
IEEE TRANSACTIONS ON  ULTRASONICS,  FERROELECTRICS, AND FREQUENCY  CONTROL, VOL. 41. NO. 5, SEITEMBER 1994 613 

Influence of Missing Array Elements on Phase 
Aberration Correction for Medical Ultrasound 

Mustafa Karaman, Member,  IEEE, Hayrettin Koymen, Senior  Member,  IEEE, 
Abdullah Atalar, Senior  Member,  IEEE, and Matthew O’Donnell, Fellow,  IEEE 

Abstract-The  influence of missing array elements on aber- 
ration correction  based  on  time delay estimation using radio 
frequency signals of neighboring elements is experimentally inves- 
tigated. Normalized  cross correlation and sum of absolute differ- 
ences are employed as the cost functions in aberration estimation. 
Their performance  is  tested  through  various  measurements using 
radio frequency data acquired  with a 3.3 MHz, 64-element phased 
array. Variation of cost functions and  phase estimation error 
are obtained  for  different combinations of number of missing 
elements, amount of aberration, and  noise level. For a particular 
combination of these  parameters, a set of B-scan images is 
reconstructed and presented to examine  the effects of residual 
phase errors on image  quality. 

I. INTRODUCTION 

P HASE ERRORS induced by tissue  inhomogeneities  crit- 
ically  affect the image  quality of phased array ultrasound 

scanners [l] ,  [2]. Various techniques  had  been  developed to 
estimate  and  correct  phase  aberrations  [3]-[ll].  Time  delay 
estimation via minimization of cross  correlation  [5]  and  sum of 
absolute  difference [ 121 between the sampled  radio  frequency 
(RF) echo  signals of neighboring  elements  has  been  shown 
to perform well. The  accuracy of aberration  estimation  is 
seriously  degraded,  however,  by the presence of missing  array 
elements  [13],  [14].  Such  elements  arise  due to discontinuous 
acoustic  windows into the  body,  loss of contact  between  the 
array and the body wall, and  electrical or mechanical  defects 
in the  array. 

Detection of relative phase differences  between  missing 
elements  is not possible in aberration  correction  techniques 
based on  time  delay  estimation  between RF signals on neigh- 
boring  elements. To obtain the complete  aberration  pattern  for 
proper  phasing of the whole  aperture,  differential  delays at 
missing  elements  can be interpolated using phase estimates 
between the nearest  active  elements.  A  cost  function  is used 
for  every  correction  technique based on a  measure of the 
signal  covariance.  The  accuracy of phase estimation  between 
two RF signals is limited by the level of their  covariance. 
The  spatial  variation of the  cost  function, used for time 

Manuscript  received July 6,  1993;  revised  March 11, 1994;  accepted  April 
1. 1994. 

M. Karaman  was  with  the  Department of Electrical  and  Electronics  En- 
gineering,  Bilkent  University,  Ankara, 06533 Turkey. He is now  with  the 
Department of Electrical  Engineering  and  Computer  Science,  University of 
Michigan,  Ann  Arbor,  MI  48109  USA. 

H. Koymen and A. Atalar  are  with  the  Department of Electrical  and 
Electronics  Engineering,  Bilkent  University,  Ankara,  06533  Turkey. 

M. O’Donnell is with  the  Department of Electrical  Engineering  and 
Computer  Science,  University of Michigan,  Ann  Arbor,  MI  48109  USA. 

IEEE Log Number  9403346. 

delay  estimation  across  the  array,  is  a  critical  measure of 
phase  estimation  between the nearest  operable  elements.  The 
covariance  depends  on not only  the  spatial  distance,  but  is 
also  critically influenced by the aberration  level  and  signal 
to noise ratio (SNR) of RF signals.  Therefore,  for  aberration 
correction with inactive  elements,  variation of the cost  function 
must be measured  for  different  numbers of missing  elements 
with different  aberration  and  noise  levels. 

Various measurements of the cost  function  and phase es- 
timation  error  have  been  performed  to test the performance 
of aberration  estimation with missing  elements.  The  measure- 
ments  were  obtained  on  experimental RF data  acquired  from  a 
standard  tissue-mimicking  phantom.  Additionally, a set of B- 
scan  images of the phantom  was  reconstructed with inactive 
elements to qualitatively test the performance of correction 
schemes  employing  different  cost  functions in aberration  es- 
timation. In all measurements, phase distortions  and  inactive 
elements  are  simulated by inserting  random time shifts  and 
assigning  zero valued samples  to the corresponding  elements, 
respectively. 

Aberration  correction  based  on time delay estimation be- 
tween  neighboring  elements is described  in  the next section. 
Aberration  estimation with missing  elements  is  discussed 
also in this  section.  Measurements to test the influence of 
inactive  elements on the cost  function and estimation  error 
with different  rms  aberration and SNR levels  are  presented in 
Section 111. B-scan  images of the phantom  and  their  qualitative 
comparison  are  given in Section  IV. 

11. ABERRATION CORRECTION 
Phased  array  adaptive  beamformers  involve  estimation of 

phase aberration profiles across the array, and compensation 
based on  these  estimates.  Compensation  can  easily be realized 
by updating  focusing  delays using the  estimated  aberration 
delays. The  aberration profile can be obtained by estimating 
the time  delay  between an element  signal  and  a  reference. 
Such  a  reference  signal can be formed by summing the signals 
of all  elements or of a  subgroup of array elements [ 131. An 
alternative way is to measure  the  relative time shifts  between 
neighboring  elements.  The final element  delays,  then,  are 
obtained by unwrapping the measured  differential  delays  [15]. 
The  measurement of relative  delay in either  case  is a typical 
time  delay  estimation  problem [ 161. 

Time  delay  estimation  techniques  considered here will be 
evaluated with missing  elements,  aberration,  and finite SNR. 
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For this purpose,  we define cost functions  and test their de- 
pendence  on these parameters. Thus, the two sampled signals, 
SzL and SE, used for time delay  estimation  are defined as: 

where X,,, and X,, are noise free RF signals, W1 and W 2  

are uncorrelated Gaussian  random  noise  signals having the 
same  bandwidth as the RF signals, and c,(a) and c,(a) 
are coefficients used to obtain different SNR levels. These 
coefficients are defined as: 

where M is the length of the time window and n is the desired 
SNR level (dB)  for both SEl and SE. 

Cross correlation of two such signals is widely used to 
estimate relative time delay.  The normalized cross-correlation 
function (NCC) for the sampled  signals, Szl and SE. is 
expressed in (3) (see  below) where S;>:) ,is the ith  sample 
of the signal from 7bth element, and the S, 1s the mean value 
computed  over the corresponding window. The delay U ,  is the 
aberration of  the 71th element's signal. The best match of two 
signals is achieved at the maximum correlation value where 
the maximizing parameter, I;, corresponds to the time delay 
between S: and SE, i.e., I;  = U,, - U,. Normalization is 
used to prevent wrong decisions  due to signal fluctuations in 
different time windows. 

The sum of absolute differences  (SAD) has been used as a 
computationally simpler cost function in many minimization 
problems [ 161, [ 191. For time delay estimation,  SAD of the 
sampled signals S; and SE can be defined as: 

The best match of SE, and SE results in the minimum 
SAD value. Thus, the value of k: which minimizes the SAD 
corresponds  to the time delay difference between the signals 
SFl and SF. 

A computationally  much simpler cost function is obtained 
using reduced bit density in the digital representation of signals 
[ 161, [ 191. As the limiting case, the SAD function can be 

computed using signal samples  quantized  to a single bit (1  -b 
SAD) [12]: 

where xE(i) is the the one bit representation of SE(,i), and 
@ is the bitwise logic esclusiw-or operation. Note that such 
a simplification is  not possible for NCC (3) because of the 
normalization. 

To obtain the total aberration pattern, time delay  estimation 
outlined above must be repeated for all neighboring  element 
pairs. Following measurement of the relative aberration  delays, 
an  estimate of the resultant aberration delay time, rTL, for the 
71th element is obtained by phase unwrapping: 

where &,.,-l is the differential delay between the j th  and 
( j  - 1)th  elements. 

Differential delays  cannot be computed between any pair 
of elements including an inactive element.  For  example, at- 
tempts to obtain the complete  aberration pattern with a single 
missing element result in forming  two phase patterns over 
the subapertures on either  side of the inactive element.  While 
elements of each subaperture are phased properly, the relative 
phasing of the two  subapertures with respect to  each  other 
may not be correct. This can cause significant degradation in 
image quality. To handle this problem, O'Donnell and Engeler 
[ 141 have  reported a simple technique involving interpolation 
of the lost differential delays. In this scheme, the relative 
phase between two nearest operable  elements  on both sides of 
inactive elements is estimated using cross  correlation, and it  is 
evenly distributed over the missing elements. If the elements 
between i and i + T for 7' > 1 are inactive, then the differential 
delay between the nth and ( n  - 1)th  elements,  AT,^,,-^, 
(i < 71 5 ,i + T )  is: 

As long as  the estimation is carried out  on neighboring 
elements, this approach can be directly applicable in aberration 
estimation independent of the cost function. Our measurements 
using NCC, SAD, and l-b  SAD  are based on this approach. 

111. MEASUREMENTS 

The influence of missing elements  on phase aberration 
has been experimentally tested. In particular. both variation 
of the cost function and phase estimation error  have been 
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examined with different  numbers of missing  elements,  aberra- 
tions  and  noise  levels.  Measurements used RF  data  acquired 
from  a  standard  graphite-gel  AIUM  resolution  phantom with 
a  conventional 3.33 MHz,  64-element,  15  mm phased array 
transducer [5] ,  [ 151. RF  A-scans were recorded for every 
possible  combination of transmitter  and  receiver  elements 
using  10-bit,  17.76 MHz analog  to  digital  conversion. All 
measurements  and  image  reconstruction  were  performed  by 
digitally  processing  the  recorded  data to emulate  a  real-time 
adaptive  digital  imaging  system. 

To reduce phase quantization  effects,  the  sampling  rate  was 
increased by 8 times using digital  interpolation  resulting in 
an effective  clock  frequency of 142  MHz  corresponding to 
a  phase  accuracy of 2 ~ / 4 3 .  For  all  measurements,  a fixed 
transmit  focus at 80 mm and  dynamic  receive  focusing  were 
employed.  NCC and SAD  computations  were  carried  out  on 
RF  signals  from  diffuse  scatterers  within a 20 mm  axial 
window  located 60 mm away  from  the  aperture.  The  transmit 
focus  was  purposely placed outside  the  estimation  window to 
simulate  typical  operating  conditions. 

A. Variation of Cost Function 

Fullword NCC, fullword  SAD,  and l-b SAD  functions 
were  measured  for  different  numbers of missing  elements 
and rms aberration  levels.  For  these  measurements,  phase 
distortions  were  simulated using a  random  aberration 
pattern, i.e., electronic  aberration is employed.  The  pattern 
is  band-pass filtered to  eliminate  high  frequency  variations 
which  are not practical.  The  resultant  phase profile has 
a  random  sinusoidal  pattern  (see Fig. 6). Different rms 
aberration  levels on the array are  achieved by scaling  the 
amplitude of the same  aberration  pattern. 

Equations  (3),  (4), and (5) were  used  with the  experimental 
data to  compute  the  cost  functions.  The  signal X, used 
in these  expressions  represents  an  actual  RF  A-scan  signal 
at the nth  element.  The  maximizing  parameter k is  set to 
zero,  and  the  parameter cy indicating  the SNR level  is set to 
infinity. In other  words, the cost  functions  are  computed at 
zero time lag with SNR the same  as that of actual  RF  data 
X,. Furthermore,  computations  are  carried  out  on  speckle  RF 
signals  from  different  pairs of array  elements.  The  spacing 
between  these  elements  corresponds to the  number of missing 
elements.  The  results of different  element pairs with equal 
spacing  are  averaged. We make  the  following  definitions  to 
clarify these manipulations: 

- N-r 

. N-7- 

In addition to this  averaging,  all  measurements  are repeated 
on five different  sets of speckle  data.  Based on these  measure- 

ments, the rms value and  standard  deviation of each  function, 
therefore,  are  defined  as: 

I _  5 

-- 
Fig. l presents C;, E;, and 0," versus interelement  distance, 

T ,  and the rms  aberration, F, where 

Note  that  the  number of missing  elements  is  identical with 
the interelement  distance, T ,  with an  offset of one-element 
distance,  i.e.,  the  number of missing  elements  is  equal to r - 1 
as long as r > 0. In all figures, both the number of missing 
elements  and  inter-element  distance  are  explicitly  represented. 
Also note that magnitude  distributions of both SAD  and l-b 
SAD  functions are  normalized by their  maximum  values  for 
presentation on the  same figure together with NCC  (Figs. 1 
and 3). 

The  NCC  function  is unity for  no  missing  elements,  which 
corresponds to the autocorrelation of RF signals. The  auto- 
correlation is not affected by inserted phase distortions up to 
0.023 A rms aberration (X is the ultrasound  wavelength).  The 
correlation  function vanes  almost  linearly with the  number of 
missing  elements  for  zero rms aberration  (i.e., the variation 
on the vertical axis  is  almost  linear).  This is  in agreement 
with the van Cittert-Zemike  theorem  applied  to pulsed echo 
ultrasound [20]. The  decrease in magnitude with the number of 
missing  elements  shows  variable  characteristics  for  different 
aberration  levels,  as is evident  from the contour  distribution in 
Fig. l. As expected,  the  decrease in correlation  becomes  severe 
with increasing  aberration  level.  Also, the contours  show an 
asymptotic  behavior  as  a  function of aberration  level  for a very 
small  number of missing  elements. 

Both  fullword  SAD  and l-b  SAD  functions show very 
similar  characteristics.  The SAD  values for pairs cannot be 
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0 0.05 0.1 0.15 0.2 

RMS PHASE  ABERRATION  (FRACTION  OF A WAVELENGTH) 

Fig. 1. Magnitude  distribution of  the cost  functions  versus the  number of 
missing  elements and rms phase  aberration. 

quantitatively  compared to their  correlation  counterparts.  Nev- 
ertheless,  incremental  variation of SAD values  can be com- 
pared to correlation  trends. It can be observed  that  incremental 
changes of the  functions  are  comparable.  The  dependence of 
SAD functions  on  the  rms  aberration  level  and  number of 
missing  elements  is  similar  to  that of the  correlation  function, 
considering that the increase in the  later  corresponds  to  a 
decrease in the  former  two.  The  decrease in l-b SAD with 
increase in the  number of missing  elements  is  slightly  more 
than  that of full  word SAD. In  general,  both SAD functions 
show  similar  dependence on the  number of missing  elements 
and rms aberration  level. 

The  maximum  standard  deviation  values  computed  using 
(10)  for  NCC, SAD, and l-bit SAD are within 14, 4, and 
6%, respectively, of the  corresponding  magnitude  values of the 
functions. For up  to 8 missing  elements with rms  aberration 
less than 0.15 X, the  standard  deviation  value of each  function 
is  less than 50% of its maximum  standard  deviation. 

B.  Phase  Estimation Error 
To directly  compare  estimation  performance  using  different 

cost  functions, time delay  estimation  error  versus  aberration 
and  missing  elements  was  measured  for  NCC, SAD, and l-b 
SAD functions.  The  measured  error  is  the  residual  rms  phase 
error  between  the  original  and  estimated  relative  aberration 
delays.  Since  measurements  were  performed on different el- 
ement  pairs, the error of each  measurement  is first averaged 
over pairs with the  same  spatial  separation: 

l 

(12) 
Then, the rms of this  averaged  error  and its standard  deviation 
over five different  sets of speckle  data  are obtained: 

0 0 

0 0.05 0.1 0.15 0.2 
RMS PHASE  ABERRATION  [FRACTION OF A WAVELENGTH) 

. 

i -' 

I I 
0 0.05 0.1 0.15 

RMS PHASE  ABERRATION (FRACTION  OF A WAVELENGTH) 
0.2 

(b) 

Fig. 2. Distribution of the  residual  differential  phase errors versus the  number 
of missing  elements and nns phase  aberration.  (a) n n s  and (b) standard 
deviation.  Contour  values are given  in  fractions of a  wavelength. The phase 
quantization  level  is 0.023X 

I _  5 

Relative  phase  differences  between  element  pairs  are  com- 
puted  by  time  delay  estimation,  and then the above  error 
computations  are  carried  out.  Measurements  are  repeated  for 
all  element  pairs  separated  by r elements,  and  for  different U 
values. All computations  are  repeated  for  each  cost  function 
with CY = m. 

Fig.  2(a)  depicts A4(u, T )  vs T and 21 for  NCC, SAD, and 
l-b SAD. The  error  distribution  for  each  function  is  almost  the 
same,  where  the  error  varies  from  zero  to  2  phase  quantization 
levels  for  up  to 4 missing  elements with  up to 0.1X rms 
aberration.  (one  quantization  level  is  0.023 X). The  standard 
deviation  distributions of phase  error  measurements  for  all 
three  functions  show  similar  characteristics  to  the  residual 
phase  error  [see  Fig.  2(b)].  All  combinations of missing 
elements  and  rms  aberration  levels  under  the 0.069 contour (3 
quantization  levels)  are  stable.  Other  combinations,  however, 
result in very high  standard  deviations  over  different  speckle 
data,  and  hence  are not stable. 
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Fig. 3. Magnitude  distribution of the  cost  functions  versus the  number of 
missing  elements and SNR. 

C .  Noise  Performance 

To test  noise  performance,  measurements of magnitude  and 
phase  estimation  error  were  performed  for  different SNR levels 
and  missing  elements. Fig. 3 shows  the  magnitude  and  residual 
phase  error  distributions  for NCC,  SAD and l-b SAD functions 
versus SNR and  number of missing  elements. To obtain  these 
results, the noisy  signals, S$ and S;, are generated using Eqs. 
1  and 2 where  scaling  factors cm (a) and c, ( a )  determine SNR 
levels.  These  coefficients  are  updated  for  every  signal pair used 
in the  computation of the  cost  function. 

To obtain  measurements  for  different  combinations of miss- 
ing elements  and SNR levels,  the  cost  functions and phase 
estimation  errors  should be functions of only r and a. Hence, 
no  aberrations  were  employed, i.e., U* = 0 for  every i. There- 
fore,  the  definitions used  in the previous  parts of this  section 
are modified so that the  aberration  dependence is replaced with 
the SNR dependence. As a  result,  the  expressions  given in (8) 
are modified as: 

N-r 

m=l 
- N-r 

The  rms  and  standard  deviation  were  commutated  over five 
sets of speckle  data  similar  to  those in (9) and  (10). As a  result, 
the new  outputs  become: C;, E;, 0;. Also note that,  the  cost 
functions of ( 2 ) ,  (3), and (4) are  computed with no aberration, 
i.e., ui = 0, and hence  the  resulting  error  is  a  function of 
only  missing  elements  and SNR, not  aberration.  The  resultant 
residual  rms  error,  denoted  as Ad(cr, r ) ,  was  also  computed 
on  the  same  data. 

Fig. 3 depicts  the  distributions of C;, E,", and 0," vs 
the  number of missing  elements, r ,  and the SNR level, cr. 
For  each  function, the magnitude  variation  stays  almost  the 
same  up to 20 dB SNR whereas a  sharp  change  occurs  for 
SNR less  than 20 dB.  The figure shows that l-b SAD is 

--- 

-- 

K- 
l I 
0 5 l0 15 20 25 30 35 40 45 50 

SIGNAL TO NOISE  RATIO (dB) 

I I 
0 5 10 15 20 25 30 35 40 45 50 

SIGNAL TO NOISE RATIO (dB) 

(b) 

Fig. 4. Distribution of residual  differential  phase  errors vs the  number of 
missing  elements and SNR. (a) rms (h) standard deviation.  Contour  values are 
given in  fractions of a wavelength.  The  phase  quantization  level is 0.023X. 

much  more  sensitive  for SNR than fullword SAD and  fullword 
NCC. The level of variation in l-b SAD at high SNR values, 
however,  is  comparable to the noiseless  case,  although  this 
is  obscured in the figure by large magnitude  variations  at 
low SNR. In general, SAD is  more  sensitive  to SNR than 
NCC. For SNR greater than 10 dB, the  standard  deviations 
of NCC,  SAD, and l-b SAD are within 10, 3, and S%, 
respectively, of the  corresponding  magnitude  values  whereas 
the  maximum  standard  deviation at 0 dB SNR equal 35,  6 ,  
and lo%, respectively. 

Finally,  the  residual  phase  error  versus SNR and  missing 
elements  is  illustrated in Fig. 4(a) for NCC,  SAD, and 1- 
b SAD. Each figure depicts  the  distribution of &(a, r )  for 
each  cost  function.  The  functions, in general,  show  similar 
performance  in  phase  estimation  for  different SNR levels. 
However,  as  implied by the magnitude  measurements, the 
error of l-b SAD is  slightly  higher than that of SAD and 
NCC at  low SNR, especially  at 0 dB.  While  the  measured 
standard  deviations  for  each  function  do not exceed one phase 
quantization  level  for SNR higher than IO dB, they are  less 
than two  phase  quantization  levels  for SNR less  than 10 dB 
[see Fig. 4(b)]. As a  result,  standard  deviation  measurements 
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Fig. 5 .  B-scan  sector  images of a section of the  phantom.  Reconstruction 
parameters for each  image  are  listed  in Table I. 

depict the stability of results  for  speckle  data with SNR  higher 
than 10 dB. 

IV. B-SCAN IMAGES 

To test the performance of different  cost  functions in time 
delay  estimation,  sector  images of  the phantom  were  recon- 
structed with and  without  missing  elements and aberration. 
Each  image of Fig. 5 shows  the  same  section of the phantom 
representing  a 45" sector  angle  over 48 mm  range  starting 
at  32 mm from the transducer.  Images are displayed on a 
logarithmic scale with a 50 dB dynamic  range. 

For  each  corrected  image,  transmit  and  receive focus delays 
were  updated using  the  phase  aberration  pattern  estimated 
from  diffuse  scatterers. A 20  mm  window  length  was used 
for  time  delay  estimation by NCC,  SAD,  and l-b SAD. 
Missing  elements  and  phase  distortions were applied both on 
transmit  and  receive. The original  aberration  pattern,  which 
has an r m s  value of 1.40 radians  (see  Fig. 6), is applied by 
simply  time  shifting  signals  on  channels.  Estimated  patterns 
shown in  Fig. 6  were used to  compensate  phase  aberrations  on 
both  transmit  and  receive.  Missing  elements  were  realized by 
zeroing RF signals both  in transmit  and  receive  beamforming. 
Other  parameters used  in image  reconstruction  are  outlined in 
Table I. 

Comparison of (a),  (b). and (c) of Fig. 5 indicates  that the 
degradation in image resolution  due  to  aberration is much  more 
severe  than that caused by missing  elements.  The  corrected 
images. (d),  (e), and (0, are  very similar,  as  predicted  based on 
the measurements  presented in  the previous  section.  Corrected 
images  are  slightly  degraded  because of imperfect  phase  error 
compensation.  This  is  due  to the  small estimation  errors in 
relative  phases  between  active  element pairs. Also,  estimation 
error in the relative  phase  between the 20th  and  26th  elements, 
the  nearest  active  elements  to the missing  elements,  produces 
a  bias  for  phase  estimates on elements 26 to 64. 

The  original  aberration pattern shown in Fig. 6 has an rms 
value  of 0.222 X. The number of missing  elements is 5, and 
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Fig. 6. The original  and  estimated  phase  aberration  patterns  across the array. 
Elements 21-25 are  missing in aberration  estimation. 

TABLE I 
IMAGE RECONSTRUCTION PARAhlETERS 

Image 

a 

b 

C 

d 

e 

f 

Missing 

Elements 

- 

21-25 

21-25 

21-25 

21-25 

21-25 

Aberration 

Aberration 

Estimation 

- 

- 

- 

NCC 

SAD 

l-b SAD 

the correlation  coefficient in Fig. 1 corresponding  to  these 
parameters  is  about 0.3. The rms residual diffeer-enfial phase 
errors of estimates of NCC, SAD, and l-b  SAD are 0.102 X 
0.102 X, and 0.108 X whereas the corresponding  rms  residual 
unwrapped phase  errors  are 0.1 15 X, 0.138 X, and 0.138 X, 
respectively.  Although the reduction in overall phase error is 
only  about fifty percent,  a  dramatic  image  quality  improvement 
is obtained.  This is because the final residual  errors are mainly 
due  to the propagation of differential  phase  errors  resulting in a 
bias on  elements  26-64  (see  Fig.  6).  Since this bias is relatively 
small  compared  to the overall  phase  distortion, its effect on 
image  quality is not  significant. 

v. DISCUSSION AND CONCLUSION 

In general,  combinations of the  number of missing  elements, 
rms aberration  and  SNR  levels  resulting in correlation  values 
higher than fifty percent of the autocorrelation  value  can 
be  used for  aberration  estimation.  The  measurements  show 
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that, for such combinations, NCC, SAD, and l-b  SAD show 
comparable performance. 

For aberration correction in  the presence of missing ele- 
ments, inactive elements must be detected before aberration 
estimation and beamforming. This can be achieved by com- 
puting the rms signal amplitude at each channel over a set 
of range windows. In practical applications, the processor 
performing computation of the cost function can also be used 
for this purpose [14]. If detection of  an inactive element, 
however,  fails, then the corresponding differential delays will 
be incorrect resulting in significant errors in unwrapped phase 
estimates. 

All phase error  measurements, which were performed on 
differential phase estimates,  do not include the propagation 
of differential phase errors across the array through phase 
unwrapping. The differential residual phase error is a di- 
rect measure  for  comparison of different cost  functions in 
aberration estimation, and the influence of error propagation 
on aberration correction is identical for  each cost function. 
In general, propagation of differential errors  is noticeable if 
the accumulated error is significant compared  to the overall 
aberration,  and  becomes a drawback in aberration correction 
based on neighboring elements. 

All SNR analysis in this study  assumed that the original 
data  are noiseless. In fact the original data  are  quite noisy. 
Additional noise is superimposed  on these signals to illustrate 
trends in estimation error  as the SNR is reduced. The SNR 
quoted here, therefore, should not be considered the absolute 
SNR expected  from array data. In other  words, better noise 
performance of the aberration estimation schemes is expected 
on  real phased array data.  This is because  experimental data 
used in this study were obtained through a synthetic aperture 
approach where only one  element was fired at a time,  and thus 
SNR of the RF signal on a channel  after transmit beamforming 
with N-elements is proportional to m. However,  for a 
phased array system where N-elements  are active in transmit. 
the SNR of  the received RF signal on a channel  becomes 
proportional to N .  On the other  hand,  since  measurements 
for different SNR levels presented here were performed with 
no  aberration, the performance of estimation schemes will be 
degraded further in the presence of finite aberrations. 

One can attempt to recover  lost differential delays asso- 
ciated with missing elements using a different interpolation 
technique. We examined this possibility using a simple  scheme 
based on bilinear interpolation. The lost differential delay is in- 
terpolated using two terms: one  involves  the differential delay 
between nearest operable  elements whereas the second term is 
due  to bilinear interpolation using the measured differential 
delays of active element pairs neighboring to the inactive 
elements. This scheme, as expected, better recovers the lost 
delays. Misalignment of the phasing of two  subapertures, 
however, is worse than that  of (7). This effect can be reduced 
by using more complicated interpolation techniques such as 
a lowpass filtering of a size comparable to the array size, 
but  with increased computational  complexity. In fact, the 
critical issue in aberration estimation with inactive elements is 
the accurate phase alignment of two subapertures. where the 
interpolated diflivwzfial delays  are used only for this purpose. 
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Hence, the simple  scheme of (7) is a good  choice both  in terms 
of accuracy and computational efficiency. 

While aberration correction based on l-b  SAD is com- 
putationally more efficient compared  to fullword SAD and 
fullword NCC, its accuracy is  lower  for low SNR levels.  This 
limitation, however, can be relaxed by averaging the estimates 
over a number of beams [ 121, and/or increasing the estimation 
window used in l -b SAD computation [ 161. 

The correlation function as defined in (3)  acts as the 
reference covariance measure for  comparison of the SAD- 
based aberration estimation  measurements.  It is defined in 
its widely used normalized  form, and computed  accordingly. 
Normalization is crucial  for imaging with wide band signals. It 
can be eliminated, however. for imaging involving sufficiently 
narrow band signals, and  hence its one bit version can  also 
be used in phase estimation. Use of the correlation function 
without normalization must be tested for phase estimation 
using RF  signals with different band widths. Furthermore, 
the computational  complexity of such methods must be com- 
pared to efficient computation techniques based on CORDIC 
processing [ 141. 
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