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establish electrical connections between components on multilayered 
circuit boards. Conditions such as excess filling and lack of filling 
cause electrical defects. The sample shown in Fig. 9 has a cavity, 
indicating lack of filling. The specular reflectance and variable size 
of the tungsten particles gives the surface a random texture. In 
this case, a total of 18 images were taken using stage position 
increments of 8 gm. Some of these images are shown in Fig. 9(a)-(f). 
Fig. 9(g) and Fig. 9(h) show a reconstructed image and two views 
of the depth map, respectively. The image reconstruction algorithm 
simply uses the estimated depth to locate and patch together the 
best focused image areas in image sequence. The depths maps have 
been filtered using a 5 x 5 median filter to remove a few scattered 
erroneous depths that result from the lack of texture in some image 
areas. 

VIII. DISCUSSION 
The above experiments demonstrate the effectiveness of the shape 

from focus method. The results show that the Gaussian interpolation 
algorithm performs stably over a wide range of textures. No assump- 
tions are made regarding the type of the textures. Small errors in 
computed depth estimates result from factors such as. image noise, 
Gaussian approximation of the SML focus measure function, and 
weak textures in some image areas. Some detail of the surface 
roughness is lost due to the use of a finite size window to compute 
focus measures. 

The above experiments were conducted on microscopic surfaces- 
that produce complex textured images. Such images are difficult, 
if not impossible, to analyze using recovery techniques such as 
shape from shading, photometric stereo, and structured light. These 
techniques work on surfaces with simple reflectance properties. Since 
the samples are microscopic in size, it is also difficult to use 
binocular stereo. Methods for recovering shape by texture analysis 
have been researched in the past. Typically, these methods recover 
shape information by analyzing the distortions in image texture due 
to surface orientation. The underlying assumption is that the surface 
texture has some regularity to it. Clearly, these approaches are not 
applicable to surfaces that produce random and spatially varying 
textures. For these reasons, shape from focus may be viewed as an 
effective method for objects with complex surface characteristics. 
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Gibbs Random Field Model Based Weight Selection 
For The 2-D Adaptive Weighted Median Filter 

Levent Onural, M. Bilge Alp, and Mehmet Izzet Gurelli 

Abstract-A generalized filtering method based on the minimization 
of the energy of the Gibbs model is described. The well-known linear 
and median filters are all special cases of this method. It is shown that, 
with the selection of appropriate energy functions, the method can be 
successfully used to adapt the weights of the adaptive weighted median 
filter to preserve different textures within the image while eliminating the 
noise. The newly developed adaptive weighted median filter is based on a 
3 x 3 square neighborhood structure. The weights of the pixels are adapted 
according to the clique energies within this neighborhood structure. The 
assigned energies to 2- or 3-pixel cliques are based on the local statistics 
within a larger estimation window. It is shown that the proposed filter 
performance is better compared to some well-known similar filters like 
the standard, separable, weighted and some adaptive weighted median 
filters. 

Index Terms-Gihbs random field model, adaptive filtering, weighted 
median filter, image noise filtering. 

I. INTRODUCTION 
Median filters have the capability of preserving edge information 

in images while eliminating the noise components. This brings an 
advantage over linear filters which suffer from edge smoothing and 
blurring. Especially with impulsive noise (in general, if the noise 
distribution has long tails), median filters outperform their linear 
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counterparts: they produce sharper images which are usually rated 
as “better” by observers. The interested reader is forwarded to the 
extensive literature on the subject (see for example, [l]). 

In general, images contain parts with different characteristics. 
There can be homogeneous regions as well as regions with different 
textures within the same image. It is not possible for a single fixed 
filter to be effective in preserving all of these different characteristics. 
Therefore, to improve the performance in image filtering, adaptation 
of the filter parameters is desired. The first attempts toward achieving 
this goal with median-based filters are based on choosing the filter 
which gives the best possible output among several filters with 
different masks [2], [3], [4]. In [5 ] ,  shape and size of the median 
filter mask is adapted to the noise characteristics. However, the 
adaptation in all those approaches mentioned above is very limited. 
Other approaches use more general classes like rank order based 
filters [6],  or stack filters [7], and try to adapt the filter parameters in 
order to minimize a certain error criterion, such as mean square or 
mean absolute error, between the filter output and a reference training 
signal. Weighted median filters supply a simple and effective way for 
adaptation by adjusting the weights. This property has been used in 
[ K ]  by changing the weight of the central pixel. In 191, adaptation is 
maintained by selecting among the several preset weighted median 
filters. However, in all these approaches the adaptation is limited 
because the choice of weights is restricted to be from a small set. To 
overcome this limitation, in [ 101 the weights are adjusted according to 
the local variance-to-mean ratio under the assumption that a high ratio 
indicates an edge whereas a low ratio is interpreted as a corrupted 
uniform region. Therefore, if the variance-to-mean ratio is low, the 
weights of the surrounding pixels are chosen to be closer to the 
weight of the central pixel to remove noise within the uniform region; 
otherwise, the central pixel weight is dominant and the edges pass 
rather undistorted. None of the adaptation methods mentioned above 
give satisfactory results when the input contains contaminated textural 
regions. In this correspondence, we propose a way to select the 
weights adaptively based on the local image statistics, with the aim of 
preserving different textures within the image. As a consequence of 
the proposed approach, not only the individual pixel values, but also 
pattems of groupings of these pixel values are effective in finding 
the output pixel. The proposed filter is not too complex for practical 
implementations, and it is suitable for cleaning corrupted images 
while preserving their texture. 

It is also stressed, in this correspondence, that the median filter 
and its derivatives like the weighted median filter and the adaptive 
weighted median filter are all special cases of a more general class 
of filters. The linear filter is also a special case of the same class. 

11. GENERALIZED FILTERING BASED ON 
THE GIBBS RANDOM FIELD MODEL 

Let the input image be denoted as x and the output as y. The joint 
probability distribution of all input and output pixels is taken to be 
in the form of 

P(  x. y) = X*esp{ -C(  x. y) } ( 1 )  

which implies that the random field is a Gihhs random field (GRF). 
Details of GRF’s can be found in [ I l l  and [12]. Here 1. is just 
a normalizing constant. The exponent I-(x.y), will be called the 
energy of the input-output image pair under the specified model. It is 
known that the energy function associated with the input-output pair 
can be decomposed and written as the sum of clique potentials, as: 

where c is the clique index; and the summation is over the set 
of all cliques. A clique is just an arbitrary subset of pixel sites. 
It is well known that the Gibbs random field and Markov random 
field models are equivalent under the positivity condition. However, 
the GRF approach is much simpler and does not need any explicit 
neighborhood and clique structure definitions [ I  I]. Note that most 
of the clique potentials are zero. Therefore, one may represent the 
energy c’ as a sum over a much smaller set of cliques which may 
have nonzero potentials. 

A general filter based on the GRF approach is an operator which 
maximizes the probability function with respect to y given a fixed 
input (observation) x: 

But for a given input image x, P(x) is a constant, therefore, this 
maximization problem reduces to the minimization of the energy 
function: 

output = yo = iiiiii 17(x.y). (4) 
Y 

Each choice of the energy function, I’, yields another filtering 
operation. For example, the simple energy function 

is associated with some well-known filtering operations. Choosing 
A - l ( y t )  = 0 and C(y,..r.,) = (y, - ~ , ~ . r . ~ ) ’  would result in  a linear 
filtering operation. The standard median and weighted median filters 
can be obtained from this general form in a similar manner. Other 
selections of the A and C functions define other forms of filters which 
may be more useful for many applications. 

Further generalizations are possible. The energy function 

a11 , . I .  pait-. nil k . I  pa,,” 

has a term ( D )  which models interactions among two input pixels 
and an output pixel, and another term ( E )  which models interactions 
among two output pixels. Thus it is possible to incorporate texture 
trends at the input while finding the output; and furthermore, some 
additional texture features can be imposed on the output. The linear 
and the commonly used versions of the median filter cannot detect 
and utilize texture trends at the input. “All i .  j pairs,” under the 
summation signs mean that ( i . j )  is the same as (j. i ) ,  so only one 
of them is included while summing. That statement also means that 
i # j must be satisfied while summing. 

Tww Special Cases - Linear and Median Filters: Let the energy 
function 17(x. y) be given as: 

where the indices i and j run over all pixels. In this case, the solution 
to the minimization becomes, 

I 

which is nothing but a linear filter. Here, i t  is assumed that both the 
input and the output data are S x -1- images. This filtering operation is 
equivalent to the optimal estimation problem where the observation 
x is the corrupted version of the original y with Gaussian noise, 
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such that (y t  - .rJ ) is a zero-mean Gaussian random variable for all 
( i ,  j )  pairs with variance o:,. It is well known that the best (ML) 
estimate of yi given the observations is the linear combination of the 
observations. The weights of the linear filter al,'s are related to the 
variances ofJ 's. 

Another example of the energy function is 

In this case, the solution is 

which is a weighted median filter [I31 whose definition is given in 
the next paragraph. The symbol 0 represents the weighting operation. 
This energy function and the associated median filter are analogous 
to the estimation of a value yt from its noise corrupted observations, 
.r, 's. Here the noise is biexponentially distributed around y, : in other 
words, .r, = yt + n,,, and the distribution of the noise is [I41 

The weights n ,, 's are related to the distribution parameters a ,  's. 
For integer weights, the weighted median filter is defined as 

follows: form a sequence of length a,, by repeating each sample 
.r, as many times as its weight a z J .  Then sort the sequence and take 
the median value as the output. As the weight of a pixel increases, 
the likelihood of that pixel to appear at the output also increases. If 
all the weights are set equal to one, we get the standard median 
filter. By changing the weights, it is possible to change the root 
structure and the selectivity of the filter. Thus adaptive weighted 
median filter is obtained if the weights are adjusted according to the 
local properties of the incoming image. It is also possible to define 
the weighted median filter with noninteger positive weights. In this 
case, the weights should be interpreted as percentages: the ratio of 
the weight of a pixel to the sum of all weights is computed. These 
computed percentages are summed starting from the smallest pixel 
value going upward. The output is the value of the pixel which crosses 
the 50% barrier. If there are some negative weights, a constant should 
be added to all weights so that they all become positive. 

The discussion presented in this section helps designers to find out 
novel filter structures and predict their performances under different 
circumstances. In this correspondence, a novel adaptive weighted 
median filter structure will be proposed based on this kind of 
approach. 

111. ADARIVE WEIGHTED MEDIAN FILTER 
BASED ON THE GRF MODEL 

Suppose that the energy term associated with the GRF model is 
chosen to be in the form of 

Similar to the case given by (9) and (lo), the solution to this 
minimization is the weighted median filter: 

Let us define a neighborhood, i l l ,  associated with each output site i .  
For simplicity, the elements of are chosen among the input pixels, 
only. The G functions are chosen to have 

(14) G I , ( . ~ , )  = 0. if .r, I ) , .  

Furthermore, suppose that it is guaranteed to have Gl,(.r,) + 
Gzl ( .r,. x k  ) 2 0. Thus the problems associated with negative weights 
are eliminated. In this case, the output pixel will be: 

The weights of the above filter are the functions of the input pixel 
locations and values. The weight for pixel s, has two components. 
The first component adjusts the weight according to the value and 
the position of the associated pixel s, . The second component makes 
further adjustments based on pairs of pixels: each pair is formed by 
the pixel sJ and another pixel X k  within the window. All such pairs 
formed by changing .rk are effective in finding the weight for T,. 

Of course, now the crucial point is the proper selection of the 
G functions. Some practical examples are given below. Conditions 
of equation (14) are all enforced in the examples, so they are not 
written explicitly again. 

Example I: The first example which yields an adaptive smoothing 
operator is, 

Note that the G functions are already chosen to have 0 values outside 
the neighborhood as explained in the previous paragraph. T is just a 
threshold value. To see the effect of the above selection, suppose that 
the neighborhood qz is the simple 3 x 3 window. The total weight of 
an element will not depend only on its location within the window 
(as in the conventional weighted median filter) but also on the values 
of other pixels in the window. If there is no pixel, among the eight 
other pixels, whose value comes close to the value of a pixel, its 
weight will be k. If there is only one pixel, among the other pixels, 
whose value is close to the value of the pixel, then the weight will 
be k + 1. The more similar values in a window, the more the weight 
of that pixel will be. Thus, this filtering operation will enhance the 
similarities (a strong smoothing operator) among the pixels when 
generating an output. 

Example 2: Another slightly more complex example may take 
into account the directional properties of the grouping tendencies. 
Consider the simple 3 x 3 window with the pixels indexed as shown 
in Fig. 1. Different weights may be assigned to horizontal, vertical 
or diagonal groupings as: 

Here, if the central pixel takes a value close to one of its neighbors, 
then its weight is adjusted. The relative values of I , ,  h,  n? or r 
determine the tendency at the output toward more vertical, horizontal, 
main-diagonal and reverse-diagonal stripes, respectively. The sensi- 
tivity to additional weights are adjusted by the relative values of 
a ,t 's. 

Note that the output y, can be computed if all the input values 
within the window are known. Larger windows are always possible 
to model more complex direct interactions, but this will result in more 
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Fig. 1. Indexing in the 3 x 3 square window. 

complicated filter structures. However, it is possible to bring longer 
interactions into the picture as shown by the following example. 

Example 3: The goal is to detect the textural tendency of a local 
region using a rather uncomplicated method, and then to adapt 
the median filter weights to eliminate the noise which disrupts the 
detected texture. The filter size in this example is 3 x 3, but the 
region where statistics are gathered is larger. Suppose that there are 
li pixels in region R. Let us define 

U = median{lr, - m ( ( i  E R )  

and similarly, 

m, = median((r ,  - .r,,(Iz E R} 

U, = median 

(19) 

Is1 - sZ,( - m,( 1 E R . (I I }  
Here m gives the mid-value of the pixels in the region, and, ~7 gives 
the mid-value of the deviation from the mid-value [15]. Similarly, 
the m ,  is the mid-value of the difference of the pixel located at 
relative position n compared to the central pixel. orL is a measure of 
the deviation of the differences. If desired, more conventional mean 
and standard deviation can be used, but this may result in poor filter 
performance when the contaminating noise is impulsive. To reduce 
the complexity, an approximate median, which is obtained by coarse 
quantization of the input values and using a histogram to find the 
median of these quantized values, is sufficient. Once these statistics 
are measured within R, the G I ,  and G2, functions can be chosen. 
The adaptation of the central pixel will be considered first. GI,  is 
defined as follows: 

Gl t ( . r tn )  = c , n = 2;. . ,9 (20) 

where c and cen are constants. Here the rationale is to increase 
the weight of the central pixel if it already matches the statistics; 
otherwise, its weight is decreased. The results of different choices 
for these constants will be discussed after the adaptation due to other 
effects is also given. The additional adaptive weight due to G2, for 
the central pixel (i.e. for j = 8 )  is defined as follows: 

Gzr(x , , s , , )  = { ;" e e ( m r ,  - (st - .rnnIJ > Ttlrgk,.ulr (21) 
othewise. 

Here, uave is the mean of uTt,  n = 2.. . . ,9, and Zuw and Z , r g ~ l  are 
two parameters given to adjust the selectivity of the filter. The above 
definition is illustrated in Fig. 2. The interpretation is as follows: if the 
central pixel fits the estimated statistics, it is less likely to be corrupted 
by noise. So its weight is increased in order to preserve the value of 
the input pixel. If the central pixel strongly violates the statistics of 
the region, then it is highly likely to be corrupted by noise. So its 
weight is decreased. However, in between, i.e., if the mismatch is not 
strong enough, we cannot arrive at a positive or negative conclusion, 

E lm,, - Is, - S t J  < Tl<,w.~,t 

so we do nothing. If c is significantly large compared to the other 
additional weights, then the filter behaves more like the standard 
median filter. Higher values of cen will shift the behavior of the filter 
toward a center weighted filter, and the adaptation will be based more 
on the single pixel distribution statistics. Couplings of pixel pairs also 
affect the center pixel weight as adjusted by z,,, and  TI,^^,,. If Tic,w 
and Thigh are high, the weight of the central pixel will probably be 
increased and the output yt will probably take the value of the input. 
In this case, the texture in the image will be preserved. However, 
noise attenuation will be low. If the thresholds are small, the weight 
of the central pixel will probably be decreased and the probability of 
the output taking the value of the neighboring pixels will increase, 
thus the filter will act as a correction filter. 

If the central pixel is corrupted. as understood from the mismatch 
of the central value to the statistics, then it must be replaced by one of 
the neighborhood pixels. Which neighborhood pixel will replace the 
central pixel is also determined from the weights of the noncentral 
pixels that are adjusted according to the statistics, as follows: 

Gzl( .rJ ,zk)  = 0, fork  # i .  (22) 
U, nz,, I T ,  

G Z ~ ( X ~ , ~ , Z ~ )  = a, n~,, > 2T, 
otherwise. 

{ ;-": 
The adaptive weight assignment rule is illustrated in Fig. 3. This 

selection of noncentral weights can be interpreted as follows: if the 
estimated value of the difference Is, - .r,,,I, using (19), is small 
compared to a given threshold T, i.e., if x,,, tends to be similar to 
s,, then there is a strong positive coupling between .r, and .rt,,. So 
increase the weight of .rzn and thus increase the likelihood of the 
output y, to take a value close to the value of sL,, to form a pair. 
If the estimated difference tends to be large, then it is understood 
that there is a strong repulsion between s, and x,,. In this case, 
decrease the weight of .rt, and thus decrease the likelihood of the 
output y, to take a value close to the value of s,,, . If the estimated 
difference is neither small nor large, then there is no significant 
coupling between x2 and x,,, so do not change the weight of x , , , .  
The steps to increase or decrease the weights depend on the estimated 
deviations which is given by (19). If the estimated deviation is 
small, the step size is large, because the coupling tends to be more 
consistent. The threshold parameter T determines when the couplings 
(either similarity or repulsion) will start affecting the weights: if T 
is larger (smaller), then the same statistics will be more likely to be 
interpreted as a positive (negative) coupling. 

It is possible to choose R in many ways. The optimum results 
would be obtained by the segmentation of the image into regions with 
different textures, and by considering each region as the R for the 
output pixel locations within that region. However, the segmentation 
process increases the complexity of the filter. So, in practice it is 
easier to partition the image into fixed regions. For example, the 
image may be partitioned into blocks and each block may be the R 
for the output pixel locations within that block. This will result in 
well-known blocking effect. Another choice is a constant shape which 
slides with the output pixel location i ,  i.e., another larger window. In 
any case, the size selection is another issue. 

Iv. SIMULATIONS AND RESULTS 

To evaluate the performance of the weight adaptation algorithm 
based on the GRF model, the filter given in Example 3 of Section 
111 is implemented. The estimation of the image statistics is carried 
out on 8 x 8 nonoverlapping square blocks using the approximate 
median computation described in the previous section. Subjective 
evaluation and mean-square error (mse) are used as the error criteria. 
The performance of the GRF-based adaptive weighted median filter 
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Fig. 2. The additional adaptive weight assignment to the central pixel due to Gzz. (The given function, which represents the density of the distribution 
of l x ,  - xtn  1, is arbitrary.) 
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Fig. 3. The adaptive weight assignment rule for the noncenter pixels. (The 
functions, which represent the density of the distribution of I.r, - 1, are 
arbitrary.) 

developed in this correspondence is compared with the standard 
median filter, the separable median filter [16], a center weighted 
median filter, and an adaptive weighted median filter [lo]. The 
window size is 3 x 3 for all filters. The separable filter operates 
horizontally at its first pass. The center weighted median filter has 
fixed center weight which is equal to five; all other eight pixels have 
unit weights. The image “BABOON” is used in the simulations. It has 

TABLE I 
MSE BETWEEN THE ORIGINAL TEST IMAGE AND THE FILTER 

G RF-based 3-point 

median median median 
14.013 21.655 21.698 

OUTPUTS FOR IMPULSIVE NOISE WITH PROBABILITY 0.1 

adaptive weighted standard separable 

Adaptive weighted 
~~ 

median 1 w=5,c=l ,K=l  I 
17.288 I 22.044 

The parameters for the GRF-based adaptive weighted median filter are: 
c = cen = 1, T = 40, Tlow = 1.5 and Thigh = 3.0. 

both homogeneous and highly textured regions. The original image 
is contaminated by an impulsive noise of probability 0.1 with equally 
likely positive and negative impulses. Although the performances of 
the filters are almost equal in homogeneous areas, the GRF-based 
adaptive weighted median filter outperforms the others in highly 
textured regions. This can be observed in Fig. 4 where the first quarter 
of the image is shown. The mse of the filter outputs are given in Table 
I. As can be observed from the calculations the adaptive weighted 
median filter improves the mse significantly. 

The filter proposed in [lo] is developed with exactly opposite 
motivations: it is assumed that the object embedded in an ultrasound 
image is smooth whereas the corrupting noise is colored (speckle 
noise), and thus, have specific textural tendencies. So, the goal is 
not to pass the texture, but to eliminate it. Therefore, the filter 
performance is poor if the original is textured. Our observations based 
on the implementation of that filter confirms the poor performance 
of the filter when cleaning the corrupted “BABOON’ image shown 
in this correspondence. 
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Fig. 4. First quarter of the original “BABOON’ sequence and the filter outputs for impulsive noise with probability 0.1. (a) Original image. (b) Corrupted 
image. (c) GRF-based adaptive weighted median filter with TI,,, = 1.5 and Ttllgh = 3.0. (d) The standard median filter in a 3 x 3 window. (e) The 
3-point separable median filter. (f) The center weighted median filter in a 3 x 3 window. 

(a) (b) 

Fig. 5. The GRF-based adaptive weighted median filter outputs for impulsive noise with probability 0.1 for various threshold levels. (a) T,,,, = 0.25 
and ThrKk, = 0.75. (b) q,,, = -1.0 and Ttlirl, = 6.0. 

Finally, the effect of the threshold levels, T,,,, and Tt,rgtrr on the 
performance of the GRF based adaptive weighted median filter can 
be observed in Fig. 5 and Table 11: if the threshold levels are high, 
the filter has a higher tendency to preserve the input, and this results 
in a poor noise elimination performance. If the threshold levels are 

too low, the filter loses its advantage in the textured areas and its 
performance gets closer to the standard median filter. However, it 
is possible to tune the thresholds so that a high noise attenuation is 
obtained while keeping the details of the image, as the mse figures 
in Table I1 show. 
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TABLE I1 
MSE BETWEEN THE ORIGINAL TEST IMAGE AND THE GRF-BASED ADAPTIVE 

WEIGHTED MEDIAN FILTER FOR VARIOUS THRESHOLD LEVELS 

I &,,, = 0.25 I = 1.5 I = 4.0 I 
Thigh = 0.75 I Thigh = 3.0 I Thigh = 6.0 

20.615 I 14.013 I 15.086 

The parameters for the GRF-based adaptive weighted median filter are: 
f = CP7t  = 1 .  T = 40. 

V. CONCLUSION 
There are various edge preserving smoothing nonlinear filters in the 

literature. Among these the median filter and the weighted median 
filter have gained a good reputation. However, these filters do not 
show acceptable performances when the filtered regions are textured. 
The adaptation algorithm presented in [ I O ]  uses variance-to-mean 
ratio to adapt the filter weights. This feature is not suitable for 
cleaning impulsive noise corrupted textured images, and therefore, 
the filter performance is poor in such environments. The presented 
GRF based adaptive weighted median filter is capable of tracking 
the local texture behavior while cleaning noise as a result of the 
weight selection algorithm which is based on the local statistics of 
pixel couplings. The improvement in the performance is significant 
especially in textured images, as expected. Even though the filter 
complexity is higher than the above mentioned filters, i t  is still 
acceptable for many practical applications. 

The presented GRF based filter design approach is a general 
method which is not limited to median filters. Various other adaptive 
filters may be developed using similar local statistics within different 
filter structures which minimize different energy functions. 
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On the Discriminatory Power of Adaptive 
Feed-Forward Layered Networks 

Hossam Osman and Moustafa M. Fahmy 

Abstract-This correspondence expands the available theoretical frame- 
work that establishes a link between discriminant analysis and adaptive 
feed-forward layered linear-output networks used as mean-square classi- 
fiers. This has the advantages of providing more theoretical justification 
for the use of these nets in pattern classification and gaining a better 
insight into their behavior and about their use. We prove that, under 
reasonable assumptions, minimizing the mean-square error at the net- 
work output is equivalent to minimizing the following: 1) the difference 
between the optimum value of a familiar discriminant criterion and the 
value of this criterion evaluated in the space spanned by the outputs 
of the final hidden layer, and 2) the difference between the values of the 
same discriminant criterion evaluated in desired-output and actual-output 
subspaces. We also illustrate, under specific constraints, how to solve the 
following problem: given a feature extraction criterion, how the target 
coding scheme can be selected such that this criterion is maximized at 
the output of the network final hidden layer. Other properties for these 
networks are explored. 

mean-square optimization, discriminant analysis, Bayes risk. 
Index Terms-Adaptive layered networks, pattern classification, least- 

I. INTRODUCTION 

As mean-square classifiers, adaptive feed-forward layered networks 
have shown a good performance in quite a significant variety of 
problems [ I]-[4]. 

Establishing a link between these networks and discriminant anal- 
ysis is of significant importance, since it provides more theoretical 
justification for the use of these nets in pattem classification, and it 
yields more insight into their behavior and about their use. Recent 
work has addressed the problem of establishing such a link, and 
has indicated that the high ability of these networks to perform 
pattem classification is mainly due to the discriminatory power of 
their hidden layers. For instance, Gallinari et al. [5] have shown 
that, under certain reasonable assumptions, a 3-layer linear network 
maximizes, at the output of its hidden layer, a discriminant criterion 
involving the ratio of the determinants of the between-class and 
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