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DCT Coding of Nonrectangularly Sampled Images 
Emre Giinduzhan, A. Enis Cetin, and A 

Abstmct-Discrete cosine transform (DCT) coding is widely 
used for compression of re.ctangularly sampled images. In th is  
letter, we address efficient DCT coding of "rectangularly sam- 
pled images. To this eKect, we discuss an efecient method for 
the computation of the DCT on nomctanpb  sampling grids 
using the Smith-normal &"position. Sim- results are 
provided. 

I. INTRODUCTION 

N DIGITAL representation of multidimensional (M-D) I signals, various sampling structures can be used that are 
usually in the form of a lattice or a union of coset of a 
lattice [ 11. Rectangular sampling grids (orthogonal lattices) 
are the most commonly used lattice smcture. It is well 
known that the sampling efficiency of e depends on 
the region of support of the spectrum malog signal 
[2]r [3]. In still images, a 2-D nonreckuguhr sampling grid 
may require. a smaller number of sampks'per unit area than 
a rectangular grid. In video, interlaced sampling grids (3-D 
nonrectangular @ids) are widely used for reduced flickering 
without increasing the transmission bandwidth. 

Most algorithm currently used for processing and compres- 
sion of nonrectangularly sampled signals do not fully exploit 
the nature of the sampling structure used. The standard practice 
to compress nomtangularly sampled still images by JPEG- 
type schemes is to first interpolate the image to a rectangular 
grid, which usually has twice as many pixels. Altematively, 
nomtangdarly sampled images can be treated as if they were 
sampled on a but this wouid cause artificial 
high fresueneies to the DCT reprewntation since 
horizontal and vertical lines in the image will be distorted. 
Thus, the latter choice usually results in a poorer compression 
efficiency. Likewise in video compression, the frame DCT 
option in MPEG-I1 assumes that the even and the odd fields 
were recorded at the same time instant on a rectangular grid, 
which may introduce artificial high-frequency components. 

In this paper, we address DCT coding of images sampled 
on arbitrary lattices. To this effect, we discuss an efficient 
method for the computation of the DCT on nonrectangular 
sampling grids, which is similar to the computation of the M- 
D DFI' in nonrectangular grids [2], [4]. The method is based 
on the Smith-normal decomposition, that is, diagonalizing the 
periodicity matrix of the M-D sequence. The original sequence 
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Fig. 1. Coordinate transformation in a hexagonal lattice. 

is first transformed onto a new coordinate system, where it is 
rectangularly periodic. Rectangular M-D DCT of the trans- 
formed sequence is computed in the new coordinates, and the 
result is transformed back to the original coordinates. A short 
review of the notation and the Smith-normal decomposition 
is given in Section 11. In Section 111, an efficient method to 
compute the DCT and the inverse DCT in nonrectangular 
grids is described. Finally, in Section IV, simulation results 
are presented for quincunx sampling grids [5]-[ 101. 

11. PRELIMINARIES 

Let 2(n) be a periodic sequence, i.e. 

Z(n + Nr) = 2(n) Vn,r E Z D  (1) 

where the matrix N is a nonsingular integer matrix, and it is 
called the periodicity matrix. The number of samples in one 
period for a given periodicity matrix N is unique and given 
by IdetNI. The periodicity matrix N is not unique because 
N = NL represents the same periodicity if L is a unimodular 
(IdetLI = 1) integer matrix [4]. 

dimensional Euclidean space. A lattice A in RD is the set of all 
linear combinations of v1 . . .  VD with integer coefficients [4]. 

Let v1 ... VD be linearly independent real vectors in a D- 

A = {nlvl + n 2 ~ 2  +...+nDvD I ni E 2, i = 1,. .. ,D}. 
(2) 

The matrix V = [VI v2 . . VD] is called the sampling matrix 
of the lattice,A which is not unique. If E is any unimodular 
matrix, then V = VE is also a sampling matrix for the same 
lattice. However, IdetVl is unique for a given lattice, and it 
is called the sampling density [l]. 

Any nonsingular integer matrix N can be diagonalized by 
pre and postmultiplication by unimodular integer matrices E 
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Fig. 2. Comparison of the two methods for the Barbara image 

TABLE I 
COMPRESSION RESULTS FOR BARBARA IMAGE 

Compression Ratio MSDE 

1.74 2.17 

3.88 3.46 2.06 bpp 

1.32 bpp 

63.85 

55.45 

51.17 

46.39 

5.09 4.70 

6.07 

7.05 

5.61 

6.43 

7.18 

8.12 

9.44 

7.96 

9.30 

11.46 

16.22 11.69 

TABLE II 
COMPRESSION RESULTS FOR LENA IMAGE 

II I Compression Ratio I MSDE I SNR 11 
0-9 

Fig. 3. 
in a quincunx sampling grid (1.57 bpp, SNR = 58.53). 

Original (a) and reconstructed (b) Barbara images of size (336 x 560) 
II 3.09 bPP I 2.59 I 1.70 I 75.49 11 55: 1 2.94 1 66.04 1 1.58 bpp 1 

1.17 bpp 3.69 62.08 

0.96 bpp 8.35 4.19 59.87 used for transforming an arbitrary periodic sampling grid to 
a rectangular grid. 0.82 bpp 

0.73 bpp 11.00 

0.62 bpp 12.82 55.32 

0.51 bpp 15.61 53.20 

nI. COMPUTATION OF DCT IN NONRECTANGULAR GRIDS 
The sequence will be first transformed to a new coordinate 

system where the periodicity matrix is diagonal. The DCT 
will be computed in the rectangular coordinate system, and 
the result will be transformed back to the original coordinates. 

Let x(n) be a finite-extent M-D sequence with a support I N .  
Let 5(n) denote its periodic extention with a periodicity matrix 
N, which can always be decomposed as in (3). The sequence 
Z(n) can be reordered using the coordinate transformation 

n’ = E-ln. (4) 

Let us denote the sequence in the new coordinates by 5’(n’). 
It can be shown that Z‘(n‘) is periodic with A in the primed 
coordinates. 

11 0.38 bpp I 21.12 I 7.48 I 49.80 11 

and F, respectively, such that [4], [lo] 

N = EAF (3) 

where i) A is in Smith-normal form (or elementary divisor 
form), i.e, A is diagonal and A,, 1A221 . . ~ADDI (“I” denotes 
“divides”), and ii) IdetEl = (detF( = 1. Such a decomposi- 
tion, which is called the Smith-normal decomposition, can be 
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An example of the coordinate transformation is shown in 
Fig. 1 in a hexagonal sampling structure (for D = 2), where 
VI and v2 are two basis vectors, and IN is the fundamental 
period for the periodicity matrix N. The basis vectors become 
el and e2 after the coordinate transformation, and I& is the 
fundamental period for the new periodicity matrix that is 
diagonal. 

The algorithm to compute the DCT of a sequence s(n) can 
be summarized as follows: 
i. Compute the transformation n‘ = E-ln, and find the 

ii. Compute the rectangular DCT of x’ to obtain X’(k’). 
iii. Compute the back transformation k = FTk’ to get X(k). 

In order to compute the inverse DCT, the steps are reversed: 
i. Compute the transfomtion k’ = (F-’)*k, and find 

ii. Compute the rectangular inverse DCT to get z‘(n‘). 
iii. Find x(n) using n = En’. 

If IN is the support of x(n), then IN should be mapped 
into the region I:, = [O,All) x [O,A22) for the DCT (or 
DFT) computation to be possible. Since DFT uses a periodicity 
makx of A, IN is always mapped into Ih. In the case of 
the DCT computation, the periodicity matrix is 2A, and due 
to this fact, it is not possible to map IN into I:, for all 
choices of the sampling and periodicity matrices. However, 
it can be shown that the DCT can be defined for all sampling 
lattices by properly choosing the (nonunique) sampling and 
the periodicity matrices for the given lattice. 

sequence in the new coordinates x’(n’). 

XI( k’) . 

IV. SIMULATION RESULTS 

In our experiments, we have compared the proposed method 
with the method of interpolating to a denser grid and then 
using the standard JPEG algorithm. Images sampled on a 
quincunx lattice are first divided into 8x8 blocks. Then, the 
DCT of each block is computed using our new algorithm. 
The quantized transform domain coefficients are converted 
into a bit stream by using the JPEG entropy encoder. The 
compression results for the Barbara and Lena images are 
shown in Tables I and II, respectively. The original Barbara 
image and the compresseddecompressed Barbara image with 
a compression ratio of 5.09 are shown in Fig. 3. 

The same images are also coded by interpolating the quin- 
cunx grid to a denser rectangular grid (with twice as many 
samples). The standard JPEG algorithm is then applied. At 
the receiver, the incoming bit stream is decoded to get a 
rectangularly sampled image that is decimated back to the 
quincunx grid. The comparison of the compression results 
using the Barbara image is shown in Fig. 2. It can be 
seen that the new procedure proposed in this letter provides 
better results at all coding levels. For example, in the case 
of the Barbara image compressed to 1.57 bpp, the SNR of 
the compresseddecompressed image with the new method is 
58.53, whereas interpolation to rectangular grid first yields the 
SNR 55.83. 

V. CONCLUSION 

In this letter, the discrete cosine transform (DCT) is defined 
on nonrectangular sampling grids, and a DCT-based compres- 
sion scheme for nonrectangularly sampled images is presented. 
We note that the DCT can be defined for all lattices by the 
proper choice of the sampling and periodicity matrices. 
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