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among many others in [2]-[5] to obtain explicit robustness bounds 
for state-space models of continuous-time systems under additive 
perturbations. Some of these results have also been reproduced for 
discrete-time systems (see, for example [61-[81). 

The main objective of this paper is to link the stability robustness 
problem of discrete-time systems to that of continuous-time systems. 
We show, using two different approaches, that stability robustness of 
a discrete-time system can be reformulated as that of an auxiliary 
continuous-time system. One of these approaches makes use of Lya- 
punov theory and yields a sufficient condition. The second approach, 
which is based on the properties of Kronecker products, provides a 
necessary and sufficient condition at the expense of an increase in the 
dimensionality. This is a pleasing development, since it allows for a 
direct application of the known results on stability robustness bounds 
for continuous-time systems to discrete-time systems. The results are 
applied to stability analysis of interconnected systems, where the 
interconnections are treated as perturbations on a collection of stable 
subsystems. This demonstrates how a knowledge of the structure of 
perturbations can be exploited to obtain simple robustness bounds. 

11. PROBLEM STATEMENT 

Robust Stability of Discrete-Time 
Systems Under Parametric Perturbations 

Consider a discrete-time system under additive multiparameter 
perturbations, which is described as 

Mehmet Karan, M. Erol Sezer, and Ogan Ocali 

Absfract-Stability robustness analysis of a system under parametric 
perturbations is concerned with characterizing a region in the parameter 
space in which the system remains stable. In this paper, two methods 
are presented to estimate the stability robustness region of a linear, 
time-invariant, discrete-time system under multiparameter additive per- 
turbations. An inherent difficulty, which originates from the nonlinear 
appearance of the perturbation parameters in the inequalities defining 
the robustness region, is resolved by transforming the problem to stability 
of a higher order continuous-time system. This allows for application of 
the available results on stability robustness of continuous-time systems 
to discrete-time systems. The results are also applied to stability analysis 
of discrete-time interconnected systems, where the interconnections are 
treated as perturbations on decoupled stable subsystems. 

I. INTRODUCTION 
An essential feature of complex dynamic systems is the uncertainty 

in the system parameters, which may arise due to modeling errors 
or change of operating conditions. The analysis of stability in the 
presence of uncertainty is the subject of the robust stability problem. 
A common approach to stability robustness analysis is to model the 
uncertainty as perturbations on a nominal stable model. A measure of 
degree of stability of the nominal system can then be used to obtain 
bounds on the perturbations which the system can tolerate without 
going unstable. 

Lyapunov’s direct method provides a convenient way to estimate 
the degree of stability. It also directly yields bounds on tolerable per- 
turbations [ 11. This feature of the Lyapunov approach has been used 
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2, : ~ ( k  + 1) = A ( p ) z ( k )  

where z ( k )  E R” is the state of 2, at the discrete time instant 
k E z+, p = [ P I  p z  . . .  pmIT E R” is a vector of real 
perturbation parameters, and 

m 

r = l  

with A and E,, r = 1, 2 , .  . . , m, being constant n x n real matrices. 
We assume that the matrix A(0) = A is Schur-stable, that is, has all 
the eigenvalues in the open unit disk in the complex plane. 

We would like to describe an open neighborhood of the origin in 
the parameter space in which 2, remains stable. More precisely, we 
are interested in a region 

s1 = { p  I A(cup)isSchur-stableforalln E [0, 11) (2.3) 

in the parameter space IZ”. Since, in general, it is difficult to 
characterize R explicitly in terms of the perturbation parameters, we 
aim at obtaining estimates of C2 as regular volumes embedded in R 
which can be characterized explicitly. 

111. ESTIMATION OF ROBUSTNESS REGION VIA LYAPUNOV THEORY 
Our first approach to estimating s1 is through Lyapunov theory. 

Let V(z) = zT Pr be a Lyapunov function for the nominal system 
corresponding to p = 0, where P E RnXn is the unique, symmetric, 
positive-definite solution of the discrete-time Lyapunov equation 

A ~ P A  - P = -Q (3.1) 

for some symmetric, positive-definite matrix Q E Rnxn.  The 
difference of V(z) along the solutions of the perturbed system 23 
in (2.1) is computed as 
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Where Corollary 1: The discrete-time perturbed system 2) is stable if the 
m following bounds are satisfied 

m - = & r ~ - 1 / 2 ( ~ , T ~ ~  + A*PE, )Q- ' /~  
r=l ~ 0 :  ClprlcM(cr) < 1 

r=l 

- (FIGTI) RP : lgymIprI < nii1 

as: (c) < ~ ~ ~ " ( $ ~ ~ c , . ) .  (3.11) 

+ ~ ~ ~ r p ~ Q - 1 ~ z E ~ p E , Q - l / 2 .  (3.3) 
r= l s= l  

From (3.2), we observe that a sufficient condition for p E R is that r=l 
Q(p)  - I be negative definite or, equivalently, 1 / 2  

~ M [ Q ( P ) I  < 1 (3.4) r=l 

where U M ( - )  denotes the maximum singular value of the indicated 
matrix. For the single-parameter perturbation case, i.e., when m = 1, 
(3.4) can be reduced, using a majorization on u ~ [ Q ( p ) ] ,  to a 
quadratic inequality in lpl, from which an explicit bound for Ipl can be 
obtained. In the multiparameter perturbation case ( m  > 1) , however, 
the left-hand side of (3.4) becomes a quadratic polynomial in { Ip,.l}, 
and characterization of R in terms of 1p.I is not as easy. The only 
available result [8] in this case involves the calculation of singular 
values of an m n  x m n  matrix. 

To avoid the difficulty, we try to obtain an alternative to the 
condition in (3.4), which guarantees negative definiteness of Q ( p )  - I ,  
and thus stability of 2). For this purpose, we observe that 

det[Q(p) - I] = -l"detF(p) 

where 

(3.5) 

m and 

N. DIRECT ESTIMATION OF THE STABILlTY &GION 

Our second approach to estimating the stability region R is a direct 

Let us define 
one based on the properties of Kronecker products [9]. 

m 

= F + GrGr (4.1) 
r= l  

where 

(3.6) 

with 

We now consider an auxiliary continuous-time system 

s: i ( t )  = F(p)Z(t)  (3.8) 

for which we define a stability region around the origin, similar to 
R in (2.3), as 

- 
R = { p  I F(ap)isHurwitz-stableforalla E [0, 11) (3.9) 

and state the following. 
Theon": R C R. 

- 

Pro08 Fix p* E a, and note that: i) Q(ap*) - I is symmetric 
with all real eigenvalues, ii) eigenvalues of Q(ap*) - I  are continuous 
in a, and iii) Q(0)  - I  = - I  is negative definite. Now, if Q(ap*) - I  
is negative definite for all a > 0, then p* E 0. Otherwise, there 
exists a* > 0 such that Q(ap*)  - I is negative definite for all 
0 5 a < a*, and det[Q(a*p*) - I ]  = 0. Then, by (3 .3 ,  F(a*p*) 
has an eigenvalue at the origin, which implies that a*p* fZ D. Thus, 
a* > 1, and again, p* E R. 

Theorem 1 is an attractive result because it constructs a link 
between stability robustness analysis of discrete- and continuous-time 
systems. For example, choosing v(Z) = TTZ as a Lyapunov function 
for s, it can easily be shown that s, and therefore V, is stable if 

(3.10) 

Using the majorizations employed in [5] ,  it is possible to estimate 
diamond, parallelepiped, and sphere-shaped estimates of the robust- 
ness region R in the parameter space, as we state with the following 
corollary. 

(4.2) 

(4.3) 

As in-the previous section, we associate a continuous-time system 
with F ( p )  

s :  &) = ' ( p ) < ( t )  (4.4) 

and define 

d = { p  I ~(ap)isHurwitz-stableforalla E [0, 11). (4.5) 

We then have the following. 
Theorem2: R = R. 
Pro08 Using the properties of Kronecker products, we have 

det[sI - '(p)] = det[(s + 1)'I - A(p) @ A@)] (4.6) 

so that the eigenvalues of P ( p )  and those of A(p) @ A(p)  are related 
as 

(4.7) 

R C d follows from (4.7) on noting that, when A(p)  is Schur-stable, 
then eigenv;?ues of A(p)  8 Alp) are all within the unit circle. To 
prove that R C R, fix p* E 0. If A(ap*)  is Schur-stable for all 
a > 0, then p* E R. Otherwise, there exists a* > 0 such that 
A(ap*) is Schur-stable for all 0 5 a < a*, and A(a*p*) has 
an eigenvalue on the unit circle. Then A(a*p*) 8 A(a*p*) has an 
eigenvalue at s = 1, and by (4.7), F ( a * p * )  has an eigenvalue at 
s = 0. Thus, a* > 1, and therefore, p* E R. This completes the 
proof. 

Like Theorem 1, Theorem 2 also allows us to use continuous- 
time results to obtain stability robustness bounds for D. Moreover, 
since it is directly based on the eigenvalues of A@),  it provides a 
necessary and sufficient condition for stability of D. However, since 
the dimension of the auxiliary system S is higher Fan  that of s, 
further majorizations involved in the estimation of R may result in 
more conservative robustness bounds than Theorem 1. 

X { F ( p ) }  = -1 + X'/'{A(p) @ A ( p ) } .  
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Although standard Lyapunov theory can be used to obtainpertur- 
bation bounds for S, since the nominal system matrix F of S is not 
a simple one as that of s, we would like to describe a method to 
generate a suitable Lyapunov function for F. 

LRmma: Let A1 and A2 be Schur-stable matrices, for which there 
exist positive-definite matrices PI and P2 that satisfy 

A?P,A, - P, = - Q ~ ,  i = i , 2  (4.8) 

for some positive-definite matrices Q1 and Q 2 .  Then, the matrix 

is Hurwitz-stable, and 

is a Lyapunov matrix for F which satisfies 

p'Tp+ p p  = -Q - p T p p  

where 

Prooj? Follows directly from 

F T P + P P =  ( P + I ) ' P ( P + I ) - P - P = T P P  

on noting that ( F  + I ) ~ P ( P  + I )  - P = -6. 

(4.9) 

(4.10) 

(4.1 1) 

(4.12) 

(4.13) 

Applying the result of the Lemma to F in (4.2) with Q1 = Q2 = I ,  
we obtain 

where P is the solution of 

A T P A -  P =  -I.  (4.15) 

Now, choosing v(i) = iTP$ as a Lyapunov function for 3 of (4.4), 
and using the result of [lo], we obtain the following perturbation 
bounds for stability. 

Corollary 2: The discrete-time perturbed system V is stable if the 
following bounds are satisfied: 

m 

r=l  

where (see (4.17) at the bottom of the page). 

v. APPLICATION TO INTERCONNECTED SYSTEMS 

Consider a discrete-time interconnected system which consists of 
N subsystems described as 

V :  zZ(k + 1) = AZzt (k)  + E Z J A z 3 x , ( k ) ,  
N 

,=1 

i = 1, 2 , .  . . , ib- (5.1) 

where ~ ( k )  E 72"' is the state of the ith isolated subsystem 

V D , : ~ : , ( k + l ) = A , ~ , ( k ) ,  i = l , 2 , . . . , N  (5.2) 

which is assumed to be stable, A,, are constant real matrices, 
and p,, are interconnection gains, which are treated as perturbation 
parameters. 

Letting z = [TT ZT ... T : ~ ] ~ ,  A = diag{Al, A 2 , . . . , A ~ }  . 
and E,, = ( E ~ ~ ) N ~ N ,  with 

the interconnected system in (5.1) can be described in a compact 
form as 

V : z ( k + l ) =  (5.4) 

Choosing V ( x )  = z T P z  as a Lyapunov function for V, where P 
is the solution of (3.1) with Q = I, Corollary 1 gives the following 
robustness regions in the parameter space of 2): 

N N  

i = l  j = 1  

where 

From the block-diagonal structure of A, it follows that P = 
diag{ PI ,  P2, . . . , P N } ,  where P, are solutions of 

A T P ~ A ~  - P, = - I .  (5.7) 

This block-diagonal structure of P, together with the special struc- 
tures of the perturbation matrices E,,, allows for obtaining explicit 
expressions for ah-r(GZ3) appearing in (5.5). For example, 

where GZ = [A;Pz1/' A;P,A,], so that 

0 M ( ~ 2 , )  = u w ( ~ , , )  I ~ ~ ~ ' ( A ~ P , A , , ) ~ . ~ ' ( P ~ ) .  (5.9) 

Thus, the stability region f i ~  in (5.5) includes the region 
N N 

(4.17) 
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which is smaller than a ~ ,  but easier to compute. Note that it is also 
possible to give an explicit expression for 0n;1’/~(C~ E, EzGz,) 
to obtain an approximation to 

Alternatively, applying Corollary 2 to the interconnected system 
V in (5.1), we get the robustness regions 

systems with structured perturbations, (5.17) claims the opposite. 
Obviously, the reason is that the whole advantage of using the 
M-matrix conditions on the aggregate matrix W is lost at the 
maJo*zation step leading to (5.14). This is &monstrated by an 
example in the next section. 

in (5.5). 

N N  

VI. EXAMPLE fiD : Czlp,, (UM(H*,)  < 1 
Z = l J = l  To illustrate the application of our results, we consider an inter- 

N N  

t=13=1 

connection of three subsystems, with 
f i z p  : ma+,, I < uii1 ( ~ ~ I Z F ~ ,  I) -0.25 

A1 = [ 0.5 0.:5]3 

as : ( c&,) 1=1,=1 < ( ~ ~ “ ~ ~ . , )  *=1,=1 (5.1 1) A3 = [0i5 -0.251 

= [“b“ o.&]. 
1 3  

1/2 N N  

(6.1) 
0 

where (see (5.12) at the bottom of the page). Although it is not easy 
to expres: the coefficients of Ip,, I in (5.11) directly in t ems  of A,, 
and P, , H,,  are nevertheless sparse matrices, and finding the regions 
in (5.1 1) does not require excessive computational effort. 

Before closing the section, we would like to compare the estimates 
RD and in (5.5) and (5.10) of the robustness region with that 
obtained by the composite Lyapunov function approach of [ 101. 
Following their approach, it can be shown that V is stable if the 
aggregate matrix W = ( W , , ) N ~  IV is an M-matrix [ l l ] ,  where 

wZ3 = { u z 2 ( p z )  - [ ( T M ( ~ )  - 1]1/2}&3 

- 

-Ipt,1uz2(AzPtA,,) (5.13) 

with P, being the solution of (5.7). At this point, an estimate Szw 
of the stability region can be characterized by a set of inequalities 
resulting from the M-matrix conditions. However, since Ip,, I appear 
nonlinearly in these inequalities, it is not possible to compare OW 
with GD in (5.5) or nb in (3.10). 

To obtain an explicit characterization of O W ,  we note that W is 
an M-matrix if 

OM xrbz,lWt3 < 1 (5.14) 

where W,, has a single nonzero element in the (i, j)th position given 

( t r l 3 1 1  ) 
by 

gz2 (A; e A,, ) 
u2’ (Pz )  - [ U M ( P z )  - 11’12 

= U ~ ~ ( A ~ P , A , , ) { ~ ~ ~ ( P , )  + [um(Pz) - l]’”}. (5.15) 

From (5.14), an estimate of Rw is obtained as 

.{cz2(Pt) + [ u ~ ( c )  - 1]’/’} < 1. (5.16) 

Note that the estimate in (5.16) is the same as the region one would 
obtain by maximizing lpz31 using the method of [12]. From (5.16), 
it is clear that 

a,” c c 20. (5.17) 

Although composite Lyapunov functions are known [ 101 to yield less 
conservative robustness bounds than ordinary Lyapunov functions for 

and all other interconnection matrices being zero. Note that V has a 
block-triangular structure, i.e., the third subsystem does not form a 
loop with the other two. This structure for V is chosen purposefully to 
provide a comparison of the estimates of robustness regions obtained 
by different methods. Otherwise, an interconnection of only the first 
two subsystems would be sufficient to illustrate our result. 

The exact region of stability can be obtained from the characteristic 
polynomial of the closed-loop system matrix as 

0 :  -1.0625 < p l z p z l  < 0.9375. (6.3) 

Note that L? is independent of p32, as expected from the block- 
triangular structure of V. 

We calculate from (5.7) 

1.484 0.722 1.333 0.762 
= [0.722 2.2861’ ” = [0.762 2.8951’ 

1.067 0 
p3 = [ (6.4) 

and obtain the robustness regions 

- 
(6.5) fls : (p:z + pzl  + p&)1/2 < 0.329 

from (5.5). - A further majonzation as in (5.10) yields 

Alternatively, (5.1 I )  produces the bounds 

fib : 2.0051~121 + 3.2051~211 + 1.5091p321 < 1. (6.6) 

60 : 2.7511p121 + 4.2101p211 + 2.7121p321 < 1 

fis : (p:2 + p;l + p W 2  < 0.202. (6.7) 

Note that the bounds in (6.7) are quite worse than those in (6.5), 
although they are based on a stronger result. Apparently, U(() 
r’pi with P as in (4.14) is not the best Lyapunov function for S 
of (4.4). 
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Application of the results of [SI yields the bounds 

I ~ P  : max{lp~zl, 1 ~ 2 1 1 ,  1 ~ 3 2 1 )  < 0.212 

I2s : [(pi’ F 0.085)’ + (pzi 0.352)’ 

+(px 7 0.059)2]”2 < 0.668 (6.8) 

where the constants in 0 s  have the same sign as the corresponding 
parameters. Note that [8] has no counterpart of 20 and 52p is inferior 
to ap. Also, the largest sphere with its center at the origin which is 
included in 0 s  is given by 

(6.9) 

and is smaller than a?. 
[IO] yields the aggregate matrix 

On the other hand, the composite Lyapunov function approach of 

1 -3.5981P121 ;] 
II’ = -5.S641p21 I 1 (6.10) 

[ 0  -1.8861p321 1 

Note that the block-triangular structure of 2, is reflected in the 
structure of W. The robustness region is specified by the AI-matrix 
conditions on I T ’  as 

(2’’ : lp12p211 < 0.047. (6.1 1 )  

When the -11-matrix conditions are replaced by the stronger condition 
in (5.16), we obtain the estimate 

0: : 3.5981p121 + 5.8641p211 + 1.8861p321 < 1. (6.12) 

We note that 5ILv is independent of p32 as 52 in (6.3) is, and in this 
sense, is superior to the closed regions in (6.5) and (6.7). However, 
a further majorization as in (5.16) eliminates this advantage, as can 
be observed from (6.12). 

We also note that each of the estimates in (6.5)-(6.7) can be further 
expanded by repeated application of the robustness analysis to a 
modified system obtained by moving the nominal system to a point on 
the boundary of the robustness region and redefining the perturbation 
parameters accordingly. However, since this process destroys the 
subsystem versus interconnection structure, it may not be suitable 
for interconnected systems. 

We finally note that a scaling of the perturbation parameters and 
the corresponding perturbation matrices may be useful in obtaining 
improved robustness bounds, as noted in [IO]. 
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Design of Robust Controllers for Time-Delay Systems 

Magdi S. Mahmoud and Naser F. AI-Muthairi 

Abstract- The problem of stabilizing linear dynamical time-delay 
systems subject to bounded uncertainties is investigated. Two memo- 
ryless feedback controllers are considered. It is established that when 
the matching conditions are met and certain bounding relations are 
satisfied, then the linear controller renders the zero-response of the system 
asymptotically stable. Saturation-type controllers are shown to guarantee 
that all system responses are uniformly ultimately bounded. 

I. INTRODUCTION 
A major problem in the analysis of linear dynamical systems 

with time-delay is related to their stabilization using linear feedback 
with or without memory. Several results are readily available in 
the literature; see [1]-[6] and the references cited therein. Some of 
the results have been successfully extended to include the effect 
of bounded uncertainties [7]-[ 101. Preliminary investigations on 
discrete-time systems with state delay are found in [11]-[13]. A 
thorough review of the major past works of the deterministic approach 
to uncertain system based on the constructive use of Lyapunov 
function can be found in [14], [15]. If the uncertainty fits a certain 
characterization (often termed the matching condition), then a class of 
feedback controllers can be designed based only on the upper bound 
of the uncertainty [16]. When dealing with time-delay systems, it 
turns out [7], [9] that an additional assumption is needed to guarantee 
smooth behavior of the closed-loop state trajectories. 

Perhaps the work of Thowsen [7] and Yu [SI were among the 
early investigations to include the effect of bounded uncertainties 
on dynamical systems with time delay. The results of [7] required 
a bounding assumption to hold for all possible solutions not just 
the nominal. This restriction was relaxed in [9] and applied to 
river pollution control. Linear uncertain systems with state delay 
were treated in [8] and the stabilizing controller had limited gain 
adjustment. 

This work adds to the further development of stabilizing controllers 
for continuous-time uncertain systems with state delay. The major 
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