be stateless, in which case it does

not maintain any state across firings. It could be partitioned stateful, in
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operator parallel region regionpipeline

parallel
channel

split merge

Figure 2.1: Pipelined fission terminology.

which case it maintains independent state for each sub-stream determined

by a partitioning key. Finally, an operator could be stateful without a

special structure.

We name a series of operators fused together as a pipeline. A series of pipelines

replicated as a whole is called a parallel region. Series of pipelines that fall be-

tween parallel regions form simple regions. Each replica within a parallel region is

called a parallel channel. A parallel channel contains replicas of the pipelines and

operators of a parallel region. In order to maintain sequential program semantics

under selective operators, split and merge operations are needed before and af-

ter a parallel region, respectively. The split operation assigns sequence numbers

to tuples and distributes them over the parallel channels, such as a hash-based

splitter for a partitioned stateful parallel region. The merge operation unions

tuples from different parallel channels and orders them based on their sequence

numbers. A parallel region cannot contain an arbitrarily stateful operator [11]

and thus such regions are formed by stateless and partitioned stateful operators.

2.2 Execution model

A distributed stream processing middleware typically executes data flow graphs

by partitioning them into basic units called processing elements. Each processing
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element contains a sub-graph and can run on a different host. For small and

medium-scale applications, the entire graph can map to a single processing ele-

ment. Without loss of generality, in this thesis we focus on a single multi-core

host executing the entire graph. Our pipelined fission technique can be applied

independently on each host when the whole application consists of multiple dis-

tributed processing elements.

In this thesis, we follow an execution model based on the SPL (Stream Processing

Language) runtime [18], which has been used in a number of earlier studies as

well [10, 11, 12, 19, 17]. In this model, there are two main sources of threading,

which contribute to the execution of the stream graph. The first one is operator

threads. Source operators, which do not have any input ports, are driven by their

own operator threads. When a source operator makes a submit call to send a

tuple to its output port, this same thread executes the rest of the downstream

operators in the stream graph. As a result, the same thread can traverse a number

of operators, before eventually coming back to the source operator to execute the

next iteration of its event loop. This behavior is because the stream connections

in a processing element are implemented via function calls. Using function calls

yields fast execution, avoiding scheduler context switches and explicit buffers

between operators. This optimization is known as operator fusion [16, 17].

The second source of threading is threaded ports. Threaded ports can be inserted

at any operator input port. When a thread reaches a threaded port, it inserts

the tuple at hand into the threaded port buffer, and goes back to executing

upstream logic. A separate thread, dedicated to the threaded port, picks up the

queued tuples and executes the downstream operators. In pipelined fission, we

use threaded ports to ensure that each pipeline is run by a separate thread. For

instance, in Figure 2.1 there are 8 threads, where the scheduling of threads to the

processor cores is left to the operating system.

The goal of our pipelined fission solution is to automatically determine a paral-

lelization configuration, that is the pipelines, regions, and number of replicas, so

as to maximize the throughput.
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Chapter 3

Model

In this section, we model the pipelined fission problem and present a brute-force

approach to find a parallelization configuration that maximizes the throughput.

3.1 Application Model

We start with modeling the application topology, the operators, and the paral-

lelization configuration.

Topology. We consider applications that have a chain topology. The operators

that participate in the chain can be composite and have more complex topologies

within, as long as they fit into one of the operator categories described below.

Let O = {oi | i ∈ [1..N ]} be the set of operators in the application. Here, oi ∈ O
denotes the ith operator in the chain. o1 is the source operator and oN is the

sink operator. For 1<i≤N , operator oi has oi−1 as its upstream operator and for

1≤i<N , oi has oi+1 as its downstream operator. Figure 3.1 shows an example

chain topology with N = 5 operators.

Operators. For o ∈ O, k(o) ∈ {f, p, s} denotes the operator kind: f is for

stateful, p is for partitioned stateful, and s is for stateless. For a partitioned

stateful operator o (that is k(o) = p), a(o) specifies the partitioning key, which is

a set of stream attributes. s(o) denotes the selectivity of an operator, which can

9



o1 o2 o3 o4 o5

Figure 3.1: A chain topology with 5 operators.

go over 1 for prolific operators — operators that can produce one or more tuples

per input tuple consumed.

For o ∈ O, f〈o〉 : N+ → R is a base scalability function for operator o. Here,

f〈o〉(x) = y means that x copies of operator o will raise the throughput to y times

the original, assuming no parallelization overhead. We have k(oi) = s⇒ f〈oi〉 =

fl, where fl is the linear scalability function, that is fl(x) = x . In other words,

for stateless operators, the base scalability function is linear. For partitioned

stateful operators, including parallel sources and sinks, bounded linear functions

are more common, such as:

fb(x;u) =

x if x ≤ u

u otherwise

Here, fb(;u) is a bounded linear scalability function, where u specifies the max-

imum scalability value. For partitioned stateful operators, the size of the parti-

tioning key’s domain could be a limiting factor on the scalability that could be

achieved. For parallel sources and sinks, the number of distinct external sources

and sinks could be a limiting factor (e.g., number of TCP end points, number of

data base partitions, etc.).

Parallelization configuration. Let us denote the set of threads used to execute

the stream program as T = {ti | i ∈ [1..|T |]}. The number of replicas for operator

o ∈ O is denoted by r(o) ∈ N+. Note that, we have k(o) = f ⇒ r(oi) = 1, as

stateful operators cannot be replicated.

Let us denote the jth replica of an operator oi as oi,j and the set of all operator

replicas as V = {oi,j | oi ∈ O ∧ j ∈ [1..r(oi)]}. We define m : V → T as the

operator to thread mapping that assigns operator replicas to threads. m(oi,j) = t

means that operator oi’s j
th replica is assigned to thread t. There are a number

of rules about this mapping that restrict the set of possible mappings to those
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that are consistent with the execution model we have outlined earlier. We first

define additional notation to formalize these rules.

Given O′ ⊆ O, we define a boolean predicate L(O′) that captures the notion of

a sequence of operators. Formally, L(O′) ≡ {oi1 , oi2} ⊂ O′ ⇒ ∀i1≤i≤i2 , oi ∈ O′.

There are two kinds of sequences we are interested in. The first one is called a

non-replicated sequence and is defined as Ls(O
′, r) ≡ L(O′) ∧ ∀o∈O′ , r(o) = 1.

In a non-replicated sequence, all operators have a single replica. The second is

called a replicated sequence and is defined as Lp(O
′, r) ≡ L(O′) ∧ ∀o∈O′ , (k(o) 6=

f ∧ r(o) = l) ∧
⋂
o∈O′,k(o)=p a(o) 6= ∅. That is, a group of operators are considered

a replicated sequence if and only if they form a sequence, they do not include a

stateful operator, they all have the same number of replicas, and if there are any

partitioned stateful operators in the sequence, they have compatible partitioning

keys1. We will drop r, that is the function that defines the replica counts for the

operators, from the parameter list of the sequence defining predicates, Ls and Lp,

when it is obvious from the context.

With these definitions, we list the following rules for the operator replica to thread

mapping function, m:

• m(oi1,j1) = m(oi2,j2) ⇒ j1 = j2. I.e., operator replicas from different chan-

nels are not assigned to the same thread. Here, channel corresponds to the

replica index.

• t = m(oi1,j) = m(oi2,j)⇒ ∃O′ s.t. {oi1 , oi2} ⊆ O′ ⊂ O ∧ (Ls(O
′)∨Lp(O′)) ∧

(∀oi∈O′ ,m(oi,j) = t). I.e., if two operator replicas are assigned to the same

thread, they must be part of a replicated or non-replicated sequence and all

other operator replicas in between these two on the same channel should be

assigned to the same thread.

• m(oi1,j) = m(oi2,j) ⇒ ∀l∈[1..r(oi1 )], m(oi1,l) = m(oi2,l). I.e, if two operator

replicas are assigned to the same thread, their sibling operator replicas

should share their threads as well. For instance, if o1,1 and o2,1 both map

1In practice, there is also the requirement that these keys are forwarded by the other oper-
ators in the sequence [11], but such details do not impact our modeling.
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Figure 3.2: Regions and pipelines.

to t1, then their siblings o1,2 and o2,2 should share the same thread, say t2.

Regions and Pipelines. The above rules divide the program into regions and

these regions into sub-regions that we call pipelines, as shown in the example in

Figure 3.2.

In this example, we have 3 parallel regions: P1 = {P1,1, P1,2}, P2 = {P2,1, P2,2},
and P3 = {P3,1}. The first region P1 has a single replica, that is r(P1) = 1 and

it consists of two pipelines, namely P1,1 and P1,2. The first pipeline has a single

operator inside, whereas the second one has two operators. Concretely, we have

P1,1 = {o1} and P1,2 = {o2, o3}. The second region has r(P2) = 3, as there are 3

parallel channels, and it consists of 2 pipelines, namely P2,1 and P2,2. We have

P2,1 = {o4, o5} and P2,2 = {o6}. Finally, the third region is P3 = {P3,1}, where

r(P3) = 1 and P3,1 = {o7}.

Given the thread mapping function m and the replica function r, the set of

regions formed is denoted by P(m, r) or P for short. To find the first region,

P1 ∈ P , we start from the source operator o1 and locate the longest sequence of

12



operators O′ ⊂ O s.t. o1 ∈ O′ ∧ (Ls(O
′) ∨ Lp(O

′)). We can apply this process

successively, starting from the next operator in line that is not part of the current

set of regions, until the set of all regions, P , is formed. The pipelines for a given

region are similarly formed by grouping operators whose first replica are assigned

to the same thread.

For each pipeline Pi,j ∈ Pi ∈ P , there are r(Pi) replicas and a different thread

executes each pipeline replica. Then the total number of threads used is given

by
∑

Pi∈P r(Pi) · |Pi|. In the example above, we have 9 threads and 13 operator

replicas.

3.2 Modeling the Throughput

Our goal is to define the throughput of a given configuration P . Once the through-

put is formulated, we can cast our problem as an optimization one, where we aim

to find the thread mapping function (m) and the operator replica counts (r) that

maximize the throughput.

To formalize the throughput, we start with a set of helper definitions. We denote

the kind of a region as k(Pi), and define:

k(Pi) =


f if ∃ ok ∈ Pi,j ∈ Pi s.t. k(ok) = f

s if ∀ok∈Pi,j∈Pi
k(ok) = s

p otherwise

. (3.1)

We denote the selectivity of a pipeline Pi,j as s(Pi,j) =
∏

ok∈Pi,j
s(ok), the selec-

tivity of a region Pi as s(Pi) =
∏

Pi.j∈Pi
s(Pi,j), and the selectivity of the entire

flow P as s(P) =
∏

Pi∈P s(Pi). We denote the cost of a pipeline as c(Pi,j) and

define it as:

c(Pi,j) =
∑

ok∈Pi,j

sk(Pi,j) · c(ok). (3.2)

Here, sk(Pi,j) =
∏

ol∈Pi,j ,l<k
s(ol) is the selectivity of the sub-pipeline up to and

excluding operator ok.
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Region throughput. We first model a region’s throughput in isolation, assum-

ing no other regions are present in the system. Let R(Pi) denote the maximum

input throughput supported by a region under this assumption. And let Rj(Pi)

denote the output throughput of the first j pipelines in the region assuming the

remaining pipelines have zero cost. Furthermore, let R(Pi,j) denote the input

throughput of the pipeline Pi,j if all other pipelines had zero cost (making it the

bottleneck of the system).

We have R0(Pi) =∞ and also for j > 0:

Rj(Pi) =

s(Pi,j) ·Rj−1(Pi) if Rj−1(Pi) < R(Pi,j)

s(Pi,j) ·R(Pi,j) otherwise
. (3.3)

In essence, Equation 3.3 models the backpressure. If the input throughput of

a pipeline, when considered alone, is higher than the output throughput of the

sub-region formed by the pipelines before it, then the latter throuhgput is used

to compute the pipeline’s output throughput when it is added to the sub-region.

This represents the case when the pipeline in question is not the bottleneck.

The other case is when the pipeline’s input throughput, when considered alone,

is lower than the output throughput of the sub-region formed by the pipelines

before it. In this case, the former throughput is used to compute the pipeline’s

output throughput when it is added to the sub-region. This represents the case

when the pipeline in question is the bottleneck within the sub-region.

The throughput of a pipeline by itself, that is R(Pi,j), can be represented as:

R(Pi,j) = (c(Pi,j) + h(Pi,j))
−1, (3.4)

where h(Pi,j) is the cost of switching threads between sub-regions, defined as:

h(Pi,j) = δ · (1(j>1) + 1(j<|Pi|) · s(Pi,j)). (3.5)

Here, δ is the thread switching overhead due to the queues involved in-between.

The input overhead is incurred for the pipelines except the first one, and the

output overhead is incurred for the pipelines except the last one.
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With these definitions at hand, we can define the input throughput R(Pi) as the

output throughput of the region divided by the region’s selectivity. That is:

R(Pi) = R|Pi|(Pi)/s(Pi). (3.6)

Parallel region throughput. The next step is to compute the throughput of a

parallel region. For that purpose, we first define an aggregate scalability function

f〈Pi〉 for the region Pi as:

f〈Pi〉(x) = min
ok∈Pi,j∈Pi

f〈oi〉(x). (3.7)

The aggregate scalability function for a region simply takes the smallest scalability

value from the scalability functions of the constituent operators within the region.

We denote the parallel throughput of a region Pi as R∗(Pi) and define it as follows:

R∗(Pi) =

(
cp · log2(r(Pi)) +

1

R(Pi) · f〈Pi〉(r(Pi))

)−1

. (3.8)

Here, cp is the replication cost factor for a parallel region. Recall that a parallel

region needs to reorder tuples. In the presence of selectivity, this often requires

attaching sequence numbers to tuples and re-establishing order at the end of the

parallel region. The re-establishment of order takes time that is logarithmic in

the number of channels, per tuple. However, such processing typically has a low

constant compared to the cost of the operators.

Let R+(Pi) be the parallel throughput of the region when it is considered within

the larger topology that contains the other regions, albeit assuming that all other

regions have zero cost. We have:

R+(Pi) =

(
h(Pi) +

1

R∗(Pi)

)−1

. (3.9)

Here, h(Pi) is the cost of switching threads between regions. We have:

h(Pi) = δ · (1(i > 1) + 1(i < |P|) · s(Pi)). (3.10)
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Throughput of a program. Given these definitions, we are ready to define the

input throughput of a program, denoted as R(P). We follow the same approach

as we did for regions formed out of pipelines.

Let us define the output throughput of the first k regions as Rk(P), assuming the

downstream regions have zero cost. We have R0(P) =∞, and for i > 0:

Ri(P) =

s(Pi) ·Ri−1(P) if Ri−1(P) < R+(Pi)

s(Pi) ·R+(Pi) otherwise
. (3.11)

By dividing the output throughput of the program to its selectivity, we get:

R(P) = R|P|(P)/s(P). (3.12)

Bounded throughput. So far we have computed the unbounded throughput.

In other words, we have assumed that each thread has a core available to itself.

However, in practice, there could be more threads than the number of cores

available. For instance, replicating a region with 3 pipelines 3 times will result in

9 threads, but the system may only have 8 cores. However, replicating the region

2 times will result in an underutilized system that has only 6 threads and thus

not all cores can be used.

Let C denote the number of cores in the system. We denote the bounded through-

put of a program with parallelization configuration of m (the thread mapping

function) and r (the operator replica counts) as R(P(m, r), C). The bounded

throughput is simply computed as the unbounded throughput divided by the

utilization times the number of cores. Formally,

R(P , C) = R(P) · C

U(P)
. (3.13)

Here U(P) is the utilization for the unbounded throughput. Equation 3.13 simply

scales the unbounded throughput by multiplying it with the ratio of the maximum

utilization that can be achieved (which is C) to the unbounded utilization. We

assume that the cost due to scheduling of threads by the operating system is

negligible. For instance, if the unbounded throughput is 3 units, but results
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in a utilization value of 6 and the system has only 4 cores, then the bounded

throughput is given by 3 · (4/6) = 2 units.

The computation of the utilization, U(P), is straightforward. We already have a

formula for the input throughput of the program, which can be used to compute

the input throughputs of the parallel regions and the pipelines. Multiplying

input throughputs of the pipelines with with the pipeline costs would give us the

utilization, after adding the overheads for the thread switching and scalability.

Overall utilization can be expressed as:

U(P) = R(P) ·
∑

1≤i<|P|

si(P) ·
(
cp · log2(r(Pi))+

h(Pi) +
∑

1≤j<|Pi|

sj(Pi) · (h(Pi,j) + c(Pi,j))
)
. (3.14)

Here, sj(Pi) =
∏

1≤l<j s(Pi,l) is the selectivity of the region Pi up to and excluding

the jth pipeline, and sj(P) =
∏

1≤l<j s(Pl) is the selectivity of the program P up

to and excluding the jth region.

Optimization. Our ultimate goal is to find argmaxm,rR(P(m, r), C), where m

is subject to the rules we have outlined earlier. One way to solve this problem

is to combinatorially generate all possible parallel configurations. This can be

achieved via a recursive procedure that takes as input the maximum number of

threads, say M , and the set of operators O, and generates all valid parallelization

configurations of the operators that uses at most M threads. Let us denote the

set of configurations generated by such a generator as D(O,M). Then we can

compute argmax(m,r)∈D(O,M)R(P(m, r), C) as the optimal configuration. There

are two problems with this approach. First, and the more fundamental one, is

that, the computation of D(O,M) takes a very long time even for a small number

of threads and operators; and this time grows exponentially, since the number

of variations increase exponentially (both with increasing number of operators

and maximum number of threads). Figure 3.3 shows the number of parallel

configurations as a function of the number of operators in the chain and the

maximum number of threads used. Second, we need to pick a reasonable value

for M , which is typically greater than C. It can be taken as a constant times the

number of cores, that is k ·C. Unfortunately, using a large constant will result in
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an excessively long running time for the configuration generation algorithm. On

the other hand, using a small constant will have the risk of finding a sub-optimal

solution.
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Chapter 4

Solution

In this section we present an algorithm to quickly solve the pipelined fission

problem that was formalized in Chapter 3. Our algorithm is heuristic in nature

and trades off throughput optimality to achieve reasonable performance in terms

of solution time. Despite this, our results, presented later in Chapter 5, show

that not only does our algorithm achieve close to optimal throughput, but also

it outperforms optimal versions of fission-only and pipelining-only alternatives.

Algorithm 1: PipelinedFission(O,M ,α)
Data: O: operators (with their costs, c; selectivities, s; and state kinds, k), M : number of cores, α:

fusion cost threshold
Result: Pipelined fission configuration
R← ConfigureRegions(O,α) . Configure regions
t← 0; P ← ∅; r ← ∅ . Initialize best settings
for i ∈ 0.1 · [0..10] do . Range of utilization scalers

P ′ ← ConfigurePipelines(R, i ·M) . Configure pipelines
r′ ← ConfigureReplicas(R,P ′,M) . Configure # of replicas
t′ ← ComputeTput(R,P ′, r′) . Compute the throughput
if t′ > t then t← t′; P ← P ′; r ← r′

return 〈R,P, r〉 . Return the final configuration

4.1 Overview

Algorithm 1 presents our solution, which consists of three phases, namely (i)

region configuration, (ii) pipeline configuration, and (iii) replica configuration.
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The region configuration phase divides the chain of operators into chains of re-

gions. This is done based on the compatibility of the successive operators in

terms of their state, while avoiding the creation of small regions that cannot

achieve effective parallelization. The second and third phases are used to con-

figure pipeline and data parallelism, respectively. That is, pipeline configuration

creates pipelines within regions, and replica configuration determines the number

of replicas for the regions. These two phases are run multiple times, each time

with a different amount of CPU utilization reserved for them, but always sum-

ming up to the number of CPUs available in the system. In particular, we range

the fraction of the CPU utilization reserved for pipelining from 0% to 100%, in

increments of 10%. The reason for running the pipeline and replica configura-

tion phases with differing shares of CPU utilization is that, we do not know,

apriori, how much parallelism is to be reserved for pipelining versus how much

for fission, in order to achieve the best performance with respect to throughput.

Among the multiple runs of the second and the third phases, we pick the one

that gives the highest throughput as our final pipelined fission solution. Inter-

nally, pipeline configuration phase and replica configuration phase work similarly.

In pipeline configuration, we repeatedly locate the bottleneck pipeline and divide

it. In replica configuration, we repeatedly locate the bottleneck region and in-

crease its replica count. In what follows, we further detail the three phases of the

algorithm.

4.2 Region Configuration

Algorithm 2 presents the region configuration phase, where we divide the chain

of operators into a chain of regions. The algorithm consists of two parts. In the

first part, we form effectively parallelizable regions. This may leave out some

operators unassigned. In the second phase, we merge the consecutive unassigned

operators into regions as well.

The first for loop in Algorithm 2 represents the first step. We form regions by

iterating over the operators. We keep accumulating operators into the current
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Algorithm 2: ConfigureRegions(O,α)
Data: O: operators, α: fusion cost threshold
Result: Regions
R← {} . The list of regions that will hold the final result
C ← {} . The list of operators in the current potential region
for i← 1; i ≤ |O|; i← i+ 1 do . For each operator

. The current region borrows the operator’s properties
if k(oi) 6= f ∧ (|C| = 0 ∨ k(C) = s) then

k(C)← k(oi) . Update the region’s kind
if k(oi) = p then . If oi is partitioned

a(C)← a(oi) . Update current region’s key

. The current region stays partitioned, possibly with a broadened key
else if k(oi) = p ∧ a(oi) ⊆ a(C) then

a(C)← a(oi) . Update current region’s key

. The current region and the operator are incompatible
else if k(oi) 6= s then

if ComputeCost(C) > α then . Region is costly enough
R← R ∪ {C} . Materialize the region in R
m(o)← 1, ∀o∈C . Mark region’s operators as assigned

C ← {} . Reset the current region
if k(oi) 6= f then . Parallelizable operator

i← i− 1 . Redo iteration with empty current region

continue
C ← C ∪ {oi} . Add the operator to the current region

. Handle the pending region at loop exit
if ComputeCost(C) > α then . Region is costly enough

R← R ∪ {C} . Materialize the region in R
m(o)← 1, ∀o∈C . Mark region’s operators as assigned

. Merge all consecutive unassigned ops to a region
C ← {} . Reset the current region
for i← 1; i ≤ |O|; i← i+ 1 do . For each operator

if m(oi) = 1 ∧ |C| > 0 then . We have a complete run
R← R ∪ {C} . Materialize the region in R
C ← {} . Reset the current region

else . Run of unassigned operators continues
C ← C ∪ {oi} . Add the operator to the current region

return R . The final set of regions

region, as long as the operators are not stateful or incompatible. Stateless opera-

tors are always compatible with the current region. Partitioned stateful operators

are only compatible if their key is the same as the key of the active region so far,

or broader (has less attributes). In the latter case, the region’s key is updated

accordingly. When an incompatible operator is encountered, the current region

that is formed so far is completed. However, this region is discarded if its overall

cost is below the fusion cost threshold, α. The motivation behind this is that, if

a region is too small in terms of its cost, parallelization overhead will dominate

and effective parallelization is not attainable.

Once a region is completed, the algorithm continues with a fresh region, starting

from the next operator in line (the one that ended the formation of the former
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Algorithm 3: ConfigurePipelines(R,M)
Data: R: regions, M : number of cores
Result: Pipeline configuration
P ← R . Initialize the set of pipelines to regions
. Find the bottleneck pipeline (C), and compute the total utilization (U)
〈C,U〉 ← FindBottleneckPipeline(R,P )
while U ≤M do . System is not fully utilized

. Find the best split for the pipeline (maximizes throughput)
oi ← argmaxok∈C ComputeTput({oj∈C | j<k}, {oj∈C | j≥k}) C0 ← {oj ∈ C | j < i} . First half

of the best split
C1 ← {oj ∈ C | j ≥ i} . Second half of the best split
if ComputeTput({C0, C1}) ≤ ComputeTput(C) then

break . No further improvement is possible

P ← P \ {C} ∪ {C0, C1} . Split the pipeline
〈C,U〉 ← FindBottleneckPipeline(P ) . Re-eval. for next iter.

return P . The final set of pipelines

region). The first step of the algorithm ends, when all operators are processed.

In the second step, the operators that are left without a region assignment are

handled. Such operators are either stateful or cannot form a sufficiently costly

region with the other operators around them. In the second step, consecutive

operators that are not assigned a region are put into their own region. How-

ever, these regions cannot benefit from parallelization in the pipeline and replica

configuration phases that are described next.

4.3 Pipeline Configuration

Algorithm 3 describes the pipeline configuration phase. We start with each region

being a pipeline and iteratively split the bottleneck pipeline. The FindBottle-

neckPipeline procedure is used to find the bottleneck pipeline. This procedure

simply computes the unbounded throughput of the program as new pipelines

are successively added, using the formalization from Chapter 3, and selects the

last pipeline that resulted in a reduction in the unbounded throughput as the

bottleneck one. It then reports this bottleneck pipeline, together with the the

utilization of the current configuration. If the utilization is above or equal to

the total utilization reserved for the pipeline configuration phase (recall Algo-

rithm 1), then the iteration is terminated and the pipeline configuration phase is

over. Otherwise, i.e., if there is room available for an additional pipeline, we find
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Algorithm 4: ConfigureReplicas(R,P,M)
Data: R: regions, P : pipelines, M : number of cores
Result: Set of number of replicas of each region
r[C]← 1,∀C∈R . Initialize the replica counts to 1
. Find the bottleneck region (C), and compute the total utilization (U)
〈C,U〉 ← FindBottleneckRegion(R,P, r)
while U ≤M do . System is not fully utilized

t← CalculateTput(R,P, r) . Baseline throughput
r[C]← r[C] + 1 . Increse the channel count
if t ≥ CalculateTput(R,P, r) then . Throughput decreased

r[C]← r[C]− 1 . Revert back
break . No further improvement is possible

〈C,U〉 ← FindBottleneckRegion(R,P ) . Re-eval. for next iter.

return r . Return the replica counts

the best split within the bottleneck pipeline. This is done by considering each op-

erator as a split point and picking the split that provides the highest unbounded

throughput. However, if the unbounded throughput of this split configuration of

two consecutive pipelines is lower compared to the original single pipeline (which

might happen for low cost pipelines due to the impact of thread switching over-

head), we again terminate the pipeline configuration phase. This is because, if the

bottleneck pipeline cannot be improved, then no overall improvement is possible.

4.4 Replica Configuration

Algorithm 4 describes the replica configuration phase. It is similar in structure

to the pipeline configuration phase. However, it works on regions, rather than

pipelines. It iteratively finds the bottleneck region and increases its replica count.

The FindBottleneckRegion procedure is used to find the bottleneck region.

This procedure simply computes the unbounded throughput of the program as

new regions are successively added, using the formalization from Chapter 3, and

selects the last region that resulted in a reduction in the unbounded throughput

as the bottleneck one. It then reports this bottleneck region, together with the

utilization of the current configuration. If the utilization is above the number

of CPUs available, then the iteration is terminated and the replica configuration

phase is over. Otherwise, i.e., if there is room available for an additional parallel

channel, we increment the replica count of the bottleneck region. However, if the

unbounded throughput of this parallel region with an incremented replica count

has a lower unbounded throughput compared to the original parallel region (which
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might happen for low cost regions due to the impact of replication cost factor and

thread switching overhead), we again terminate the region configuration phase.

This is because if the bottleneck region cannot be improved, then no overall

improvement is possible.

24



Chapter 5

Evaluation

In this section, we evaluate our heuristic solution and showcase its performance

in terms of the achieved throughput, as well as the time it takes to locate a par-

allelization configuration. We perform two kinds of experiments. First, we eval-

uate our pipelined fission solution using model-based experiments under varying

workload and system settings. Second, we evaluate our algorithm using stream

programs written in IBM’s SPL language [18] and executed using the IBM Info-

Sphere Streams [20] runtime.

In our experiments, we compare our solution against four different approaches,

namely: optimal, sequential, fission-only, and pipelining-only.

• Sequential solution is the configuration with no parallelism.

• Optimal solution is the configuration that achieves the maximum through-

put among all possible parallel configurations.

• Fission-only solution is the configuration that achieves the highest through-

put among all possible parallel configurations that do not involve pipeline

parallelism (that is, each parallel channel is executed by a single thread).

• Pipelining-only is the solution with the highest throughput among all pos-

sible parallel configurations that do not involve data parallelism.
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Name Range Default Value
Operator cost mean [50, 250] 200
Operator cost stddev - 100
Number Of operators [1,8] 8
Number Of cores [1, 12] 4
Selectivity mean [0.1,1] 0.8
Selectivity stddev - 0.4
Stateless operator fraction [0,0.8] 0.4
Stateful operator fraction [0,0.8] 0.4
Partitioned stateful operator fraction [0,0.8] 0.2
Thread switching overhead [10, 210] 1
Replication cost factor [10, 190] 50

Table 5.1: Experimental parameters: default values and ranges for model based
experiments

5.1 Experimental Setup

For the model-based experiments, we used the analytical model presented in

Chapter 3 to compare alternative solutions. The five alternative solutions we

study were all implemented in Java. The SPL experiments rely on the paral-

lelization configurations generated by these solutions to customize the runtime

execution of the SPL programs. The SPL programs are compiled down to C++

and executed on the Streams runtime [20].

We describe the experimental setup for the model based experiments in Table 5.1.

Each model based experiment was repeated 1000 times, whereas SPL based ex-

periments were repeated 50 times. All experiments were executed on a Linux

system with 2 Intel Xeon E5520 2.27GHz CPUs with a total of 12 cores and

48GB of RAM.

We cover the determination of the thread switching overhead and replication cost

factor for the SPL experiments later in Section 5.3.
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5.2 Model-based experiments

Streaming applications contain operators with diverse properties. Accordingly,

the throughput of the topology is highly dependent on the properties of the op-

erators involved. Hence, we evaluate our solution by varying operator selectivity,

operator cost, and operator kind with respect to state. In addition, a variety

of other factors impact the throughput of the topology, among which four most

important ones are replication cost factor, thread switching overhead, number of

cores, and the number of operators. Accordingly, we also perform experiments

on these.

27



0.2 0.4 0.6 0.8 1.0
selectivity

0.001

0.002

0.003

0.004

0.005

0.006

0.007

th
ro

u
g
h
p
u
t

optimal

pipeFiss

fiss-optimal

pipe-optimal

sequential

Figure 5.1: The impact of selectivity.

5.2.1 Operator Selectivity

The impact of operator selectivity on the performance of our solution is shown

in Figure 5.1. The figure plots the throughput (y-axis) as a function of the

mean operator selectivity (x-axis) for different approaches. We observe that for

the entire range of selectivity values, our solution outperforms the fission-only

and pipelining-only optimal approaches, and provides up to 2.7 times speedup in

throughput compared to the sequential approach. The throughput provided by

our approach is also consistently within 5% of the optimal solution, for the entire

range of selectivity values. Interestingly, we observe that the pipelining-only

approach provides reduced performance compared to fission-only approach, for

low selectivity values. This is because with reducing selectivity, the performance

impact of the operators that are deeper in the pipeline reduces, which takes away

the ability of pipelining to increase the throughput (as speedup due to pipelining

is limited by the pipeline depth).
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Figure 5.2: The impact of operator cost.

5.2.2 Operator Cost Mean

The impact of operator cost on the performance of our solution is shown in Fig-

ure 5.2. The figure plots the throughput (y-axis) as a function of the mean

operator cost (x-axis) for different approaches. Again we observe that the

pipelined fission solution is quite robust, consistently outperforming fission-only

and pipelining-only optimal solutions, and staying within 5% of the optimal solu-

tion. It achieves up to 2.5 times speedup in throughout compared to the sequen-

tial approach. One interesting observation is that, for smaller mean operator cost

values, the performance of the fission-only approach is below the pipelining-only

approach, but gradually increases and passes it as the mean operator cost in-

creases. The reason is that, the fission optimization has a higher overhead due to

the replication cost factor, and thus, for small operator costs, it is not beneficial

to apply fission. As the operator cost increases, fission becomes more effective.
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Figure 5.3: The impact of the operator kind.

5.2.3 Operator Kind

The impact of the operator kind on the performance of our solution is shown in

Figure 5.3. Recall that operators can be stateful, stateless, or partitioned stateful.

Figure 5.3 plots the throughput (y-axis) as a function of the fraction of stateless

operators (x-axis) for different approaches. While doing this, we keep the fraction

of partitioned stateful operators fixed at 0.2. We observe that the percentage of

stateless operators do not impact the pipelining-only solution. The reason is that

pipeline parallelism is applicable for both stateful and stateless operators. On

the other hand, fission-only solution improves as the percent of the stateless op-

erator increases. The reason is that data parallelism is not applicable for stateful

operators. We also observe that our pipelined fission solution stays close to the

optimal throughout the entire range of the stateless operator fraction. Again,

pipelined fission clearly outperforms pipelining-only and fission-only approaches.
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Figure 5.4: The impact of replication cost factor.

5.2.4 Replication Cost Factor

The impact of the replication cost factor on the performance of our solution is

shown in Figure 5.4. The figure plots the throughput (y-axis) as a function of

the replication cost factor (x-axis) for different approaches. The results indicate

that our solution considerably outperforms pipelining-only and fission-only ap-

proaches, providing up to 25% higher throughput compared to pipelining-only

optimal approach and up to 30% higher throughout compared to fission-only op-

timal approach. Note that our pipelined fission approach provides performance

as good as fission-only optimal approach when the replication cost factor is close

to 0 and as good as pipelining-only optimal approach when the replication cost

factor is very high. In effect, our solution switches from using fission to using

pipelining as the replication cost factor increases. We also observe that the opti-

mal solution’s throughput advantage is bigger for small replication cost factors,

yet the gap with pipelined fission quickly closes as the replication cost factor in-

creases. In the SPL based experiments presented later, we show that for realistic

replication cost factors, our solution provides performance that is very close to
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Figure 5.5: The impact of the thread switching overhead.

the optimal.

5.2.5 Thread Switching Overhead

The impact of the thread switching overhead on the performance of our solution

is shown in Figure 5.5. The figure plots the throughput (y-axis) as a function

of the thread switching overhead (x-axis) for different approaches. We observe

that the throughput of all solutions, except the sequential one, decreases as the

thread switching overhead increases. It is an expected result as all solutions

benefit from parallelism via using threads, except the sequential solution. Again,

our pipelined fission solution outperforms pipelining-only and fission-only optimal

solutions, and is able to stay close to the optimal performance throughout the

entire range of thread switching overhead values. We also observe that as the

thread switching overhead increases, all approaches start to get closer in terms

of the throughput. This is due to the reducing parallelization opportunities, as a

direct consequence of the high thread switching overhead values.
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Figure 5.6: The impact of the number of cores.

5.2.6 Number of Cores

The impact of the number of cores on the performance of our solution is shown in

Figure 5.6. The figure plots the throughput (y-axis) as a function of the number

of cores (x-axis) for different approaches. We observe that for all approaches, the

throughput only increases to a certain degree, after which it stays flat. There

are two reasons for not being able to achieve linear speedup: i) not all operators

are parallelizable, ii) the thread switching and replication cost factor introduce

overheads in parallelization. We again observe that our pipelined fission ap-

proach outperforms the pipelining-only and fission-only optimal solutions. With

increasing number of cores, the gap between the optimal approach and alterna-

tives increases, as the search space gets bigger. However, since the throughput

flattens quickly, the increase in the gap stops early. For instance, our approach

stays within 8% of the optimal.
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Figure 5.7: The impact of the number of operators.

5.2.7 Number of Operators

The impact of the number of operators on the performance of our solution is

shown in Figure 5.7. The figure plots the throughput (y-axis) as a function of

the number of operators (x-axis) for different approaches. We observe that as the

number of operators increases, the performance of the pipelining-only solution

relative to the fission-only solution increases. The reason is that the pipeline

parallelism cannot help a single operator, so it is not as effective for small number

of operators. Our pipelined fission solution provides up to 18% higher throughput

compared to the closest alternative. While the gap between the optimal solution

and ours increases with increasing number of operators, eventually throughput

flattens due to the fixed number of cores available. Importantly, our approach

stays within 5% of the optimal solution.
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Figure 5.8: Running time.

5.2.8 Running Time

We also evaluate the running time of our pipelined fission algorithm. Figure 5.8

plots running time in terms of milliseconds, for our pipelined fission solution and

the exhaustive optimal approach. Unfortunately, the running time of the optimal

solution dramatically increases with increasing number of operators and threads.

However, even if the number of operators and threads are high, our pipelined

fission algorithm completes in a small amount of time.

5.3 SPL Experiments

In our second set of experiments, we use IBMs SPL language and its InfoSphere

Streams runtime to evaluate the effectiveness of our solution. In order to perform

this experiment, we need to determine the value of the replication cost factor and

the thread switching overhead for the InfoSphere Streams runtime.
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5.3.1 Thread Switching Overhead

For determining the thread switching overhead, we use a simple pipeline of two

operators. We run this topology twice, once with a single thread and again with

two threads. Let c be the cost of the operator. For the case of two threads, the

throughput achieved, denoted as Tp, is given by:

Tp = 1/(c+ δ) (5.1)

On the other hand, for the case of a single thread, the throughout achieved,

denoted as Ts, is given by:

Ts = 1/(2 · c) (5.2)

By using Ts and Tp, we can compute the thread switching overhead, δ, without

needing to know the operator cost c. We have:

δ =
1

Tp
− 1

2 · Ts
(5.3)

In order to calculate the thread switching overhead for our SPL experiments, we

measure the throughput of the topology with and without pipeline parallelism

for varying tuple sizes, and use Equation 5.3 to compute the thread switching

overhead. The use of different tuple sizes is due to the implementation of thread

switching within the SPL runtime, which requires a tuple copy (the cost of which

depends on the tuple size).

5.3.2 Replication Cost Factor

For determining the replication cost factor, we use a simple pipeline of three

operators, where the first and the last operators are the source and the sink

operators with no work performed and the middle operator has cost c. We then

run this topology with different number of parallel channels used for the middle

operator. Let n denote the number of channels used. We can formulate the
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throughput as:

Tp(n) =

(
2 · δ + c

n
+ log2 n · cp

)−1

(5.4)

If we know the throughput for two different number of channels, say T (n1) and

T (n2), then we can compute the replication cost factor, cp, independent of other

factors, such as the cost c, as follows:

cp =

1
n2·Tp(n1)

− 1
n1·Tp(n2)

log2 n1

n2
− log2 n2

n1

(5.5)

In order to calculate the replication cost factor for our SPL experiments, we

measure the throughput of our sample topology with different number of replicas

for varying tuple sizes, and use Equation 5.5 to compute the replication cost

factor.

By using the calculated thread switching overhead and replication cost factor

values, we perform SPL experiments to evaluate our solution for varying oper-

ator count, selectivity, cost, and kind. Throughput is again our main metric of

evaluation.
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Figure 5.9: Impact of selectivity – SPL.

5.3.3 Operator Selectivity

Figure 5.9 plots throughput (y-axis) as a function of the mean operator selectivity

(x-axis) for the optimal, pipelined fission, and sequential solutions using SPL.

We see that all approaches achieve higher throughput as the operator selectivity

increases. Pipelined fission solution provides practically the same performance as

the optimal solution. This shows that our solution is even more effective in the

context of a real-world stream processing system.
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Figure 5.10: The impact of operator cost – SPL.

5.3.4 Operator Cost Mean

Figure 5.10 plots throughput (y-axis) as a function of the mean operator cost (x-

axis) for the optimal, pipelined fission, and sequential solutions using SPL. It is

not surprising that the throughput decreases as the mean operator cost increases,

for all approaches. More interestingly, our approach again performs as good as

the optimal approach throughout the entire cost range, except for the lowest cost

point, for which we are still within 15% of the optimal.
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Figure 5.11: The impact of the number of operators – SPL.

5.3.5 Number Of Operators

Figure 5.11 plots throughput (y-axis) as a function of the number of operators

(x-axis) for the optimal, pipelined fission, and sequential solutions using SPL. As

expected, as the number of operators in a topology increases, throughput of a

topology decreases for all approaches. Even for high number of operators, the

throughput achieved by pipelined fission solution is as good as the optimal one.
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Figure 5.12: The impact of the operator kind – SPL.

5.3.6 Operator Kind

Figure 5.12 plots throughput (y-axis) as a function of the fraction of stateless

operators. The change in operator kind does not affect the sequential solution

as in Figure 5.3 from earlier. On the other hand, as the percentage of stateless

operator increases, the throughput achieved increases. The reason is that stateless

operators can benefit from both data and pipeline parallelism. As it can be see

from the figure, our pipelined fission solution again performs practically same as

the optimal solution, except for the highest stateless fraction (0.8, as 0.2 of the

operators are fixed as partitioned stateful), at which point we are still within 5%

of the optimal.
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Chapter 6

Related Work

Our work belongs to the general area of auto-parallelization. We first overview

prior work in this area, and then focus on work related to the core subject of this

thesis: auto-parallelization in streaming systems.

6.1 Multi-threaded concurrency platforms

Determining parallelizable code regions and appropriately assigning those regions

to computing units for execution are the two major issues that must be addressed

by any automatic parallelization systems.

Multi-threaded concurrency platforms, such as Cilk++ [21], OpenMP [22], and

x10 [23], decouple expressing a program’s innate parallelism from its execution

configuration. OpenMP and Cilk++ are widely used language extensions for

shared memory programs, which help express parallel execution in a program at

development-time and take advantage of it at run-time.

Various platforms are proposed in the literature for automatically finding par-

allelizable program regions. One example is Kremlin [24], which is an auto-

parallelization framework that complements OpenMP [22]. Kremlin recommends

to programmers a list of regions for parallelization, which is ordered by achievable

program speedup. The speedup is calculated based on an improved critical path
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analysis.

Cilkview [25] is a Cilk++ analyzer of program scalability in terms of number

of cores. Cilkview performs system-level modeling of scheduling overheads (e.g.,

the bookkeeping costs to set up context and the overhead of cache misses), and

predicts program speedup. Bounds on the speedup are presented to programmers

for further analysis.

Autopin [26] is an auto-configuration framework for finding the best mapping

between system cores and threads. Using profile runs, Autopin exhaustively

probes all possible mappings and finds the best pinning configuration in terms of

performance. Then, threads are re-pinned using the best mapping found.

Alchemist [27] is a dependence profiling technique based on post-dominance anal-

ysis and is used to detect candidate regions for parallel execution. It is based on

the observation that a procedure with few dependencies with its continuation

benefits more from parallelization.

There has been extensive research in the literature on compiler support for

instruction-level or fine-grained pipelined parallelism [28]. In our work, we look

at coarse-grained pipelining techniques that address the problem of decompos-

ing an application into higher-level pieces that can execute in pipeline as well

as data parallel. Relevant to our study is the work in [29], which provides com-

piler support for coarse-grained pipelined parallelism. To automate pipelining,

it selects a set of candidate filter boundaries (a middleware interface exposed by

DataCutter [30]), determines the communication volume for these boundaries,

and performs decomposition and code generation in order to minimize the ex-

ecution time. To select the best filters, communication costs across each filter

boundary are estimated by static program analysis and a dynamic programming

algorithm is used to find the optimal decomposition. In comparison, our work

performs combined pipelining and fission and has support for partitioned stateful

operators.

43



6.2 Pipelining/Fusion in Streaming Systems

In most streaming systems, operators that are fused together use the same thread,

whereas nonfused operators can be run in parallel. The key problem is to divide a

program into fused pieces that can be run in parallel, typically in a pipelined con-

figuration. For instance, StreamIt [31], which is a language for creating streaming

applications, uses fusion to coarsen the granularity of the graph to the target num-

ber of cores, based on cost estimates [32]. This is somewhat similar to our region

configuration step, but is limited to stateless operators or operators that only have

read-only sliding window state. Aurora data stream management system uses fu-

sion to minimize scheduling overhead [33]. SPADE [34] uses the COLA [16] fusion

optimizer to combine operators as much as possible, until a single processing el-

ement fills the entire capacity of a core. A different approach is taken by Tang

and Gedik [10], where the stream program initially runs as completely fused, and

an auto-pipeliner is used to detect bottlenecks and inject new threads into the

runtime system to improve throughput. With the exception of StreamIt, which

we further cover shortly, these systems are limited to pipelined parallelism, and

do not perform combined pipelining and fission.

6.3 Fission in Streaming Systems

StreamIt [35] performs both pipelining and fission. It addresses the safety ques-

tion of fission by only replicating operators that are either stateless or whose

operator state is a read-only sliding window. As opposed to StreamIt, which tar-

gets synchronous dataflow systems, our work targets data stream management

systems that typically contain operators that are partitioned stateful and exhibit

dynamic selectivity. Thus, rather than having a static schedule based execution

model, we adopt a backpressure based runtime system. We model its throughput

in order to formulate a pipelined fission configuration that can provide optimal

throughput. Work on elastic operators [19] also generalizes fission beyond the

StreamIt setting to work on stateful operators with dynamic data rates. How-

ever, the work is limited to fission only and does not support pipelining.
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A related problem is to perform fission dynamically, that is to adjust the width

of the parallel region based on the changing runtime and workload conditions.

SEDA achieves this via a thread-pool controller, which can adjust the number

of threads to increase parallelism, while preserving locality [36]. MapReduce

systems dynamically adjust the number of workers assigned to the map tasks [37].

Elastic operators [19] adjust the number of threads assigned to an operator by

using a control loop. An extension of it [12] applies similar kind of control in a

distributed setup, where replication is not limited to a single operator and replicas

can run across different hosts. While our thesis does not particularly deal with

the adaptation aspect, its model based approach and efficient heuristic solver

makes it perfectly suitable for runtime optimization based on feedback from a

performance profiler.

Overall, our work is distinguished by earlier work on streaming systems, as it is

the only work that combines pipelining and fission in the context of partitioned

stateful operators with dynamic selectivity.
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Chapter 7

Conclusion

We proposed a pipelined fission solution that can quickly locate a parallelization

configuration for accelerating data stream processing applications, and can pro-

vide throughput close to the optimal that can be achieved. In order to achieve this

aim, our algorithm incorporates stages that greedily perform data and pipeline

parallelism with a varying fraction of resources dedicated to the two different

parallelization approaches. Our model based experimental evaluation shows that

our proposed algorithm is effective both in terms of running time and through-

put under varying operator, system, and workload properties. Our evaluation

using an industrial-strength stream processing engine showcases even stronger

results, where our pipelined fission solution provides throughput that is almost

indistinguishable from the optimal.
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