
A methodology for solving single-model, stochastic
assembly line balancing problem

Subhash C. Sarina,*, Erdal Erelb, Ezey M. Dar-Elc

aDepartment of Industrial and Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
bFaculty of Business Administration, Bilkent University, 06533 Bilkent, Ankara, Turkey

cDepartment of Industrial Engineering and Management, Technion±Israel Institute of Technology, Haifa 32000, Israel

Received 1 June 1992; accepted 1 January 1999

Abstract

In this paper, a methodology is developed to solve the single-model, stochastic assembly line balancing problem
for the objective of minimizing the total labor cost and the expected incompletion cost arising from tasks not
completed within the prescribed cycle time. The methodology is based on determining an initial DP based solution

and its improvement using a branch-and-bound procedure which uses an approximate solution instead of a lower
bound for fathoming nodes. Detailed experimentation shows the superiority of this method over the most promising
one from the literature. # 1999 Elsevier Science Ltd. All rights reserved.

Keywords: Assembly; Line balancing; Heuristics

1. Introduction

The single-model, stochastic assembly line balancing

problem can be stated as follows: given a ®nite set of

tasks, each having a performance time distributed

according to a probability distribution, and a set of

precedence relations which specify the permissible

orderings of the tasks, the problem is to assign the

tasks to an ordered sequence of stations with a prespe-

ci®ed cycle time such that the precedence relations are

satis®ed and some performance measure is optimized.

The problem addressed in this paper has the objective

of minimizing the total system cost comprising of the

total labor cost and the total expected incompletion

cost. Since task performance times are random vari-

ables, some tasks cannot be completed within the oper-

ating cycle time; these products consequently move

down the line with as many of the remaining tasks

being completed as possible. Incomplete tasks are

®nally completed o� the line. This incompleted work

constitutes the incompletion cost. Such situations of

completing the incomplete work o�-line is encountered

in the assembly of automobiles and appliances.

Although extensive research has been reported in the

literature on the deterministic version of the problem,

relatively less work has been done to develop e�cient,

optimum-seeking solution procedures for the stochastic

case. The problem has a ®nite but extremely large

number of feasible solutions and the inherent integer

restrictions result in enormous computational and sto-

rage di�culties. The stochasticity of the task perform-

ance times has been recognized and stated by several

authors [1,4±19]. Methods for this stochastic line bal-

ancing problem that are extensions of the procedures

developed for the deterministic version of this problem

are reported in [1,6,10,12,18]. Kottas and Lau [7±9]

Omega, Int. J. Mgmt. Sci. 27 (1999) 525±535

0305-0483/99/$ - see front matter # 1999 Elsevier Science Ltd. All rights reserved.

PII: S0305-0483(99)00016-X

www.elsevier.com/locate/orms

* Corresponding author. Tel.: +1-540-231-6656; fax: +1-

540-231-3322.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bilkent University Institutional Repository

https://core.ac.uk/display/52924419?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

developed heuristic procedures for this problem which
try to balance the labor and incompletion costs, while

Vrat and Virani [19] and Shtub [16] present procedures
that are basically similar to the method of Kottas and
Lau [7]. A practical procedure to balance stochastic

lines is reported by Sculli [15]. Silverman and Carter
[17] and Lau and Shtub [10] present a procedure for
the case when the assembly line is stopped to complete

the incompleted work, while Reeve and Thomas [13]
present a comparison of the procedures based on trade
and transfer, branch and bound, heuristic branch and

bound and a procedure based on combination of
branch and bound and trade and transfer ideas.
In this paper, we develop a heuristic enumeration

method for the stochastic assembly line balancing pro-

blem. Our results are then compared with those
obtained by Kottas and Lau [7] whose method is
reported as one of the e�ective methods for solving the

problem. It is important in this connection to note at
the outset that our method employs one assumption
(assumption 4 below) not made by Kottas and Lau [7],

and the comparative results relate only to circum-
stances where this assumption holds.
We ®rst present the notation and assumptions in

Section 2; the solution methodology is described in
Section 3; the detailed experimentation in Section 4
and ®nally, conclusions are given in Section 5.

2. Notation and assumptions

The following notation is used:

C= cycle time
ICi=incompletion cost of task i, for i= 1, . . . , N (dollar/

task)

K= number of stations on the line
L= labor rate (US$/unit time)
ti= performance time of task i which is a random variable

with mean mi and variance si
2

W= set of all the tasks assigned to the assembly line

Before proceeding with the analysis of the problem,
the following assumptions are made.

1. Whenever a task is not ®nished, the unit moves

down the line with as many of the tasks that do not
violate the precedence relations being completed as
possible.

2. Incomplete tasks are completed o� the line at a cost
which is not dependent on the fraction of the task
completed on the line.

3. No blocking occurs due to incomplete tasks.
4. Task performance times are independently distribu-

ted random variables whose distributions are

characterized by a single parameter, implying that mi
and si are related.

5. No splitting of tasks is permitted among stations.

6. All line workers are paid the same hourly rate and

each station is manned by one worker.

7. Demand rate is deterministic, or alternatively cycle

time is ®xed.

8. No bu�er inventory is allowed between stations.

9. `Learning' is not a factor.

Assumptions 1, 2 and 3 represent one way of hand-

ling incompletion situations at stations and is typically

considered in the literature. Some of the di�erent

approaches to handling incompletions are as follows:

1. A cycle does not start unless all the tasks are com-

pleted. In other words, the whole line is stopped

until all the tasks are completed.

2. Incomplete tasks are completed at special stations

strategically located along the line. Note that the

incomplete tasks are completed o� the line in our

approach.

3. A mobile and quali®ed team helps the stations hav-

ing incompletions.

A di�erent approach to handling incompletions is

suggested by Silverman and Carter [17]. In their

approach, cycle time is extended when certain tasks

are not completed within a base cycle time. Hence, the

line operates as an unpaced line when such incomple-

tions occur. Tasks are classi®ed into two groups;

incompletions of the tasks in the ®rst group are not

allowed. A ®rst-group task getting incomplete within

the base cycle time is completed even if it requires

stopping the whole line for a considerable amount of

time. Incompletions of the second-group tasks do not

extend the cycle time. As stated by Silverman and

Carter [17], it may be economical to stop the whole

line for heavy and complex products such as engines,

since major disassembly may be required to complete

the incompletions o� line. Thus, the selection of the

approach to handle incompletions should depend on

the costs associated with stopping the whole line versus

completing the incomplete tasks o� line. In addition,

some technological constraints and practical reasons

may also prohibit the stoppage of the whole line.

Assumption 4 is a direct consequence of the fact

that most of the tasks are manually performed and

variations in the performance times of these tasks are

inevitable. The procedure developed in this paper can

be used for processing times that are independently

distributed nonnegative random variables with their

distribution characterized by a single parameter. The

normal distribution is the most frequently assumed dis-

tribution for the performance times, see Refs. [2,7±

14,17,18], especially if the coe�cient of variation is 0.3

or less [20], and, in the experimental work reported

below, the processing times are assumed to be nor-

S.C. Sarin et al. / Omega, Int. J. Mgmt. Sci. 27 (1999) 525±535526

mally distributed random variables truncated at zero
with si � a � mi, i � 1, . . . ,N, where a is a constant.

The truncation at zero for a processing time is possible
if the probability that the random variable can take on
negative values is negligible, see [3]. The assumption

that si � a � mi would have to be tested empirically in
any application. However, it is plausible since the
mean and variance of a task processing time is the

sum of the means and variances of the processing
times of the basic elements that comprise the task. The
greater the number of basic elements, the greater will

be the mean and variance of the task performance
time. Therefore, a large expected processing time of a
task implies a greater number of basic elements and
consequently a larger standard deviation. The

relationship si � a � mi has also been assumed by other
researchers such as Silverman and Carter [17] and Lau
and Shtub [10]. It is not, however, assumed by Kottas

and Lau [7±9] who rather assume arbitrary means and
variances, thus making their method more general
than ours. The comparisons of their method and ours

made below are valid only when the relationship si �
a � mi holds.
Assumptions 5±9 are similar to those typically made

for this problem in the literature.

2.1. Cost model used

Incompletion cost, ICi is the cost of completing task
i o� the line and is assumed to be greater than L�mi for
i= 1, . . . , N. A task is not completed within the cycle

time due to two reasons: (i) the task is not completed
within C, the operating cycle time, or (ii) the task is a
follower of another incomplete task on the precedence

diagram. When one task is incomplete, the processing
of a set of tasks cannot be started. This set of tasks
depends on the precedence diagram and the allocation
of tasks to stations.

The objective function is comprised of the total
labor and total expected incompletion cost. A general
expression is developed in [14] that captures the cost

terms of the objective function given the allocation
and ordering of the tasks to a given number of
stations. The expression of the objective function is as

follows:

Min Z � �C � L � K � �
XN
i�1

24bi"ICi �
X
k2Ai

ICk

#

ÿ
Xfsi
j�1

SB
j
i

35,
where bi is the probability that the processing of task i
is started and not completed within C; Ai is the set of

tasks which cannot be started (and hence incomplete)
due to the incompletion of task i; fsi is the total num-

ber of starting events of task i and SBi
j is a correction

factor for the overcounted incompletion costs corre-
sponding to starting event j. The processing of task i

can be started after all the tasks preceding task i in the
station are completed. The tasks preceding task i in
the station need not precede task i on the precedence

diagram; consequently, several events arise that lead to
the starting of task i. The occurrence probabilities of
these events are computed with a special probability

enumeration tree in which some events are considered
several times. These overcounted incompletions costs
are subtracted to obtain the exact expected incomple-
tion cost. The expression [C�L�K] represents the total

labor cost. The expressions of total expected incomple-
tion cost and labor cost are utilized to determine the
design with the minimum cost by varying the number

of stations and the allocation of the tasks to these
stations.

3. Procedure for determining the number of station and

task allocations

The steps of the procedure for determining the num-

ber of stations and the allocation of tasks to these
stations is as follows:

Step 1. Decompose the problem into subproblems

of a given size, say m or fewer tasks.
Step 2. Determine an initial solution for each sub-
problem by using a dynamic programming (DP)
procedure with a bounding strategy [14], hereafter

referred to as the truncated DP procedure.
Step 3. Improve the initial solution of each subpro-
blem by using an improvement procedure.

Step 4. Generate the ®nal solution by appending
the solutions of the subproblems generated in Step
3.

The ®rst three steps are now considered in detail.
The experimentation, conducted with problems for
which the solutions of its subproblems are appended

to each other, is presented in Section 4.

3.1. Step 1: decomposing the problem

Consider the precedence diagram drawn from `left'
to `right' with tasks placed as far to the left as poss-
ible. The diagram can now be partitioned by columns

drawn between each set of tasks occurring from `left'
to `right'. Activities contained within each column are
consequently not linked.

The decomposition procedure arbitrarily combines
adjacent columns into groups so that the number of
tasks contained therein is a `reasonable' number Ð

S.C. Sarin et al. / Omega, Int. J. Mgmt. Sci. 27 (1999) 525±535 527

say, on the order of 20. These groups are serially com-
bined until all tasks in the precedence diagram are con-

sidered.
Each group is consequently solved as an indepen-

dent problem problem 3.2. The decomposition pro-

cedure above is expected to result in subproblems with
the least number of precedence relations between the
tasks. Consequently, the number of feasible sequences

that can be generated by the tasks is larger than the
number of feasible sequences when the problem is
decomposed in any other way. Thus, the ®nal solution

obtained with the above procedure is likely to be closer
to the optimal one.

3.2. Step 2: determining an initial solution

An initial solution for each group can be generated

using the DP procedure with a bounding strategy
described in [14]. In the truncated DP procedure, the
tasks are allocated station by station following pre-
cedence restrictions and the generation of an excessive

number of states is avoided by not considering states
having a probability of completing tasks below a pre-
speci®ed value. The truncated DP procedure [14] gen-

erates solutions that are almost always as good as
those generated by the method of Kottas and Lau
[7,8].

3.3. Step 3: improving the initial solution

The truncated DP procedure solution can be
improved by using a procedure analogous to a branch-
and-bound enumeration tree with the nodes represent-

ing station assignments of the tasks. Each level of the
tree corresponds to a station. Thus, the tree can have
at most N levels corresponding to the N stations with
at least one task assigned to each station. The nodes of

the next level are formed by considering the precedence
constraints. Let CNi be the cost associated with the
assignment of tasks at node i, e be the number of

nodes in the tree, and TCNi � TCNGi
� CNi for i �

1, . . . , e, where Gi is the parent node of node i. TCNi

represents the cost associated with the assignment of

the tasks to node i and all of its ancestor nodes. Note
that if node i has no parent node (e.g. the nodes in the
®rst level), then TCNGi

=0.0 and TCNi=CNi. Each
node has an associated relaxed problem consisting of

tasks that are not assigned to either this node or its
ancestor nodes; the precedence relations among these
tasks are relaxed and the incompletion costs of the

tasks are replaced by their cumulative incompletion
costs. The relaxed problem is solved with the M-paral-
lel station scheduling procedure outlined in Section

3.3.4. If CRXi is the cost of the relaxed problem corre-
sponding to node i, then an approximate cost, APPi,
corresponding to this node is de®ned as follows:

APPi � TCNi � CRXi:

In the branch-and-bound technique, CRXi rep-
resents a lower bound on the contribution of the
remaining tasks for node i. In our case, CRXi need not

be a lower bound, as it is a heuristic solution of the
relaxed problem. However, CRXi is used just like the
lower bound value to fathom nodes. Thus, the

improvement procedure does not guarantee to obtain
the solution with the minimum cost. However, if CRXi

is taken as an E-optimal solution, then it can be shown

to generate an E-optimal solution of the original pro-
blem in the following sense. Let UBcur denote the cur-
rent upper bound. Since the solution with the
minimum cost belongs to one of the branches of the

tree, in the worst case, node i containing the solution
with the minimum cost is fathomed subject to

APPi � �1� E� optimal solution valuerUBcur

or, optimal solution valuerUBcur

1� E
:

Thus, UBcur will be at most within (1+E) of the opti-

mal solution value.
The advantages of using an E-optimal solution at a

node, instead of a lower bound, are that (i) it is easy

to obtain and (ii) it is close to the optimal solution
value and hence, very e�ective in cutting down the size
of the tree. Of course, the disadvantage is that it can

guarantee only E-optimal solutions. The magnitude of
the value that one uses for E depends on the perform-
ance of the procedure used for solving the relaxed pro-

blem at every node of the tree. An experimentation is
conducted to investigate the setting of E and is pre-
sented in [3].
In the following sections, various features of the

improvement procedure are discussed in detail.

3.3.1. The branching scheme

The branching rule for selecting a node to partition
the solution space is the best bound rule, that is, the
node having the smallest approximate cost is selected

to branch.
The scheme used to generate the o�spring of a node

is identical to that used by Gutjahr and Nemhauser [5]
for balancing single model assembly lines. Tasks that

are available for assignment are placed in stage 1 and
are considered marked. A state is de®ned as the set of
tasks that can be started without prior completion of

any other tasks and in any order that satis®es the pre-
cedence relations. An immediate follower of a state S
of a stage is de®ned as a task that is an immediate fol-

lower of at least one of the tasks in S and is not pre-
ceded by any tasks not in S. The unmarked immediate
followers of a state are augmented to the current state

S.C. Sarin et al. / Omega, Int. J. Mgmt. Sci. 27 (1999) 525±535528

to form the states of the next stage. The augmentation
of states and corresponding unmarked immediate fol-

lowers is done in stages. For any state S of stage k,
the unmarked immediate followers are placed in a list
F(S). Let H be a subset of F(S), then S[H is a state

for stage k+ 1. For each state of stage k, the
unmarked immediate followers are found and placed
as marked tasks for stage k+ 1. When all the tasks

are marked, the generation procedure is complete.
Permutations of tasks are avoided in order to eliminate
duplications. The states constitute the o�spring nodes

of the node being branched. The procedure generates
all possible o�spring nodes of a parent node, if carried
to completion.
Note that (i) if TCN associated with the node S[Hj

(for some subset Hj of F(S)) is larger than UBcur, then
all the other nodes formed by S[Hk, where Hj is a
subset of Hk, can be pruned, and (ii) if TCN associated

with a node is larger than that of any other descendent
node generated previously with the same set of tasks,
then this node can be pruned; if TCN is smaller than

that of the previously generated node, then the pre-
viously generated node can be pruned.
Since each node represents a station, when a node is

generated the tasks assigned to that node are rese-
quenced with the single-machine sequencing procedure
described next in Section 3.3.2 to further reduce the
incompletion cost of the sequence.

3.3.2. Procedure to sequence tasks assigned to a node

The problem of resequencing the tasks assigned to a
node can be viewed as the problem of sequencing N
tasks on a single-machine with tasks having a common

due date (corresponding to the prespeci®ed C) and sto-
chastic processing times. The objective is to sequence
tasks in such a way that the expected incompletion
cost is minimized. This problem is like a single-ma-

chine sequencing problem with a nonlinear loss func-
tion, however, the loss function here is de®ned as the
expected incompletion cost.

Consider an arbitrary sequence R in which a pair of
adjacent tasks, i and j (j following i), exists such that
ICirICj. In the sequence R ', the positions of the tasks

i and j are interchanged. Let pi (pj) and pi '(pj ') denote
the incompletion probabilities of task i(j) in sequences
R and R ', respectively. Also let pZ be the incompletion
probability of the task preceding task i(j) in sequence

R(R ').
If certain conditions outlined below are met, we can

determine the relative order of two adjacent tasks in

order to minimize the total expected incompletion cost.
Let xi � pi ÿ pZ, xi 0 � pi

0 ÿ pj
0, xj � pj ÿ pi

and xj 0 � pj
0 ÿ pZ. Also, let CICi (CICi ') be the cumu-

lative incompletion cost of task i in sequence R(R '),
which consists of the incompletion cost of task i and
of those tasks in that station and in subsequent

stations that cannot be started due to the incompletion
of task i. Thus, CICi � ICi �

P
k2Ai

ICk.

The following theorem states the sequencing rule for
two adjacent tasks and the conditions that should be
met.

Theorem 1. If xiCICi R xi 'CICi ' and xjCICj R xj 'CICj ',
then cost(R) R cost(R ') (that is, task j should be an

immediate follower of task i), and if xiCICirxi 'CICi '
and xjCICjrxj 'CICj ', then cost(R)rcost(R ') (that is,
task i should be an immediate follower of task j).

Proof. cost(R)=xiCICi+xjCICj and
cost(R ')=xj 'CICj '+xi 'CICi '. Therefore,
cost(R)ÿcost(R ')=(xiCICi+xjCICj)ÿ(xj 'CICj '+xi 'C-
ICi '). Since xiCICi R xi 'CICi ' and xjCICj R xj 'CICj ', it
follows that cost(R) R cost(R '). The second part of
the theorem can be proved similarly.

Note that only tasks i and j are considered in
cost(R) and cost(R '). The tasks preceding task i(j)
and the ones following task j(i) in sequences R(R ')
also contribute to cost(R) and cost(R '). However,
these contributions can be ignored, since they are
equal to each other in sequences R and R '. Note also

that the precedence relations among tasks are ignored
in the above theorem. If j $ Ai, it is obvious that
sequence R ' in which task i following task j violates

the precedence relations. Thus, such interchanges are
not permitted.
The sequencing procedure ®rst orders the tasks in

the descending order of their cumulative incompletion
costs with the precedence relations being observed. If
the order of the tasks violates the precedence relations,
then the positions of those tasks are changed accord-

ingly, though the sequence of the tasks no longer
remains in a descending order of the cumulative
incompletion costs. Then, the conditions of theorem 1

are applied to each pair of adjacent tasks in the
sequence to arrange them accordingly. If j $ Ai,
sequence R ' in which task i following task j violates

the precedence relation and the interchange is not per-
mitted. In certain regions of the sequence, the incom-
pletion probabilities of tasks i and j cannot be
di�erentiated; they are both assumed to be either negli-

gible or equal to unity due to the asymptotic shape of
the normal distribution.
If tasks i and j are in a region in which the incom-

pletion probabilities can be di�erentiated and the con-
ditions of theorem 1 are not met, then the relative
order of the tasks is determined by comparing cost(R)

with cost(R '). If cost(R) R cost(R '), then task j follows
task i; otherwise, task i follows task j. In summary, the
following three situations arise while determining the

S.C. Sarin et al. / Omega, Int. J. Mgmt. Sci. 27 (1999) 525±535 529

relative order of two adjacent tasks assigned to the

same node of the tree formed by the improvement pro-

cedure.

Situation 1. The adjacent tasks meet the conditions

of theorem 1. The relative order of the tasks is

determined according to theorem 1.

Situation 2. The adjacent tasks do not meet the

conditions of theorem 1 and their incompletion

probabilities can be di�erentiated. The relative

order of the tasks is determined by comparing the

expected incompletion costs of the sequences corre-

sponding to the two positions of the tasks.

Situation 3. The adjacent tasks do not meet the

conditions of theorem 1 and their incompletion

probabilities cannot be di�erentiated. The optimal

relative order of the tasks cannot be determined.

Consequently, no action is taken and the task with

the larger cumulative incompletion cost remains as
the ®rst task.

3.3.3. Node evaluation scheme
When a node is generated, the tasks in the node are

resequenced as discussed in the previous section, and
the cost CN associated with the sequence is computed.

CN consists of the labor cost of a station and the
expected incompletion costs of the tasks in the node.
The expression for CNi corresponding to node i is

similar to the objective function expression in Section
2.1.
In order to compute CRXi, let Gi be the set of tasks

in node i and in all its ancestor nodes. The set of tasks
in the relaxed problem corresponding to node i is
given by the set W±Gi. Let Nir be the number of tasks

Table 1

Parameters of the example problems

Example Number of tasks F-ratio Cycle time

(min)

Number of stations RAN2

Truncated DP

procedure

Technique of

Kottas and Lau [9]

Improvement

procedure

1 11 0.000 58.4 9 9 8 0.083

2 11 0.000 72.2 7 7 7 0.076

3 11 0.000 99.9 7 7 3 0.062

4 11 0.491 23.8 7 8 2 0.056

5 11 0.491 37.6 5 6 5 0.099

6 11 0.491 51.4 6 6 6 0.092

7 11 0.418 65.3 8 9 6 0.085

8 11 0.418 79.1 7 9 7 0.079

9 11 0.418 93.0 9 9 7 0.072

10 11 0.800 57.9 7 8 4 0.068

11 11 0.800 92.4 7 7 2 0.058

12 11 0.800 50.8 7 7 5 0.090

13 15 0.000 99.2 9 9 6 0.073

14 15 0.000 57.6 10 10 5 0.055

15 15 0.000 16.0 10 10 10 0.088

16 15 0.257 64.4 8 8 6 0.077

17 15 0.257 22.8 10 10 2 0.053

18 15 0.257 71.2 9 10 9 0.085

19 15 0.781 29.6 10 10 10 0.068

20 15 0.781 78.0 8 9 2 0.050

21 15 0.781 15.6 11 11 11 0.099

22 16 0.575 84.8 6 7 6 0.065

23 16 0.575 43.2 8 10 8 0.098

24 16 0.575 91.6 9 9 9 0.080

25 17 0.382 50.0 9 10 6 0.063

26 17 0.382 98.4 10 11 10 0.095

27 17 0.382 56.8 9 10 9 0.078

28 18 0.379 15.2 11 11 2 0.060

29 18 0.379 63.6 7 8 7 0.093

30 18 0.379 22.0 11 12 11 0.075

S.C. Sarin et al. / Omega, Int. J. Mgmt. Sci. 27 (1999) 525±535530

in the set W±Gi. In a relaxed problem, precedence con-
straints are relaxed, but the incompletion costs of the
tasks are replaced by their cumulative incompletion

costs. This relaxed problem is solved as an M-parallel
station scheduling problem with the procedure outlined
in Section 3.3.4. The cost of the relaxed problem sol-

ution associated with node i is taken as a lower bound
on the contribution of the tasks in W±Gi. Let CINiM

denote the expected incompletion cost of the relaxed
problem solution for node i obtained by the M-parallel

station scheduling procedure. Then, the total expected
cost of the relaxed problem, CRXi, may be expressed
as follows:

CRXi � min
M�1, ..., Nir

C � L �M� CINiM for i � 1, . . . , el:

Note that in order to ®nd a good estimate of CRXi,

the M-parallel station scheduling procedure must be

applied Nir times to the relaxed problem corresponding

to node i for M = 1, . . . , Nir. This, in reality, can be

very time consuming. In order to limit the range of

this search over the number of stations, an experiment

was conducted to compare the number of stations

obtained by the above procedure with the search at

each node applied Nir times, to that obtained by the

truncated DP procedure with the bounding strategy

[14] and the method of Kottas and Lau [9]. The data

for the test problems are generated as follows:

mi0U[0; C], si=RAN1mi and ICi=RAN2mi for i= 1,

. . . , N and L = 0.05 US$/min. C0U[10; 100],

RAN10U[0.04; 0.06] and RAN20U[L; 2L]. Table 1

depicts the number of tasks, ¯exibility-ratios (F-ratio),

Table 2

Comparative analysis between the technique of Kottas and Lau [9], the truncated DP procedure and the proposed improvement

procedure

Example Solution values obtained using Percentage di�erence between

proposed improvement procedure and

Technique of Kottas and Laua DP procedurea Improvement procedurea Kottas and Lau [9] DP procedure

1 34.420 34.420 32.539 5.5 5.5

2 25.372 25.372 25.372 0.0 0.0

3 35.842 35.842 30.496 14.9 14.9

4 9.880 8.833 7.963 19.4 9.9

5 11.810 9.930 9.930 15.9 0.0

6 15.576 15.487 15.487 0.6 0.0

7 41.202 37.938 36.542 11.3 3.7

8 50.301 44.041 44.041 12.5 0.0

9 42.873 42.873 41.556 3.1 3.1

10 20.993 20.993 20.240 3.6 3.6

11 33.264 32.595 26.049 21.7 20.1

12 19.946 19.937 19.741 1.0 1.0

13 62.104 61.753 55.109 11.3 10.8

14 28.828 28.806 25.433 11.8 10.7

15 10.064 10.063 10.063 0.0 0.0

16 25.799 25.766 25.713 0.3 0.2

17 11.434 11.430 9.388 17.9 17.9

18 36.375 32.107 32.107 11.7 0.0

19 15.462 15.880 14.938 3.4 5.9

20 37.575 33.811 30.076 20.0 11.1

21 8.831 8.644 8.644 2.1 0.0

22 33.007 29.038 29.038 12.0 0.0

23 22.537 19.348 19.348 14.2 0.0

24 52.219 52.219 52.219 0.0 0.0

25 31.654 29.114 27.588 12.9 5.2

26 75.102 71.919 71.919 4.1 0.0

27 28.734 25.928 25.928 9.8 0.0

28 8.580 8.563 7.159 16.6 16.4

29 30.085 27.246 27.246 9.4 0.0

30 14.851 13.688 13.688 7.8 0.0

a Solution values are in US$/unit.

S.C. Sarin et al. / Omega, Int. J. Mgmt. Sci. 27 (1999) 525±535 531

cycle times, number of stations in the solutions of the

problems using the truncated DP procedure [14], the
method of Kottas and Lau [9] and the improvement
procedure. F-ratio is a measure of the number of feas-

ible sequences that can be generated and takes values
from 0.0 to 1.0. The value of 1.0 corresponds to a pro-
blem with no precedence relations whereas the value of

0.0 corresponds to a problem with tasks ordered seri-
ally. The di�erence in the number of stations in the

three solutions depends on relationships between the
cycle time, task processing times and the relative mag-
nitude of the incompletion costs. As seen in Table 1,

for 16 of the 30 problems, the di�erence between the
number of stations determined by the truncated DP

procedure (NSTADP) and the improvement procedure
is less than or equal to 1; the di�erence, on the aver-
age, is 2.00. In all cases, the number of stations

obtained by the improvement procedure is less than or
equal to NSTADP. Half of the Kottas and Lau [9] sol-
utions require more stations than NSTADP, and are

consequently generated at a higher cost. Table 2 gives
the actual incompletion costs using the three methods,

together with percentage di�erences in comparison
with the improvement procedure. It is seen that the
proposed method dominates the method of Kottas and

Lau [9] in every comparison, while it improves on the
truncated DP procedure solution in about half the
cases and equals the DP solutions for the remainder.

(Recall, however, both have and below, that the
method of Kottas and Lau allows distributions in

which means and standard deviations are not related,
and the comparisons are made under our somewhat
more restrictive assumption about distributions of task

performance times.) We use these results to guide the
search over the number of stations to be used at every
node to compute CRXi. If node i is at level j, then the

corresponding relaxed problem is expected to have
NSTADPÿj stations. Thus, the above procedure is

applied to the relaxed problem for the number of
stations in the neighborhood of NSTADPÿj. Based on
the assumption that the di�erence between the num-

bers of stations obtained by the truncated DP and the
improvement procedures is less than 5 (a conservative

number based on the above experimentation), the pro-
cedure is applied to the relaxed problem associated
with node i of level j 11 times for

M =NSTADPÿj ÿ 5, . . . , NSTADPÿj+ 5.
Next, we describe an M-parallel station scheduling

procedure for the relaxed problem. The term parallel
here implies that the stations are assumed to be in par-
allel rather than in series. Since this procedure is used

to solve the relaxed problem at every node of the enu-
meration tree of the improvement procedure, the per-
formance of this procedure a�ects the performance of

the improvement procedure signi®cantly. The closer
the solution of this procedure is to the optimum, the

better will be the quality of the ®nal solution of the
problem.

3.3.4. M-parallel station scheduling procedure for the
relaxed problem
This procedure is based on the single-processor

sequencing procedure presented in Section 3.3.2 and

the steps are as follows:

Step 1. (Construction of the single-station
sequence). Set the due date equal to M�C. Rank the

tasks in the descending order of their cumulative
incompletion costs. Examine each pair of adjacent
tasks to ®nd the situation described in Section

3.3.2, and determine the relative order of the tasks.
Continue until all pairs of adjacent tasks are exam-
ined.

Step 2. (Allocation of the tasks to M stations).
Allocate the tasks to M machines sequentially in
their order of appearance in the single-station
sequence by assigning the next task to the machine

that has the least sum of the expected processing
times of the tasks already assigned to it. Continue
until all the tasks are assigned.

Step 3. (Resequencing of the tasks on the stations).
The tasks assigned to each machine are resequenced
according to the single-station sequencing pro-

cedure.

The M-parallel station scheduling procedure pre-
sented above does not guarantee the optimal solution.

Let the solution obtained using this procedure at every
node be an E-optimal solution, i.e. it is within (1+E) of
the optimal solution. Also, if CRXi is the total

expected cost obtained using this procedure by its ap-
plication to the relaxed problem associated with node
i, then there exists a ri, rir0, such that CRXi/(1+ri)
is a valid lower bound for node i. Consequently, if

CRXi/(1+ri) is used instead of APPi at node i, then
the enumeration procedure will guarantee the optimal
solution. Now, E and ri are not known apriori.

However, if ri is taken to represent the ri-optimality of
the scheduling procedure used to solve the relaxed pro-
blem at node i, then E=maxi = 1, . . . , e ri, since, in the

worst case, one of the nodes leading to the optimal sol-
ution can have the maximum r value. This suggests
the following way to estimate the value of r exper-
imentally. A problem is solved using the same r value

for all nodes in the enumeration tree of the improve-
ment procedure. If the r value assumed is not su�-
ciently large, then increasing its value should improve

the solution. Since the procedure is heuristic and ap-
proximate costs are used instead of upper bounds for
pruning nodes, increasing the value of r does not

necessarily improve the solution, but, on the average,
an improvement in the solutions is expected. If the
improvement in the solution stabilizes beyond a r

S.C. Sarin et al. / Omega, Int. J. Mgmt. Sci. 27 (1999) 525±535532

value, it implies that the value of r is either larger
than E of the scheduling procedure or very close to it.

An experimentation was conducted to estimate the
values of r and E and is reported in Ref. [3]. The
increase in improvement was found to stabilize, on

average, at rr0.1, with the M-parallel station sche-
duling procedure generating solutions within 110 per-
cent of the optimal solution. Consequently, the M-
parallel station scheduling procedure generates almost

optimal solutions for this r value.
Note that for some examples in Table 1 the di�er-

ence between the number of stations generated by the

improvement procedure and those generated by the
method of Kottas and Lau [9] and the truncated DP

procedure is signi®cant. To explain this, observe the
last column of Table 3 which lists the value of RAN2

used for di�erent examples. RAN2 is a random vari-

able generated from a uniform distribution between L
and 2L. As the labor rate, L, is taken as 0.05 US$/
min; RAN2 is distributed uniformly between 0.05 and
0.10. For all the examples with large di�erences in

numbers of stations (namely, 3, 4, 11, 14, 17, 20, 28),
the RAN2 value is relatively small. That means, for
small incompletion cost, the method of Kottas and

Table 3

Ninety percent con®dence interval limits on percentage di�erences between the solution values of improvement procedure, tech-

nique of Kottas and Lau [9] and truncated DP procedure

RAN2 Ninety percent con®dence interval limits on percentage solution values of di�erence

between the improvement procedure and

Kottas and Lau solution Truncated DP procedure solution

L [20.7; 24.4] [16.3; 20.8]

U[L, 2L] [7.5; 11.7] [2.7; 6.7]

2L [4.0; 7.2] [0.2; 1.3]

3L [3.0; 5.9] [ÿ0.1; 1.2]a
4L [2.5; 5.3] [ÿ0.3; 1.0]a

a Note that the negative value just indicates the lower limit of the 90% con®dence interval; the actual values obtained are all non-

negative.

Table 4

Results of experimentation with problems of greater than 20 tasks

Example Number of tasks F-ratio Cycle time

(min)

Kottas and Lau

solution

(min)

Approximation procedure

Solution value

(US$/unit)

CPU time taken

(s)

Percentage improvement

over Kottas and Lau solution

31 30 0.372 35.6 35.655 33.126 5.73 7.1

32 30 0.372 84.0 82.222 78.872 9.96 4.1

33 30 0.372 42.4 61.452 61.338 124.83 0.2

34 40 0.173 90.8 166.947 140.716 147.02 15.7

35 40 0.173 49.2 75.875 70.952 48.33 6.5

36 40 0.173 97.6 150.763 150.639 254.87 0.1

37 30 0.051 56.0 78.858 70.371 62.55 10.8

38 30 0.051 14.4 16.883 16.251 28.55 3.7

39 30 0.051 62.8 46.728 45.155 11.12 3.4

40 30 0.147 76.4 84.470 78.420 19.47 7.2

41 30 0.147 34.8 46.062 42.578 124.79 7.6

42 30 0.147 83.2 90.035 78.162 131.91 13.2

43 50 0.074 41.7 97.969 95.127 50.60 2.9

44 50 0.074 90.0 226.199 223.261 13.26 1.2

45 50 0.074 48.5 106.564 90.746 156.22 14.8

46 60 0.057 96.9 301.845 292.288 131.23 3.2

47 60 0.057 55.3 142.366 141.807 251.05 0.4

48 60 0.057 13.7 29.130 26.427 380.79 9.3

S.C. Sarin et al. / Omega, Int. J. Mgmt. Sci. 27 (1999) 525±535 533

Lau [9] and the truncated DP procedure utilize more
stations than needed to minimize the labor and the

expected incompletion costs. However, as the relative
magnitude of IC increases, the number of stations uti-
lized in the solutions generated by these procedures

tend to be close to those utilized by the improvement
procedure. This is also shown in Table 3 which depicts
percentage di�erences between the solution values of

the improvement procedure and those of the method
of Kottas and Lau [9] and the truncated DP pro-
cedure. We have varied the value of RAN2 from 4L to

L, namely from 0.2 to 0.05, and solved the problems
with the three procedures. The solution value of the
procedure developed in this paper is signi®cantly su-
perior to the ones obtained by the method of Kottas

and Lau [9] and the truncated DP procedure at the
lower values of RAN2. This indicates that the method
of Kottas and Lau [9] and the truncated DP procedure

tend to be insensitive to the relative magnitude of the
incompletion costs, whereas the procedure developed
in this paper gives solutions that are very close to the

optimal ones for all relative magnitudes of incomple-
tion costs.

4. Experimentation with problems requiring

decomposition

A comparison of the results obtained by the pro-
cedure developed in this paper to those obtained by

the method of Kottas and Lau [9] and the truncated
DP procedure [14] was presented in Tables 1 and 2.
These problems contained at most 20 tasks. Next, we

consider problems with 30±60 tasks. These problems
are decomposed into subproblems of 20 or fewer tasks
as described in Section 3.1. Table 4 summarizes infor-
mation about the problems and the results obtained.

Columns 2, 3 and 4 depict the number of tasks, F-
ratios and the cycle time of the problems considered.
The solution values obtained by the method of Kottas

and Lau [9] and the proposed procedure are shown re-
spectively in columns 5 and 6. The CPU time limit on
the improvement procedure of each subproblem was

set to 120 s on an IBM 3031. The total CPU time
taken by the procedure is depicted in column 7. The
computational requirements for the Kottas and Lau [9]
procedure are considerably smaller than those reported

in column 4, however, the decreasing cost of computer
usage lessens the importance of this issue. Moreover,
within reasonable computation time, it seems more im-

portant to determine better quality solutions as the
production cost saving will be orders of magnitude lar-
ger than the cost of computations. The last column

depicts the percentage improvement of the proposed
procedure over the solution of the method of Kottas
and Lau [9]. On average, the approximation procedure

generated designs whose total system costs are 6.2%
lower than those of the designs generated by the

method of Kottas and Lau [9].

5. Concluding remarks

A comprehensive procedure for solving the stochas-

tic, single-model assembly line balancing problem was
developed and presented in this paper. This approach
begins with the truncated DP procedure solution, and

uses a branch-and-bound type of procedure to generate
an improved solution. Experimental results indicate
that better solutions are generated than those obtained
by the method of Kottas and Lau [9] within reasonable

computation times for the single model, stochastic line
balancing problem under the condition described in
Section 2, including speci®cally that the means and

standard deviations of task performance times are lin-
ear. When improvements occur, the solutions are
always associated with fewer stations and are shown to

generate designs with smaller cost values. Indeed, sol-
utions using the proposed method, tested over a wide
range of parameter values, were shown to either equal
to or dominate those obtained by the truncated DP

method, which in turn, equals or dominates those gen-
erated by the Kottas and Lau procedure [9].

References

[1] Arcus AL. COMSOAL: a computer method of sequen-

cing operations for assembly lines. International Journal

of Production Research 1966;4(4):259±77.

[2] Chakravarty AK, Shtub A. A cost minimization pro-

cedure for mixed model production lines with normally

distributed task times. European Journal of Operational

Research 1986;23(1):25±36.

[3] Erel E. A methodology to solve single-model, stochastic

assembly line balancing problem and its extensions.

Unpublished doctoral dissertation, 1987.

[4] Freeman DR, Jucker JV. The line balancing problem.

The Journal of Industrial Engineering 1967;18(6):361±4.

[5] Gutjhar AL, Nemhauser GL. An algorithm for the line

balancing problem. Management Science 1964;11(2):308±

15.

[6] Ignall E. A review of assembly line balancing. Journal of

Industrial Engineering 1965;16(4):244±54.

[7] Kottas JF, Lau HS. A cost oriented approach to stochas-

tic line balancing. AIIE Transactions 1973;5(2):164±71.

[8] Kottas JF, Lau HS. A total operating cost model for

paced lines with stochastic task times. AIIE Transactions

1976;8(2):234±40.

[9] Kottas JF, Lau HS. A stochastic line balancing pro-

cedure. International Journal of Production Research

1981;9(2):177±93.

[10] Lau HS, Shtub A. An exploratory study on stopping a

S.C. Sarin et al. / Omega, Int. J. Mgmt. Sci. 27 (1999) 525±535534

paced line when incompletion occur. IIE Transactions

1987;19(4):463±7.

[11] Moodie CL, Young HH. A heuristic method of assembly

line balancing for assumptions for constant and variable

work element times. The Journal of Industrial

Engineering 1965;16(1):23±9.

[12] Ramsing K, Downing R. Assembly line balancing with

variable element times. Industrial Engineering, January,

1970, pp. 41±43.

[13] Reeve NR, Thomas WH. Balancing stochastic assembly

lines. AIIE Transactions 1973;5(3):223±9.

[14] Sarin SC, Erel E. Development of the cost model for the

single-model, stochastic assembly line balancing problem.

International Journal of Production Research

1990;28(7):1305±16.

[15] Sculli D. Short term adjustments to production lines.

Computers and Industrial Engineering 1984;8(1):53±63.

[16] Shtub A. The e�ect of incompletion cost on the line bal-

ancing with multiple manning of work stations.

International Journal of Production Research

1984;22(2):235±45.

[17] Silverman FN, Carter JC. A cost-based methodology for

stochastic line balancing with intermittent line stoppages.

Management Science 1986;32(4):455±63.

[18] Silverman FN, Carter JC. A cost-e�ective approach to

stochastic line balancing with o�-line repairs. Journal of

Operations Management 1984;4(2):145±57.

[19] Vrat P, Virani A. A cost model for optimal mix of

balanced stochastic assembly line and the modular

assembly system for a customer oriented production sys-

tem. International Journal of Production Research

1976;14(4):445±63.

[20] Wilhelm WE. On the normality of operation times in

small-lot assembly systems: a technical note.

International Journal of Production Research

1987;25(1):145±9.

S.C. Sarin et al. / Omega, Int. J. Mgmt. Sci. 27 (1999) 525±535 535

