
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 47, NO. 8, AUGUST 2000 997

Characterization of Sleep Spindles Using Higher
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Abstract—This work characterizes the dynamics of sleep spin-
dles, observed in electroencephalogram (EEG) recorded from hu-
mans during sleep, using both time and frequency domain methods
which depend on higher order statistics and spectra. The time do-
main method combines the use of second- and third-order correla-
tions to reveal information on the stationarity of periodic spindle
rhythms to detect transitions between multiple activities. The fre-
quency domain method, based on normalized spectrum and bis-
pectrum, describes frequency interactions associated with nonlin-
earities occuring in the observed EEG.

Index Terms—Bispectrum, cumulants, EEG, higher order
spectra, higher order statistics, sleep spindles, sum-of-cumulants.

I. INTRODUCTION

T HE electroencephalogram (EEG) is recorded from the
scalp and reflects electrical activity of the brain. These

signals are nonstationary and are possibly generated by
underlying nonlinear processes [1]. This nonlinearity is not
surprising since a wide range of physical and biologic systems
show nonlinear behavior. The EEG is one of the bioelectric
signals used in study of sleep state changes which are important
in both basic and clinical neuroscience.

Adult human sleep, for which several models have been pro-
posed [2], is classified into waking (W), quiet sleep (QS), and
rapid eye movement (REM) stages. QS is further differenti-
ated into four stages on the basis of brain, muscle, and eye ac-
tivity. QS, REM, and occasional momentary wakings occur in
a periodic sequence throughout the night, taking approximately
90 min in the adult. There is some suggestion that this alteration
of W, QS, and REM is a manifestation of a basic rest/activity
cycle characterized by periods of relative activity and action al-
ternating with periods of relative inactivity and fantasy over the
entire day.

The EEG is a continuous time-varying voltage, reflecting on-
going activity in the brain, normally recorded from the scalp
in man [3]. EEG activity typically has amplitudes from 10 to
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100 V and a frequency content of from 0.5 to 40 Hz. Sig-
nals of 10–30 V are considered low amplitude and potentials
of 80–100 V are considered high amplitude. EEG, tradition-
ally, is divided into four bands: from 0 to 4 Hz, from 4
to 8 Hz, ranging 8 to 13 Hz and from 13 to 30 Hz. An
alert person displays a low amplitude EEG of mixed frequen-
cies in the 13–18 Hz range, while a relaxed person produces
large amounts of sinusoidal waves, at a single frequency in the
8–13 Hz range, which are particularly prominant at the back of
the head. As an individual goes to sleep, alpha activity is re-
placed by a lower amplitude, mixed frequency voltage (stage 1
QS), which within minutes has superimposed 1- to 2-s bursts of
12- to 14–Hz activity called sleep spindles (stage 2, QS). Sev-
eral minutes later high-amplitude slow waves (0.5–3 Hz) appear
and mark the onset of stage 3 QS. After about 10 min these slow
waves dominate the EEG and the deepest stage of sleep, stage 4
is reached. After a return through these stages, REM sleep oc-
curs, approximately 90 min after sleep onset.

Spindle activity can be considered as oscillations and
noise-free sleep spindle waveforms may exhibit periodic,
quasiperiodic or complex oscillations. Earlier studies [4], [5]
have shown that there coexist two types of spontaneous spindle
waves. In more recent work [6], it has been shown, by using
matched filtering techniques, that one of these activities is
centered around 12 Hz and the other around 14 Hz. Some
human and animal studies [7], [8] suggest that spindle and
delta rhythms reciprocally oscillate creating difficulties in the
detection of transitions between stages. In a recent study, Sunet
al. [9] localized spindle activity in the brain via time-frequency
analysis and synthesis of EEG, and showed that the origin of
this activity is in the area of thalamus in humans, which is in
agreement with previous data from the cat [5].

In this paper we apply higher order statistical measures both
in the time and frequency domains to investigate the spindle ac-
tivity associated with stage 2 sleep. The time domain techniques,
which depend on the combination of second- and third-order
statistics to trace the oscillatory dynamics of the waveforms
around spindle activity, are used to investigate the nonstationary
behavior of the spindles. While the frequency domain method
is used to investigate frequency interactions which might be due
to nonlinear properties of the central nervous system.

II. M ETHODS

Sleep spindles are considered to be periodic oscillations.
These oscillations exhibit steady-state behavior which can be
modeled either as a linear system with a sinusoidal input or as
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a nonlinear system with a limit cycle. Similarly, quasiperiodic
oscillations [10] may also be linear oscillations where their
system parameters may have more than one degree of freedom
or they may be generated by a nonlinear system. On the other
hand, complex oscillations which cannot be modeled by linear
systems are due to nonlinearities having broader frequency
distributions and sensitivity to initial conditions and system pa-
rameters [10]. Even seemingly very simple systems can exhibit
complex behavior due to the nature of nonlinear components
within these systems.

We review the methods, EEG acquisition and details of our
algorithm in the following Sections.

A. Second- and Third-order Statistics

A well-established tool in the analysis of random or peri-
odic signals is the estimate of autocorrelation function
(a second-order statistic)

(1)

where is a real, mean-removed, discrete-time signal of a
windowed (stationary) EEG segment. The power spectrum of

, which is the Fourier transform of the autocorrelation func-
tion

(2)

quantifies the power contents at the angular frequency; how-
ever, it suppresses the phase relationships of these components.
This loss of information can be important if there exists phase
coupling due to nonlinearity in the signal of interest.

Phase information is conserved in non-Gaussian processes
when the order of the spectrum is greater than two [11],
[12]. The autotriplecorrelation function (third-order statistics)

of is defined as [13], [14]

(3)

and the 2-D Fourier transform of this equation, the bispectrum
of the signal , is expressed by

(4)

It can be shown [14] that the bispectrum in (4) can be written
as

(5)

where * denotes complex conjugate, and is the Fourier
transform of . The power spectrum is given by

(6)

If the signal is segmented into segments of equal
length, or multichannel data is of interest, such as EEG, then
the bispectrum and the power spectrum can be estimated by

(7)

and

(8)

where is the Fourier transform of theth segment or the
channel of the data. Equations (7) and (8) yield a normalized
bispectrum (also referred to as bicoherence, second-order co-
herency, bicoherency index, etc.) [14]

(9)

which can be an important and useful tool for the detection and
characterization of nonlinearities [15], i.e., quadratically cou-
plings.

If is a periodic sequence with period, then is
also periodic. Thus, can be used to estimate the period-
icity of the original signal. However, in speech analysis it is ob-
served that the average magnitude difference function (AMDF)
produces better results in estimating the fundamental period es-
pecially when the observed speech signal is “quasiperiodic.”
Since EEG signal is also quasiperiodic i.e., the periods may
slightly vary in time, we use the AMDF function instead of
the autocorrelation . AMDF is based on the following

th-order difference [16]:

(10)

which is zero for when the signal is
truly periodic with period . Now, by assuming that the sleep
spindle segment of windowed EEG is periodic, we can use a
function of to estimate the fundamental period

(11)

where is the window function and the range ofis within
the range of window support. This expression is referred to as
the short-time average magnitude difference function [16]. One
important feature of this function is that it is indeed similar to
the short-time autocorrelation function (see [16, p. 149, and ref-
erences therein]). AMDF is not only computationally simpler
than the autocorrelation as only absolute differences are com-
puted but it produces more prominent minima around, ,
compared to the autocorrelation. Note that, the lower and upper
boundries of (11) should be arranged properly when the data is
of finite length.

In the study of experimental data in this paper, we use the
following modified version (mAMDF):

(12)
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which can be considered to be a second-order statistical mea-
sure, where is a normalization factor.1 Note
that, similar to the autocorrelation function, the peak-to-peak
values of provide the fundamental period.

The inverse Fourier transform of the bispectrum ,
when calculated on one slice , i.e.,

(13)

is called the sum-of-autotriplecorrelation (SoA) [17]–[19]
which is also periodic with period if is periodic with
period . Clearly, the SoA in (13) is a third-order statistic which
can be modified, in a similar fashion as in (11), as

(14)

and

(15)

We call the modified AMDF of SoA, mAMDFSoA. Here, the
term is, again, the normalization factor. Note
that, since in (13) can be truncated at certain
integer values, the upper and lower boundries of (15) should be
arranged properly.

We use the measures based on the second- and third-order
statistics [(12) and (15), respectively] together to estimate
the periodicity of the spindle activity. If the spindle activity
is purely periodic we expect these estimates to give similar
results.2 If the results are not similar, then the existence of
other linear or nonlinear relations are suggested. Moreover,
the mAMDFSoA in (15) can reveal background frequency
sources or the transition in signal even though other methods
may under-estimate them.

B. EEG Acquisition

It is well known that the variation of the surface potential
distribution on the scalp reflects functional activities emerging
from the underlying brain [20]. This surface potential varia-
tion can be measured by affixing an array of electrodes, which
are usually gold-plated, approximately 1 cm in diameter, to the
scalp, and recording the voltages between pairs of these elec-
trodes, which are then filtered, amplified, and stored. The re-
sulting data is called the EEG. As previously described, sleep
consists of states for which the brain waves are quite different.
Spindles occur during stage two sleep, which occupies more
than 50% of the total sleep time in a typical adult. The data
studied here was spontaneous EEG (sampled at 256 Hz) from
three sleep-deprived male subjects aged 26, 28, and 39 years

1Alternatively, the standard deviation of the window can also be used for nor-
malization.

2Similar or even identical results do not guarantee linearity.

using a 64-channel amplification and acquisition system. To
avoid aliasing, an analog bandpass filter with cutoff frequen-
cies of 0.1 Hz and 70 Hz was utilized before digitization. Elec-
trodes were placed at the sites defined in the International 10-20
System [21] and at the midpoints between these standard sites
(Fig. 1).

C. Estimation of mAMDF and mAMDFSoA

The following steps are applied to estimate and
.

• mAMDF: A 256-point Hamming window is applied to the
data. For , is estimated by using
(11) and (12), respectively.

• mAMDFSoA: To estimate where
, first the autotriplecorrelations in (3)

and then sum-of-autocorrelations in (13) are employed.
After applying a 256-point Hamming window to the
estimated SoA sequence, (14) and (15) are used.

D. Estimation of Normalized Bispectrum

In general longer data is needed for meaningful bispectrum
estimation [14]. We therefore prefer to group the EEG data
over selected time segments (stages) for the frequency domain
analysis. We take the simplest approach by constructing sets
where the set members are frontal, central and parietal elec-
trodes, i.e.,

While associating these neighboring electrodes, we visually
evaluate the data. Moreover, we check for the results of com-
monly used second-order statistical classification methods3

such as correlation coefficients, ratio of harmonic energies,
normalized bandwidths and mean frequencies [22]. Since
approximately equivalent results are obtained, the channels are
assumed to be associated adequately.

The estimation of the (averaged) normalized bispectrum is
then accomplished for each group of channels sharing common
features. These steps are itemized as follows.

• Apply a 256-point Hamming window to the EEG data to
assure local stationarity.

• Remove the mean and estimate the bispectrum using (5).
• Repeat for all the members of the set and then average the

bispectral values using (7).
• Estimate the power spectrum of each segment using (6)

and average them in a similar fashion as in (8).

3Although selection based on the visual evaluation is relatively subjective, the
statistical classifications are widely used in various applications. For example,
the correlation coefficient is commonly used to measure the similarity between a
pair of signals where electrode recordings which have close values can be good
candidates for being in the same set. Similarly, the ratio of harmonic energy
calculations is used to investigate the degree of difference between a signal and
a sinusoid, hence the signals with high repetitiveness can be grouped together.
The mean frequency and the normalized bandwidth correspond to the weighted
average and the spread of the power spectrum, respectively.
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Fig. 1. Location of 64 recording electrodes utilized in obtaining the data in this paper.

• Mask the bispectral values below 10% of the maximum
peak value.4

• Calculate the normalized bispectrum by using (9). Only
the significant levels of normalized bispectrum

are considered for the evaluation of energy interac-
tion among frequencies.

It is important to note that, the results are obtained over one
triangular region , and , simply
because the bispectrum (normalized bispectrum) can be fully
described over all frequencies by using the values in this region
via its symmetry properties [13].

III. RESULTS

We present the time domain and frequency domain results
separately.

A. Time Domain Results

We estimate and for EEG recorded from Cz, Fz,
Pz,andOzduringstage2quietsleep.Thetopplots inFig. 2(a)–(d)

4To identify a threshold for the bispectral estimate we apply apreliminary test
which measures the “goodness” of the normalized bispectrum by using (100 sets
of 512 points of) Gaussian data. The normalized bispectrum of Gaussian data is
found to be relatively close to zero(b � 0) where its maximum magnitude is
measured to be less then of 0.1. Therefore,b > 0:1 is selected as thelevel of
significance.

are segments of 8 s containing spindle activity plotted as a func-
tion of sample points. Both visual evalution and the energy distri-
bution of bandpass (between 10–15 Hz) filtered data indicate that
thespindleactivitystartsapproximatelyat samplepoint1000and
ends at 1400 as shown in the bottom plots in Fig. 2(a)–(d). Note
that the energy distributions have greater values at the electrode
position Pz conforming that the spindle activity can be observed
clearly in the dorsal/posterior region of the head.

After applying a sliding window of 256 sample points (corre-
sponds to 1 s in time) to the data, estimations were obtained for
the mAMDF (12) and mADMFSoA (15). Interesting results are
observed when the window is located between samples 1135 to
1390 4.5–5.5 s); i.e., the time region where spindle activity
is in progress as can be seen in the top plots of Fig. 3(a)–(d). We
see that the second-order estimates (the middle plots of Fig. 3)
are similar for all channels. This suggests that any second-order
method (e.g., autocorrelation or power spectrum) will yield sim-
ilar results in this segment for all channels. However, when we
examine the third-order estimates (the bottom plots of Fig. 3), it
may be seen that the results for Oz are radically different from
all others, while the results for Cz and Fz are similar to each
other. The third-order results for Pz are different from all other
third-order results, but are similar to the second-order results for
all other channels.

When the window is moved forward to cover samples
1198–1453 the second- and third-order estimates have similar
results as shown in Fig. 4(a)–(d) consistent with the observed
steady-state oscillation in all channels.
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(a) (b)

(c) (d)

Fig. 2. Raw EEG samples of Cz, Fz, Pz and Oz (top plots). After applying a bandpass (8–15 Hz) filter to each channel their energy distributions over samples
(bottom plots) in (a), (b), (c) and (d); respectively.

B. Frequency Domain Results

The averaged normalized bispectra and power spectra5 of
sets C , F, andP from sample points 1135–1390 are given
in Figs. 5(a) and (b)–7(a) and (b), respectively. In Fig. 5(a) the
contour plot of the averaged normalized bispectrum from the
channels of data in theset C is given, whereas in Fig. 5(b)
of the same figure the averaged normalized power spectrum for
the same set is presented. While the power spectrum exhibits a
strong peak in the 12–15 Hz range, the normalized bispectrum
reveals how tightly the frequency values interact quadractically
among themselves. For example, as seen in Fig. 5(a), the fre-
quency regions at where and
Hz; and Hz; and

Hz; and finally and Hz
show strong (almost unity) quadratical interactions. However, it
is quite difficult, if not impossible, to extract this information

5For visualization purposes, the averaged power spectrum values are normal-
ized with respect to the peak value for each figure. Also, for the normalized
bispectrum, only the half of the triangular region is shown.

from Fig. 5(b) only. Fig. 5(a) clearly indicates more frequency
interactions.

Similar quadratic interactions are observed for theset F
data in Fig. 6(a). Compared to the result of the previous set, the
distribution of frequency values seems to be similar. However,
the more numerous interactions are shifted toward
Hz line and the region at where and

Hz. The averaged and normalized power spec-
trum shown in Fig. 6(b) reveals additional low frequency ac-
tivity when compared with the result of the previous set.

The results related toset P is given in Fig. 7. It is clear that
for this time period, this region of brain is highly dominated by
the spindle activity as the bispectrum shown in Fig. 7(a) and
the power spectrum shown in Fig. 7(b). Moreover, the bispectra
suggest that it would be more realistic to think that the sleep
spindle activity has at least some types of second-order non-
linearity (due to the appearance of the strong interactions in the

and Hz region). In addition, another
interesting point arises when we compare the power spectrum
estimate given in Fig. 5(b) with the one presented in Fig. 7(b).
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(a) (b)

(c) (d)

Fig. 3. EEG segments of Cz, Fz, Pz and Oz from samples 1135–1390 (top plots), mAMDF measurements (middle plots), mAMDFSoA of data with lag 100
(bottom plots) in (a), (b), (c), and (d); respectively.

Although they seemed to be similar, the bispectra in Fig. 5(a)
and Fig. 7(a) are drastically different.

We show the results forsets C , F andP when the window
is moved forward to cover samples 1198–1453 in Figs. 8(a)
and (b)–10(a) and (b), respectively. In Fig. 8(a) the contour plot
of the averaged normalized bispectrum fromset C is given,
whereas in Fig. 8(b) normalized power spectrum is shown. The
power spectrum continues to exhibit a strong peak in the 12–15
Hz range. The normalized bispectrum in Fig. 8(a), when com-
pared to Fig. 5(a), indicates relatively weaker quadratical inter-
actions in the Hz line. The existance of a lower
frequency activity is visible both in the power spectrum and bis-
pectrum plots.

Weaker quadratic interactions are observed for theset F
data in Fig. 9(a) when compared to Fig. 6(a). Now, interactions
are shifted toward the low frequency region. On the other hand,
the averaged and normalized power spectra shown in Figs. 9(b)
and 6(b) have similar results.

The results related withset P are included in Fig. 10, where
they confirm that the spindle activity is dominating this region
of brain with showing small interactions with other lower fre-
quency components.

C. Test by Simulation

To support the results of the time and frequency domain
methods, we have simulated the spindle data by selecting a
simple second-order nonlinear model, i.e.,

(16)

where is a constant, is noise and is defined as

(17)
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(a) (b)

(c) (d)

Fig. 4. EEG segments of Cz, Fz, Pz and Oz from samples 1198–1453 (top plots), mAMDF measurements (middle plots), mAMDFSoA of data with lag 100
(bottom plots) in (a), (b), (c), and (d); respectively.

In (17) is the number of dominant frequencies,, in , ,
and bands, and ’s are the corresponding amplitude values,
respectively. For the purpose of demonstration, we assigned
values to these parameters as

and added zero-mean Gaussian noise to maintain a signal-to-
noise ratio of 20 dB. We, then, estimated and plotted the normal-
ized bispectrum, averaged power spectrum and mAMDF plus
mAMDFSoA in Fig. 11(a)–(c). The normalized bispectrum in
Fig. 11(a) reveals the nonlinearity through strong frequency in-

teractions in 2, and 14 Hz lines. In
contrast, the nonlinearity cannot be detected by the power spec-
trum given in Fig. 11(b). It is interesting to observe that, for this
data, the mAMDF and mAMDFSoA exhibit similar behavior as
shown in Fig. 11(c).

IV. DISCUSSION

Various Fourier transform-based frequency methods for data
analysis have been applied to the sleep EEG for more than two
decades [3], [23], [24]. However, the use of higher order spectral
techniques (i.e., the normalized bispectrum) which may detect
and measure the interactions between frequency components of
the EEG has only been investigated in a few cases.
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(a) (b)

Fig. 5. For data set of Cz, C1, C2, C3, C4, C5, C6, C7 from samples 1135–1390. (a) Contour plot of the normalized bispectrum. (b) Averaged and normalized
power spectrum.

(a) (b)

Fig. 6. For data set of Fz, F1, F2, F3, F4, F5, F6, F7, F8, F9 from samples 1135–1390. (a) Contour plot of the normalized bispectrum. (b) Averaged and normalized
power spectrum.

One of the first applications of the bispectral analysis was
the analysis of human EEG during sleep/wake states [25]. In
this study, it was reported that, during the wake state, beta
activity was dependent on alpha activity, that this dependency
could be estimated by computing the bispectrum, and that this
activity was not related to sleep stages. Another bispectral ap-
plication of EEG was in the detection and quantification of
the phase coupling in the cortical and hippocampal EEG in
rats [26]. It was also demonstrated that the hippocampal EEG
during REM sleep showed a strong quadratic phase coupling
in rhythms [27]. Recently, a comparative study to the evalua-
tion of the parametrical bispectral algorithms dealing with the

identification of the alpha rhythms in EEG was reported [28].
Finally, a recent study investigated the measurement of linear
and nonlinear phase relationships between EEG signals from
different electrode positions in cortical areas during execution
of finger movements [29].

In this study, we have investigated time and frequency domain
methods for analyzing sleep spindles. The time domain methods
depend on the combination of second- and third-order statistical
tools to detect the oscillatory dynamics of the spindle activity. In
particular, we used two types of estimates: the autocorrelation
and average magnitude differentiated sum-of-autotriplecorrela-
tions. If both these second- and third-order methods exhibit sim-



AKGÜL et al.: CHARACTERIZATION OF SLEEP SPINDLES USING HIGHER ORDER STATISTICS AND SPECTRA 1005

(a) (b)

Fig. 7. For data set of Pz, P1, P2, P3, P4, P5, P6, P7, P8, P9 from samples 1135–1390. (a) Contour plot of the normalized bispectrum. (b) Averaged and normalized
power spectrum.

(a) (b)

Fig. 8. For data set of Cz, C1, C2, C3, C4, C5, C6, C7 from samples 1198–1453. (a) Contour view of the normalized bispectrum. (b) Averaged and normalized
power spectrum.

ilar periodic behavior then we conclude that only “stationary”
spindle activity exists. However, if they are different then the
data has some influence from other (linear or nonlinear) activi-
ties which may occur due to complexities within this particular
frame [1], [30]. We want to emphasize here that these time-do-
main parameters are not useful for the detection of nonlinearities
within given data, but for the detection of “stationarity” of the
spindle oscillations.

On the other hand, the existence of a nonlinearity can be
tested via the bispectral analysis of EEG which characterizes
the interaction of activity (within selected EEG segments) for
different frequencies. It is important to mention that the selec-

tion of adequate EEG segments is critical, as it is necessary
to assume that the characteristics of the signal are approxi-
mately constant over these segments. For the frequency domain
method, we have summarized the estimation method of the
normalized bispectrum and discussed the issues of detecting
those quadratic couplings which may occur due to existing
nonlinearities. We have applied the bispectral techniques to
adequately grouped EEG sleep stages and different epochs of
various EEG sleep recordings. Our results suggest that, during
sleep spindle activity, some types of nonlinearities exist. How-
ever, since our tests were limited to identifying second-order
nonlinearities, the existence of higher order2) nonlinearities
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(a) (b)

Fig. 9. For data set of Fz, F1, F2, F3, F4, F5, F6, F7, F8, F9 from samples 1198–1453. (a) Contour plot of the normalized bispectrum. (b) Averaged and normalized
power spectrum.

(a) (b)

Fig. 10. For data set of Pz, P1, P2, P3, P4, P5, P6, P7, P8, P9 from samples 1198–1453. (a) Contour plot of the normalized bispectrum. (b) Averaged and
normalized power spectrum.

should be checked for all possible orders of the normalized
higher order spectra.

In many applications, bispectral estimates in (4) can be ade-
quately used for detection of periodicities [31], (9) acts as the
discriminant of linear from nonlinear processes. For example,
is constant either for linear systems6 [15] or fully coupled fre-
quencies [32] and for either Gaussian signals7 or random
phase relations where no quadratic couplings occur. Clearly,

6However, constantb (! ; ! ) does not guarantee a linear system.
7In theory, since the bispectrum of zero-mean Gaussian process is zero, the

normalized bispectrum is also null which is a measure for the EEG segments
whether they are Gaussian (symmetrically distributed) or not.

when the values of normalized bispectrum vary between zero
and one ( ), then couplings of the frequencies occur.
The coherency value that is close to unity at frequency
pairs indicates a quadratic interaction; however, a value close
to zero indicates either low or absent interactions [14]. Nev-
ertheless, in general, there may be couplings occuring at var-
ious frequency values where the transfer of energy is not due to

only, so this interpretation is rather difficult or even
invalid [32]. Although such a case is complicated and difficult
to interpret, the normalized bispectrum suggests the degree of
couplings between two frequencies. For the statistics of the nor-
malized bispectral estimate given in (9), the interested reader
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(a) (b)

(c)

Fig. 11. For artificial data. (a) Contour plot of the normalized bispectrum; (b) averaged and normalized power spectrum. (c) its mAMDF (middle) and its
mAMDFSoA (bottom).

may study [33] and the references therein, as well as [34] to
overcome the confusion which may arise during practical work.
The bispectrum also suppresses the zero-mean additive noise if
the noise is uncorrelated to the signal and symmetrically dis-
tributed [13], [14]. However, in practice, one should pay atten-
tion to noise contamination, which may corrupt the linearity and
nonlinearity test results [35].

Both the time and frequency domain experiments show that:
1) spindle activity may not uniformly dominate all regions of
brain; 2) during the spindle activity frontal recordings still ex-
hibit rich mixtures in frequency contents and couplings. On
the other hand, data from the posterior region of the head ex-
hibit a poor couplings but demonstrate dominancy to spindle
activity, which confirms some other recent (second-order statis-
tics based) studies [6]; 3) evidences suggest that sleep spindle
activity ought to be envisaged by having at least second-order
nonlinearity.
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