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Fig. 3. V l ( t )  in Table 11. 

TABLE I1 

1 1.001824 0.999194 1.014673 0.984438 
2 1 1.003504 1 0.998287 I 1.028989 1 0.969018 

0.286843 
0.285954 

These simulation results demonstrate the accuracy of the above 
analyses and the effectiveness of this proposed approach for the 
real-time signal processing. 

The First Simulation Result 
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The Second Simulation Result 

1 0.764400 0.025200 -0.038400 0.086400 
0.025200 0.794100 -0.067200 0.151200 

-0.038400 -0.067200 0.852400 -0.230400 
0.086400 0.151200 -0.230400 1.268400 

A =  [ 
A, = 0.75000 

XI = 0.750227 

V’ = [0.977532 0.872851 1.489027 0.285O89lT 

REFERENCES 

[I] M. A. Rahman and Y. K. Yu, “Total least square approach for frequency 
estimation using linear prediction,” IEEE Trans. ASSP, vol. 35, pp. 
1440-1454, 1987. 

121 R. 0. Schmidt, “Multiple emitter location and signal parameter estima- 
tion,” IEEE Trans. AP, vol. 34, pp. 276280, 1986. 

[3] J. W. R. Griffiths, “Adaptive array processing, a tutorial,” IEE Proc., 
vol. 130, no. 1, pp. 3-10, 1983. 

[4] 2. Banjanian, J. R. Cruz, and D. S. Zmic. “Eigendecomposition methods 
for frequency estimation: A unified approach,” pp. 2595-2598, Proc. 
ICASSP ’90, 1990. 

[5] A. Cickocki and R. Unbehauen, “Neural networks for computing eigen- 
value and eigenvectors,” BkdOgiCd Cybern., vol. 68, pp. 155-164, 
1992. 

[6] M. Takeda and J. W. Goodman, “Neural networks for computation: 
Numerical representation and programming complexity,” Appl. Optics, 
vol. 25, pp. 3033-3052, 1986. 

A Novel Algorithm for DC Analysis 
of Piecewise-Linear Circuits: Popcorn 

Sahlmq TOKU, Ogan Ocali, Abdullah Atalar, and Mehmet A. Tan 

Absfruet-A fast and convergent iteration method for piecewise-linear 
analysis of nonlinear resistive circuits is presented. Most of the existing 
algorithms are applicable only to a limited class of circuits. In general, 
they are either not convergent or too slow for large circuits. The new 
algorithm presented in the paper is much more efficient than the existing 
ones and can be applied to any piecewise-linear circuit. It is based on the 
piecewise-linear version of the Newton-Raphson algorithm. As opposed 
to the Newton-Raphson method, the new algorithm is globally convergent 
from an arbitrary starting point. It is simple to understand and it can 
be easily programmed. Some numerical examples are given in order to 
demonstrate the effectiveness of the proposed algorithm in terms of the 
amount of computation. 

I. INTRODUCTION 
DC analysis of nonlinear resistive circuits is one of the basic 

problems in the computer-aided design of electronic circuits. Various 
methods are available for the solution of this problem. These methods 
can be classified into two major groups. One is based on an iterative 
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algorithm which is applied directly to the nonlinear circuit equations. 
The well-known method in this group is the Newton-Raphson method 
[I]-[3]. The second group is based on the piecewise-linear (PWL) 
analysis which has been investigated by many researchers due to its 
computational efficiency [4]-[ 151. 

In the PWL analysis, a nonlinear resistive circuit can be described 
by 

f(x) = Y 

where f ( - )  is a continuous PWL mapping from R" into itself, x is 
a point in R" and represents a set of chosen circuit variables and 
y is an arbitrary point in R" which represents the inputs to the 
circuit. The operating region of every nonlinear element is divided 
into a finite number of segments. Hence, the space R" is divided into 
N linear regions bounded by hyperplanes where N is a very large 
number. The system of PWL equations in ( I )  can be expressed by 
the following set of linear simultaneous equations 

Alx + wl = y, for U ' ,  1 = 1,2 , .  . . , N (2) 

where AI is a constant n x n matrix (called Jacobian matrix for 
convenience) and WI is a constant n-vector. They characterize the 
circuit in linear region U I .  To find all solutions of ( l ) ,  one may 
solve n linear simultaneous equations in (2) for each of N linear 
regions to find a(') and decide whether d') lies within the considered 
linear region, U ( .  If d l )  lies within 0-1, it is a valid solution. This 
method is conceptually simple and finds all existing solutions, but 
it is computationally complex. Recently, a number of authors have 
proposed various methods to decrease the number of linear regions, 
:V, by a sign test. One of these methods [4] requires more than 
O ( N n 2 )  multiplications. Moreover, the sign test is not a simple 
procedure. A more efficient method is proposed in [5]. Nishi [6] has 
proposed a method in which the number of multiplications required to 
find all solutions of (2) is O ( N n ) .  Although the method developed 
in [7] seems to be the best, it is computationally impractical for 
large PWL circuits. For example, if the circuit contains 1000 MOS 
transistors each of which is modeled with 4 segments, then there are 
41000 (approximately lo6'') linear regions. If the sign test requires 
at least one multiplication for each linear region, it will take much 
more than billions of years on today's supercomputers to find the 
solutions by using these methods. 

In this paper, we present a new algorithm, which we call popcorn, 
shown to be more efficient than the existing algorithms of the same 
generality. This algorithm is globally convergent for a general class 
of PWL resistive circuits with no restrictions. It is simple and can 
be easily programmed. The method of PWL analysis of nonlinear 
resistive circuits is reviewed in section 11. The popcorn algorithm 
is presented in section 111. Some numerical examples are given in 
section IV to illustrate the effectiveness of the algorithm. 

11. PIECEWISE-LINEAR ANALYSIS 

In PWL analysis, the well-known technique due to Katzenelson 
[8] has been originally applied to the circuits with two-terminal 
elements which are strictly monotonic. The PWL approach was 
further extended to include the resistive circuits of much broader class 
[9]-[15]. In particular, Fujisawa and Kuh [ l l ]  have shown that the 
Katzenelson's algorithm can be applied to (1) and it always converges 
to a solution as long as the equation has a unique solution. Fujisawa, 
Kuh, and Ohtsuki [12] have shown that if all the Jacobian matrix 
determinants detA1, 1 = 1 ,2 , .  . . . N in (2) have the same sign, 
then there exists at least one solution to the equation f(x) = y and 
the algorithm also converges. This property is referred to as the sign 
condition. This restriction of the sign condition was later removed in 
the generalized Katzenelson's method [13], [ 151. 

There exists also a PWL version of the Newton-Raphson method 
[2]. However, it is well-known that for the continuous case the 
Newton-Raphson method may not converge depending on the initial 
guess. The same situation may occur in PWL case, if the initial linear 
region is not close enough to the linear region of the solution. The 
divergence can be in the form of a cyclic repetition of two or more 
virtual linear regions. We have observed that the PWL version of 
the Newton-Raphson method may not converge for some circuits, 
particularly with multiple solutions. We have tested this method 100 
times on a 128-bit shift register circuit which contains.2580 MOS 
transistors using different initial linear regions. It has converged in 
only 22 trials, but the convergence speed was very high. Hence, 
the PWL Newton-Raphson method does not guarantee convergence, 
but if it does converge, it is extremely fast. We have developed a 
new algorithm as described in the next section, by modifying the 
PWL Newton-Raphson method to avoid its major drawback, i.e., 
divergence. 

111. THE POPCORN ALGORITHM 

The new algorithm is described as follows: 
1) Initially, choose an arbitrary linear region, let's say, uk. uk = 

{ a k , l . a k . 2 , .  . . , ak m }  where ak,J  represents the segment for 
the j t h  element in the lcth iteration. Set k = 0. 

2) Compute xkfl from 

Check if xk+l lies in U k .  If so, STOP; x k + 1  is the solution. 
Otherwise, CONTINUE. 

3) Let u ; + ~  = 1,a;+1,2 ,..., a;+l,,} be the linear 
region where xk+l lies. The next linear region Uk+l = 
{ a k + l  l , n k + 1 , 2 . .  . . , a k + ~ . ~ }  is chosen as follows: For 
3 = 1 ,2 ,  ..., m 
If = ak then 

ak+l 3 

with probability 1 - q 
= { ?;ither segment with probability q, 0 < q < 1 

If # Q ,  then 

a k + l , J  

with probability 1 - p 
= { ?$ ither segment with probability p ,  0 < p < 1 

4) Set IF = IC + 1. Go to step 2. 
A segment may not be chosen, albeit with a very small probability 

q, even though the present solution satisfies the limits of the assumed 
segment. If the solution does not satisfy the assumed segment, the 
segment in which the present solution lies is chosen with a high 
probability (1 - p ) .  With a small probability p any other segment is 
chosen. Here the other segments are chosen with equal likelihood. The 
segment selection procedure for each nonlinear device is independent 
of the other nonlinear devices. Note that, if p = 0 and q = 0 
then the algorithm becomes identical to the PWL Newton-Raphson 
algorithm. For Q = 0, we have constructed a counterexample circuit 
with no convergence. That circuit, shown in Fig. 1, contains two 
voltage-controlled voltage sources and two tunnel diodes modeled by 
3 PWL segments. This circuit has a unique solution, but the algorithm 
described above cannot find the solution if q = 0. It must be noted 
that both the PWL Newton-Raphson and the Katzenelson algorithms 
fail for this circuit, unless the initial linear region happens to be the 
correct one. 

The popcorn algorithm assures the convergence for any initial 
guess since the algorithm tries all of the linear regions eventually, 
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Fig. 1. Tunnel diode circuit and the 2-t) characteristics of the tunnel diodes. 

until it converges. Having such a feature, it resembles the well-known 
simulated annealing algorithm without a cooling procedure [16]. The 
convergence proof is trivial, since the probability of visiting the linear 
region containing the solution is nonzero. In the worst case, the 
algorithm visits all linear regions and convergence is always assured. 
This simple proof does not tell us how fast the algorithm converges, 
it merely shows that it is convergent for sufficiently many iterations. 
In each iteration, the PWL Newton-Raphson method selects a new 
linear region to be used in the next iteration and our algorithm makes a 
random perturbation on that linear region by means of the parameters 
p and q to prevent divergence. Obviously, these parameters should 
be appropriately selected to improve the speed of the algorithm. We 
have made many experiments for different type and size of circuits 
by changing the values of p and q. The results obtained have been 
very encouraging as can be concluded from the numerical examples 
given in the following section. 

IV. NUMERICAL EXAMPLES 
We have implemented the popcom algorithm in C programming 

language and analyzed various CMOS, ECL and analog bipolar 
circuits. Let us describe the CMOS example circuits briefly. Counter 
is a combinational circuit which finds the number of one's in a 128- 
bit input. The circuit lfsr is a linear feedback shift register which 
produces pseudo-random binary numbers. Sh128 is a 128-bit shift 
register circuit consisting of master-slave flip-flops. Pgen is a pulse 
generating circuit. Addcs circuit is a carry-select adder. The circuit 
rsync is used to produce a synchronization pulse. Add18 is an 18-bit 
adder circuit. Status is a 5-bit register circuit which can be loaded in 
series or in parallel. Sh5 is a 5-bit shift register circuit. The results 
given below are obtained using approximately 6,500 hours of CPU 
time on a number of SUN Sparc-P+ workstations. 

as equal to q times the number of nonlinear 
elements in a given circuit. The MOS transistors are modeled with 4 
PWL segments representing the cutoff, saturation, linear, and reverse 
saturation states. The average number of iterations, k., for the example 
circuits are shown in Fig. 2 as a function of p while ?j is kept constant 
at 0.005. The plots in Fig. 2 are obtained by taking the mean of 
more than 200 simulation results for every circuit at chosen values 
of p and 4. The mean value does not change more than 5% after 
200 simulations have been performed. As it is seen from Fig. 2, 
for all of the circuits except for the combinational circuits such as 
counter, addcs, and addl8, k. reaches a minimum around p = 0.2 
and it increases sharply as the value of p goes to 0 or 0.5. For 
combinational circuits, & increases monotonically with p .  For 4- 
segment PWL MOSFET model, we can say that the parameter p can 
be safely set to a value between 0.1 and 0.3. The standard deviation 
in the required number of iterations is smaller than half of the mean 
in the range 0.1 5 p 5 0.3. 

We have also analyzed the example circuits using 9-segment 
PWL model for MOS transistors. In the 9-segment model, there 
are 4 segments in the linear region, and 2 segments each in the 
saturation and reverse saturation regions. The average of more than 
200 simulation results for each circuit is given in Fig. 3. It is observed 

Let us define 

t--. counter (4616 mosfeis) - lfsr (2662 mosfets) - sh128 (2580 mosfets) - pgen (1678 mosfeis) 
t---T addcs ( 770 mosfeis) - rsync ( 500 mosfeis) 

addi8 (414 mosfeis) - status ( i22 mosfeis) 
o-----o sh5 ( 102 mosfets) 

0.0 0.1 0.2 0.3 0.4 0.5 
P 

Average number of iterations required for the popcom algorithm as Fig. 2. 
a function of p using S = 0.005 and 4-segment PWL MOSFET model. 

t-. counter (4616 mosfets) 

U addcs ( 770 mosfets) 

- sh5 ( 102 mosfets) 

0.0 0 1  02 0.3 0.4 0.5 
P 

Fig 3 
a function of €1 using Q = 0 005 and 9-segment PWL MOSFET model 

Average number of iterations required for the popcom algonthm as 

that the results for both 4-segment and 9-segment models have similar 
characteristics. The number of iterations is approximately doubled 
for 9-segment model. As it is seen from Fig. 3, for 9-segment PWL 
MOSFET model, the minimum occurs around p = 0.15 and the 
parameter p can be set to a value between 0.05 and 0.25. 

In order to find a suitable value for 4, we have analyzed the same 
circuits by setting p = 0.2 and changing the value of 4. Fig. 4 shows 
& as a function of 4 using 4-segment PWL MOSFET model. As it 
can be seen from Fig. 4, for all of the circuits except for the tunnel 
diode circuit, L increases as 4 approaches unity. The tunnel diode 
circuit, however, needs a 4 value close to unity to converge quickly. 
Therefore, a compromising value of the parameter 4 can be chosen 
between 0.02 and 0.5. The standard deviation is not larger than half 
of the mean value in this range. 

We have chosen some example circuits to make a performance 
comparison between the popcorn, PWL Newton-Raphson and the 
Katzenelson algorithms. First, we have used the circuit rsync which 
has multiple solutions. We have set p = 0.2 and 4 = 0.1 in the 
popcom algorithm. The results for this circuit are given in Fig. 5 .  
The vertical axis in Fig. 5 represents the number of transistors which 
could not find the correct segment at the corresponding iteration. 
When this number becomes zero, it means that the solution is found. 

F 
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Fig. 4. 
a function of Q using p = 0.2 and 4-segment PWL MOSFET model. 

Average number of iterations required for the popcorn algorithm as 

TABLE I 

AddlB (CMOS) I 414mosfet I I1 I 18 I 146 

Addcs (CMOS) I 770 niasfet I 10 I 17 1 74 

Counter (CMOS) 1 4616 mosfet I 20 I 33 I 565 

4-bit FA (ECLI 1 102 bit.  34 diode I 12 I 35 I 186 

ODamD I 26 bit 1 17 I 281 I x 

It is seen from Fig. 5 that the PWL Newton-Raphson method and the 
Katzenelson algorithm fail in finding any of the multiple solutions. 
However, the popcom algorithm has converged to one of the solutions 
in each trial. Second, we have chosen several CMOS, ECL and 
analog bipolar circuits. Table I gives for these circuits by using 
three different algorithms. Opamp is a noninverting amplifier circuit 
containing 741 operational amplifier. The MOS transistors and BJT’s 
are modeled with 4 segments while the diodes are modeled using 2 
segments. In the popcorn algorithm, the parameter values are chosen 
to be p = 0.2 and Q = 0.1. As it is seen from Table I, the speed of 
PWL Newton-Raphson method is better than the speed of popcorn 
algorithm. However, the Katzenelson algorithm is relatively slow 
compared to the popcorn algorithm. 

V. CONCLUSION 
An efficient algorithm for finding DC solution of large PWL 

resistive circuits has been proposed. The algorithm is an extension 
of the piecewise-linear version of the Newton-Raphson method. The 
main feature of our approach is to insert some randomness into the 
PWL Newton-Raphson method to guarantee convergence without 
sacrificing the speed. The degree of randomness in the algorithm 
is controlled by the parameters p and q. We have found appropriate 
values for these parameters using the large number of trials on the 
example circuits. In the case of multiple DC solutions, the algorithm 
reaches to one of the solutions in each trial. This algorithm can also 
be adapted to the continuous case by modifying the Newton-Raphson 
algorithm. 

Popcorn 
PWL Newton-Raphson 
Katzenelson 

. -. -. . . . . 

number of iterations 

Fig. 5. The results of the popcorn, PWL Newton-Raphson, and the Katzenel- 
son algorithms for the circuit rsync with 500 MOS transistors. 
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