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Abstract

In a mobile computing environment, a user with a wireless connection to the infor-

mation network can access data via submitting queries to data servers. As the mobility is

the most distinguishing feature of the mobile computing paradigm, location becomes an

important piece of information for the so-called location-dependent queries, where the

answer to a query depends on the current location of the user who issued the query. A

location-dependent query submitted by a mobile user can become more di�cult to

process when it is submitted as a continuous query (CQ) for which the answer changes as

the user moves. The answer to a location-dependent CQ can be provided as a set of tuples

hS; begin; endi indicating that object S is the answer of the query from time begin to time

end. Once the tuples in the answer set are determined, the next step is to determine the

transmission time of these tuples to the user. Transmission time of tuples is critical in the

sense that it can have a considerable impact on both the communication overhead im-

posed on the wireless network and the availability of tuples in case of disconnections. In

this paper, we propose three tuple transmission approaches that can be used to determine

the transmission time of tuples in the answer set of a location-dependent CQ. We also

evaluate the relative performance of the proposed approaches under di�erent settings of

environmental parameters. Ó 2000 Elsevier Science Inc. All rights reserved.
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1. Introduction

Recent advances in computer hardware technology and wireless communi-
cation networks have led to the emergence of mobile computing systems [4,10].
In a mobile computing environment, a user with a wireless connection to the
information network does not require to maintain a ®xed position in the net-
work [2,18]. As the mobility is the most distinguishing feature of the mobile
computing paradigm, location becomes an important piece of information for
the so-called location-dependent queries [13,14,16,20]. Consider a database
representing information about moving objects and their position in addition
to information about stationary objects. A typical query submitted to a hotel
management system might be: ``display motels (with room price and avail-
ability) that are within 5 miles of my position''; or in a battle®eld a typical
query submitted might be: ``display the friendly tanks within 10 miles of my
position''. Such queries may be issued from a moving object (e.g., car of a
mobile user) or from a stationary user. Consequently, the answer to a location-
dependent query may depend on the location of the mobile host (MH) which
issued the query and/or the locations of the objects represented in the database.

A location-dependent query can become more di�cult to process when it is
submitted as a continuous query (CQ) [13,14]. The driver querying the motels in
the above example may request the answer to the query to be continuously
updated so that he/she can ®nd a motel with a reasonable price. It is clear that
the answer to such a query changes with the car movement and continuously
updating driver's location would impose a serious performance and wireless
bandwidth overhead. Existing database management systems are not well
equipped to handle continuously changing data such as the position of moving
objects, since the data are assumed to be constant unless they are explicitly
modi®ed. The position of a moving object changes continuously as a function
of time. Hence, the answer to a CQ depends not only on the database contents
but also on the time at which the query is issued.

In [13,14], a new data model called moving objects spatio-temporal (MOST)
is proposed for databases containing position information about moving ob-
jects. MOST models the position of a moving object as a function of time.
Therefore, the answer to the query: ``retrieve the current position of the object
O'' in the MOST data model is di�erent for time points t1 and t2 even if the
value of the attribute specifying Os position has not been explicitly updated.

Consider again the CQ: ``display motels within 5 miles of my position'' is-
sued by a person driving a car. When such a CQ is entered in the MOST data
model, the query is evaluated once and a set of tuples is returned as the answer.
The answer set consists of tuples hS; begin; endi indicating that object S is the
answer of the CQ from time begin to time end. Once the answer to the query is
computed, a decision has to be made in order to determine the time to send the
tuples in the answer set of the CQ to the MH. There are two basic approaches
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introduced in [13] to transmit the tuples to the MH: immediate transmission
(IT) and delayed transmission (DT). In the IT approach, the whole answer set is
transmitted immediately after being computed. In the DT approach, each tuple
hS; begin; endi is transmitted to the MH at time begin.

In this paper, we present three new approaches for the transmission of the
tuples in the answer set of a location-dependent CQ. The ®rst approach called
periodic transmission (PT) transmits the tuples in the answer set periodically. At
each w time units, this method transmits all the tuples hS; begin; endi satisfying
the condition t6 begin < t � w, where t is the current time and w is the size of
the time window. In the second approach which we call adaptive periodic
transmission (APT), as an extension to the ®rst approach, w is dynamically
adjusted according to the communication overhead changing due to environ-
mental parameters such as data update rate, disconnection frequency, and
disconnection period. The ®nal approach, called mixed transmission (MT),
di�ers from the ®rst two approaches in that data objects are partitioned into
two groups: one consisting of ``hot'' objects of updates and the other of ``cold''
objects of updates. This approach transmits the ``hot'' tuples as in APT and
``cold'' tuples as in IT.

We have implemented a simulation model of a mobile computing system
that supports processing of CQs issued by MHs over the database of moving
objects. The simulation model is used to study the performance of the proposed
approaches in terms of the communication overhead and the availability of
tuples in the answer set of a CQ in case of a disconnection, and also to in-
vestigate performance enhancements of these approaches over the basic
schemes provided in [13,14].

The remainder of this paper is organized as follows. Section 2 provides the
related work. In Section 3, the motivation for our work is discussed. In Section 4,
we describe the approaches provided to determine the transmission time of the
tuples in the answer set of location-dependent CQs. In Section 5, we present the
simulation model that was used to evaluate the performance of the proposed
approaches. Section 6 provides description of the experiments conducted and
discussion of the results obtained. Concluding remarks are provided in Section 7.

2. Related work

A mobile computing environment can be characterized by frequent dis-
connections of MHs, signi®cant limitations of bandwidth and power, resource
restrictions, and fast changing locations. All such characteristics associated
with mobile systems make traditional techniques used in distributed computing
systems inadequate and raise new challenging research problems.

There exists a considerable number of papers discussing general issues and
research challenges related to mobility. The new challenges in mobile data
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management are identi®ed and their technical signi®cance is investigated in
[5,6]. Ref. [3] focuses on the di�erences between data management solutions in
a mobile computing environment and those in a distributed database envi-
ronment. The impact of mobility on current software systems is discussed in
[10]. Fundamental software design problems particular to mobile computing
environments are addressed in [4]. A general architecture for a mobile infor-
mation system is described in [11].

Issues regarding mobile data management to respond to real-time data ac-
cess requirements of supported applications are discussed in [17]. A variety of
transaction execution models that take into account timing requirements of
mobile computing system applications are proposed in [7,8].

The problems associated with the indexing of the dynamic attributes (such
as location) in a mobile database system are addressed in [16]. A variant of the
quadtree structure for indexing dynamic attributes is proposed and an algo-
rithm for generating the index periodically that minimizes the CPU and disk
access cost is provided.

The problem of cache invalidation in mobile environments is addressed in
detail in [1]. The basic idea behind the APT approach presented in our paper
was inspired from the adaptive caching algorithm introduced in that paper.
However, our context of adaptiveness is completely di�erent. The problem we
address is the determination of transmission times of the tuples in the answer
set of a location-dependent CQ, rather than the problem of cache invalidation.
In order to adapt to the environmental parameters, the APT approach focuses
on the overhead caused by the control messages and the retransmissions
whereas the adaptive caching algorithm in [1] deals with the overhead of the
false cache invalidation.

The most relevant work to ours is the one presented in a series of papers
[13,14,19,20]. Issues related to moving objects databases such as indexing, lo-
cation updates of moving objects, modeling, and querying moving objects are
exclusively addressed in these papers. A new data model (MOST) is proposed
to model moving objects. Future Temporal Logic (FTL) is provided as the
query language for the MOST data model. An algorithm for processing FTL
queries in the MOST data model is also provided. The MOST model supports
continuous queries and their processing algorithm processes such queries
without a recomputation of the query at each clock-tick. It is assumed by this
model that there is a natural, user-friendly way of entering the current position
and motion vector of objects into the database.

3. Motivation

Once the tuples in the answer set of a location dependent continuous query
(CQ) are generated, the next step is to determine when to transmit these tuples
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to the MH which issued the query. There are two basic dimensions of the
communication overhead regarding the transmission of the tuples in the an-
swer set of a CQ:

1. Control Message Overhead: According to the point-to-point communi-
cation paradigm [15], a message to be transmitted is appended to a ®xed size
control message.

2. Tuple Retransmission Overhead: An explicit update to an object in the
database may change the tuples referring to the updated object as shown in
Fig. 1. The same object may satisfy the query but begin and/or end attribute of
the tuple may change (Fig. 1(I), and (II)). It is also possible that a tuple re-
ferring to the updated object may no longer satisfy the query (Fig. 1(II) and
(III)), and/or a new object may satisfy one or more of the active queries that it
did not satisfy previously (Fig. 1(II) and (III)).

Suppose that the subattributes representing the position of a moving object
S are explicitly updated at time t1 and the tuple hS; begin; endi referring to S is
updated accordingly (i.e., the tuple still satis®es the corresponding query). As
far as the begin time of the tuple is concerned, there are two possible cases:

Case 1. t16 begin
Case 2. t1 > begin
In the ®rst case, a retransmission of the tuple to the corresponding MH is

necessary only if the tuple was previously transmitted to the MH. In the second
case, a retransmission is mandatory because the tuple must have been trans-
mitted to the MH by the time begin.

Fig. 1. Possible e�ects of an explicit update.
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We want to make it clear that tuple transmission approaches may handle
Case 1 in di�erent ways because it is possible to transmit a tuple at any time
t6 begin. In contrast, retransmission at the time of update cannot be avoided
with any approach in Case 2. Therefore, from now on we limit the scope of the
retransmissions to exclude the ones that are due to an explicit update at
t1 > begin.

In order to minimize the control message overhead, all tuples to be trans-
mitted to the MH should be gathered and form a single message. This means
that all tuples in the answer set are transmitted at any time before the begin
time of the tuple with the earliest begin. On the other hand, this strategy causes
retransmission of some tuples to the MH in case of an explicit update. In order
to minimize the probability of retransmission of a tuple, the tuple should be
transmitted by its begin time. However, in the worst case this strategy leads to a
situation where each tuple is appended to a control message. It is clear that the
e�orts for reducing the control message overhead increases the retransmission
overhead and vice versa.

Tuple transmission time is critical especially for the applications where
message transmission service is charged a ®xed amount of money per byte
basis. For example, RAM Mobile Data Corporation charges a minimum of 4
cents per message, with the exact cost depending on the size of the message [19].
Given a set of tuples as the answer to a CQ, di�erent tuple transmission ap-
proaches produce bills with di�erent amounts.

Underlying tuple transmission approach also a�ects the duration the MH
operates in doze (energy saving) mode. The number of transmissions and the
total time the MH spends listening to the communication channel must be
minimized in order to minimize the energy spent by the MH. Energy preser-
vation is critical because MHs have limited battery capacity, 2 or 3 h under
normal use, which is expected to increase only 20% over the next 10 years
[6,11].

Given the same set of tuples as the answer to a CQ, tuple transmission
strategies may di�er in their ability to support the stand-alone working capa-
bility of an MH in case of disconnection. That is, when an MH is disconnected
after receiving a number of tuples that are in the answer set of an issued CQ, it
can continue displaying the received tuples during the disconnection period in
the stand-alone mode (although the updates cannot be transmitted to it). The
performance of tuple transmission approaches in terms of supporting the
above ability may also be critical in some applications (e.g., in a battle®eld).

4. Tuple transmission approaches

In this section, we present the methods that are used to determine the
transmission time of tuples in the answer set of a location-dependent CQ issued
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by an MH. We also discuss the bene®ts and drawbacks of the approaches in
terms of control message overhead, tuple retransmission overhead, and the
handling of disconnection behavior.

4.1. IT approach

According to the IT approach presented in [13,14], all the tuples that belong
to the answer set of a CQ issued by an MH are transmitted at once at the time
the query processing is ®nished. Upon receiving the answer set, the MH dis-
plays them on the screen accordingly. This approach has the following char-
acteristics:
1. It minimizes the control message overhead. All tuples are gathered in a sin-

gle message which also means a single control message.
2. When a tuple is changed due to an explicit update of an object after the que-

ry is processed, it has to be retransmitted.
3. In case the MH disconnects after sometime it has received the answer set of

its query, it has the whole answer set.

4.2. DT Approach

According to the DT approach proposed in [13,14], a tuple hS; begin; endi is
transmitted to the MH at time begin. Upon receiving a tuple, the MH imme-
diately displays it on the screen. This approach has the following characteristics:
1. It maximizes the control message overhead. Each tuple is appended to a

control message and then transmitted.
2. The probability that a tuple has to be retransmitted in case of an explicit up-

date to a database object, is minimized.
3. In case the MH disconnects after sometime it has started to receive the tu-

ples in the answer of its CQ, it has the partial answer set.

4.3. PT approach

PT is an intermediate approach lying between IT and DT. According to this
approach, at each w time units, all the tuples hS; begin; endi satisfying the
condition t6 begin < t � w, where t is the current time, are transmitted to the
MH. We call w the window size which speci®es the time interval containing the
begin time of the tuples to be transmitted. This approach has the following
characteristics:
1. The control message overhead is less than that of the DT approach but

greater than that of the IT approach.
2. The probability that a tuple has to be retransmitted in case of an explicit up-

date to a database object is less than it is in the IT approach but greater than
it is in the DT approach.
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3. In case the MH disconnects after sometime it has started to receive the tu-
ples in the answer of its query, it has the partial answer set.

4.4. APT approach

The PT approach maintains a constant window size (w) for determining the
tuple transmission times. The value of w a�ects both the control message
overhead and the retransmission overhead. Large values of w reduces the
control message overhead while increasing the retransmission overhead.
Likewise, small values of w reduces the retransmission overhead while in-
creasing the control message overhead.

Data update rate and the resulting overhead due to the retransmission of
the updated tuples might vary during the execution of a mobile system. It
might be appropriate to have a large w value in order to reduce the control
message overhead when updates to the database objects are rare. Similarly, it
might be appropriate to have a small w value in order to reduce the re-
transmission overhead when the updates are frequent. Taking into account
the above facts, the APT approach adjusts w by evaluating the information
about the relative overheads due to control messages and retransmissions.
The period of adjustment of w is called the evaluation period of the window
size.

The control message overhead is speci®ed by the number of control message
bits transmitted with the original tuples (excluding updated tuples) in the an-
swer set of a CQ. The retransmission overhead is speci®ed by the number of
bits transmitted as the retransmission messages which consist of the updated
tuples and their control messages. We capture the information about these two
overheads in a parameter called overhead ratio that can be de®ned as follows:

De®nition 4.1. The overhead ratio Vi during the ith evaluation period is the
ratio of control message overhead Ci over retransmission overhead Ri during
that period. It is speci®ed by the formula

Vi � Ci

Ri
:

APT uses the overhead ratio as a measure to evaluate the performance with
w for the last evaluation period. Comparing the values of the overhead ratios
for the last two evaluation periods, APT decides how to adjust w for the next
evaluation period. At the ith evaluation, the window size is adjusted by using
the following formula:

Di � Vi ÿ Viÿ1:
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· Di > 0 means that the control message overhead relative to the retransmis-
sion overhead during the ith evaluation period is higher when compared
to the �iÿ 1�th evaluation period. So, the window size should be increased
to reduce the control message overhead.

· Di < 0 means that the retransmission overhead relative to the control mes-
sage overhead during the ith evaluation period is higher when compared
to the �iÿ 1�th evaluation period. So, the window size should be decreased
to reduce the retransmission overhead.
Formally,

w �
w� � if Di > 0;
wÿ � if Di < 0;
w otherwise:

8<:
It can be easily con®rmed that the probability that an updated tuple will be

retransmitted depends on the value of w. Large values of w increase the re-
transmission probability while the small values of w decrease that probability.
Similarly, the value of w also a�ects the availability of the tuples in the answer
set in case of disconnections. Large values of w makes it possible for the MH to
have more tuples compared to the case with small values of w.

4.5. MT approach

APT presented above maintains a single window size for the whole dat-
abase. This approach does su�er from the following shortcoming. The dat-
abase may consist of a mixture of frequently changing objects (e.g., moving
objects like cars) and rarely changing objects (e.g., motels). It may happen in
this database system that w cannot be increased because of the heavy re-
transmission overhead caused by frequently changing objects. On the other
hand, small values of w are not appropriate for rarely changing objects since
this would increase the control message overhead although this overhead is
supposed to be minimal for such objects.

In order to handle the above problem, the MT approach partitions the
database into two disjoint sets: one consisting of ``hot'' database objects (i.e.,
frequently changing) and the other consisting of ``cold'' database objects (i.e.,
rarely changing). This approach transmits the tuples referring the ``cold''
database objects as in the IT approach and the tuples referring the ``hot''
database objects as in the APT approach. Therefore, the control message
overhead and the retransmission overhead is mostly limited to those associ-
ated with tuples referring to ``hot'' database objects. Consequently, we
modify the de®nition of the overhead ratio to cover only ``hot'' database
objects (Oh).
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De®nition 4.2. The overhead ratio Vi�Oh� for ``hot'' database objects during the
ith evaluation period is the ratio of control message overhead Ci�Oh� over
retransmission overhead Ri�Oh� during that period. It is speci®ed by the for-
mula

Vi�Oh� � Ci�Oh�
Ri�Oh� :

MT decides how to adjust w for the next evaluation period using the fol-
lowing equation:

Di�Oh� � Vi�Oh� ÿ Viÿ1�Oh�:
Formally,

w�Oh� �
w�Oh� � � if Di�Oh� > 0;
w�Oh� ÿ � if Di�Oh� < 0;
w�Oh� otherwise:

8<:
Thus, the control message overhead for the tuples referring to ``cold'' objects

is minimized by making use of the fact that those objects are rarely updated.
The retransmission and control message overheads for the tuples referring to
``hot'' objects is reduced by transmitting these tuples as in APT.

The availability of the tuples in the answer set of a CQ in case of discon-
nection can be considered separately for the tuples referring to ``cold'' and
``hot'' objects. All the tuples referring to ``cold'' objects will be available to the
MH but the availability of the tuples referring to ``hot'' objects will depend on
the current value of w�Oh�.

5. Simulation Model

We have designed a simulation model to compare the performance of tuple
transmission approaches IT, DT, PT, APT, and MT under di�erent settings of
environmental parameters such as the data update rate and disconnection
period. Our simulation model is based on the performance models proposed in
previous related works such as [1,9]. These models have been extended to
support modeling of processing location-dependent CQs.

As shown in Fig. 2, the simulation model consists of three basic compo-
nents:
1. Mobile Client Model
2. Wireless Network Manager
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3. Server Model
In the following subsections, we describe each component in detail.

5.1. Mobile Client Model

Each mobile client is composed of three modules as shown in Fig. 3: a
Resource Manager which models the client CPU for handling the query results,
a Query Generator which generates the query requests, and a Client Manager
which processes the query requests and passes them to the server, models the
disconnection operation, and receives and processes the tuples transmitted
from the server.

Client queries are submitted from an MH to the server to be processed and a
message (messages) containing the tuples that form the answer to the query is
(are) transmitted back to the MH. The messages containing the tuples are
processed by the MH and the tuples are displayed on the screen of the MH
accordingly.

Table 1 lists the parameters of the Mobile Client Model. Each of the
NumMobileHosts MHs generates a single stream of CQ with size QueryRe-
questSize. The arrival of a new query is separated from the completion of the
previous query by an exponentially distributed think time with a mean of
ThinkTime. The query duration, during which the query should be processed, is
chosen randomly by the Query Generator and has the maximum value Max-
QueryDuration. The probability that an MH will enter into a disconnection
mode after issuing a query is determined by using DisconnectProb and the time
delay before the disconnection is chosen uniformly within the execution time of
the issued query. The duration that the MH will stay disconnected is chosen
from an exponential distribution with a mean of DisconnectTime. When the

Fig. 2. The Simulation Model.
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MH later reconnects to the network, it sends a message having size Connect-
MsgSize to inform the Server Manager.

No I/O time is modeled in the Resource Manager Module since we assume
that the bu�er pools of MHs are large enough to hold all the tuples received in

Fig. 3. Mobile Client Model.

Table 1

Mobile Client Model parameters

Parameter Meaning

NumMobileHosts Number of MHs

QueryRequestSize Size of a CQ submitted by an MH

ThinkTime Mean think time between queries in connect mode

DisconnectTime Mean disconnect time

MaxQueryDuration Maximum query duration

DisconnectProb The probability that the MH will be disconnected after

issuing a query

ClientMsgTime CPU time to process a message per byte basis

ConnectMsgSize Size of a connection indication message
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response to an issued CQ. Each MH has a single CPU and the CPU time for
processing a message per byte basis is determined by ClientMsgTime.

5.2. Wireless Network Manager

Table 2 lists the parameters associated with the Wireless Network Manager.
The Wireless Network Manager component assumes that all messages are of
equal priority that will be served on a First-Come First-Served (FCFS) basis
with a service rate of NetworkBandwidth. When a message is to be transmitted,
it is appended to a control message having size ControlMsgSize.

When the Wireless Network Manager ®nds out (i.e., while sending a mes-
sage to an MH) that an MH is disconnected, it informs the Server Manager
about the disconnection so that the transmission of the tuples to the MH can
be paused until the MH reconnects to the network.

5.3. Server Model

The central server model has three modules as shown in Fig. 4: a Resource
Manager Module which models the server CPU time for query and update
processing, an Update Generator which generates update requests, and a
Server Manager Module which coordinates the query requests from MHs and
update requests from the Update Generator.

The input parameters for the server model are listed in Table 3. The Re-
source Manager Module that models the database and physical resources of
the system has NumCPU CPUs. The CPU time for processing a query and an
update are speci®ed by the parameters ServerQueryTime and ServerUpdate-
Time, respectively. All query and update requests are processed with the same
priority on an FCFS basis. The database is modeled as a collection of Data-
baseSize objects each with size ObjectSize. No I/O operation is modeled since
we assume that the bu�er pool in the server is large enough to hold the entire
database.

When a CQ is issued by an MH, it is processed by the Server Manager and
the set of tuples satisfying the query are determined. The number of tuples in
the answer set of a CQ is determined randomly using a maximum value of
MaxNumTuple. The size of each tuple is speci®ed by TupleSize.

The Server Manager also decides when and which tuples should be trans-
mitted to the MH depending on the underlying tuple transmission approach

Table 2

Wireless Network Manager parameters

Parameter Meaning

NetworkBandwidth Wireless network bandwidth

ControlMsgSize Size of a control message on the wireless network
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(i.e., one of the IT, DT, PT, APT, MT approaches). The window size is also
adjusted by the Server Manager for the APT and MT approaches. The window
size is evaluated and adjusted every EvaluationPeriod time units. Depending on
the underlying policy, the window size is incremented or decremented by a
small integer �. We assume that the time needed to evaluate and adjust the
window size is negligible and therefore do not take it into account in our model.

At the server, a single stream of updates is generated. These updates are
separated by an exponentially distributed update interarrival time with a mean
of UpdateArrTime. Our model can specify di�erent update and query patterns.
For the central data server, HotUpdateBounds and ColdUpdateBounds pa-
rameters are used to specify the ``hot'' and ``cold'' regions of the database,
respectively, for update requests. HotUpdateProb and HotQueryProb specify
the probability that an update will be applied to a database object in the ``hot''
database region and a tuple in the answer set of a CQ will refer to a ``hot''
object, respectively. HotRemoveProb and ColdRemoveProb specify the proba-
bility that a tuple referring to a ``hot'' object and a ``cold'' object will be re-
moved from the answer set, respectively.

Fig. 4. Server Model.
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When a database object is explicitly updated, we assume that all the tuples in
the answer set of every CQ that refer to the updated object, are changed. For
simplicity, we ignore the possibility that the updated object may satisfy new
queries that it did not satisfy before. We also assume that the attributes rep-
resenting the position of the MH that issued the query do not change until the
query processing is completed; because, such a change results in reevaluation of
the query and in this study we focus on retransmissions rather than reevalu-
ations. However, this assumption does not mean that the querying MH is a
stationary object.

When a tuple in an answer set is updated, it is immediately retransmitted to
the corresponding MH. The original tuple (before update) may be in use at the
MH at the time of the update and MH must be informed about the update to
the tuple immediately so that it can invalidate the original tuple.

When the Wireless Network Manager detects that an MH is disconnected, it
informs the Server Manager to pause transmitting tuples to the MH until it re-
connects to the network. When the MH reconnects, the Server Manager resumes
transmitting the valid tuples (tuples with end time6 current time) to the MH.

6. Experiments and results

In this section, we present the performance results for the tuple transmission
approaches for CQs that we discussed in Section 4. A number of simulation

Table 3

Server Model parameters

Parameter Meaning

NumCPU Number of CPUs

ServerQueryTime Service time for a query in the data server

ServerUpdateTime Service time for an update in the data server

DatabaseSize Number of objects in the database

ObjectSize Size of a database object

MaxNumTuple Maximum number of tuples that can satisfy a CQ

TupleSize Size of a tuple

EvaluationPeriod Time period to adjust the window size

WindowSize Initial window size

� Threshold value for the adjustment of the window size

UpdateArrTime Mean interarrival time between updates

HotUpdateBounds Data object bounds of hot update range

ColdUpdateBounds Data object bounds of cold update range

HotUpdateProb Probability that an update will be applied to a ``hot'' object

HotQueryProb Probability that a tuple will refer to a ``hot'' object

HotRemoveProb Probability that an updated tuple referring to a ``hot'' object will be

removed from the corresponding answer set

ColdRemoveProb Probability that an updated tuple referring to a ``cold'' object will be

removed from the corresponding answer set
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experiments have been conducted to study the behavior of di�erent tuple
transmission algorithms under various settings of data update rates, maximum
query duration, disconnection period and update/query patterns.

Experiments were designed to evaluate the relative performance of the al-
gorithms in terms of the communication overhead imposed on the wireless
network and the availability of tuples in case of disconnections. All experi-
ments were performed on SunSparc Workstations running SUNOS, using the
CSIM [12] simulation package. Each experiment was run until a total of 5000
CQs are completed. Each experiment was repeated 30 times with di�erent seeds
in order to obtain a statistically signi®cant sample of CQs.

The primary performance metric used in this study is the average number of
bits transmitted to an MH in response to a CQ. The number of bits transmitted
for a CQ is computed by summing up the total number of bits transmitted as
tuples and control messages in response to a CQ. Another metric used is the
availability of tuples in the answer set of a CQ in case of a disconnection. The
availability of tuples in case of a disconnection is speci®ed as the ratio of the
number of tuples received by the MH prior to disconnection over the total
number of tuples that would have been received by the end of the disconnec-
tion period if the MH had been connected to the network.

The values of the simulation parameters were chosen so as to be comparable
to the related simulation studies such as [1,9]. Since there is no data available
for modeling the tuples in the answer set of a CQ, we are concerned here with
performance trends rather than with exact performance predictions. Table 4
provides the values of the simulation parameters which are common to all
experiments except where otherwise speci®ed.

6.1. The base experiment

We ®rst examine the performance results of the proposed tuple transmission
approaches under varying data update rates by setting MaxQueryDuration and
DisconnectTime to 300 s. Performance of the MT approach is not examined in
this experiment because the behavior of MT is the same as that of APT since all
the database objects are assumed to be ``hot''. Figs. 5±8 show the performance
results obtained.

As illustrated in Fig. 5, DT performs the worst among all tuple transmission
approaches in terms of the average number of bits transmitted in response to a
CQ. This result is due to involving the highest control message overhead caused
by the transmission of each tuple separately as shown in Fig. 6. At low data
update rates, the performance results of IT, PT, and APT are close to each
other. Transmitting all the tuples at once or transmitting them periodically
with w � 180 s in PT and APT, does not make much di�erence in terms of the
control message overhead. As Fig. 6 shows, the control message overhead
involved with IT is close to that of PT and APT at low data update rates.
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As the data update rate is increased, all the curves start to move upward due
to the increasing retransmission overhead as shown in Fig. 7. Furthermore, the
performance di�erence between IT, PT, and APT in terms of the average
number of bits transmitted becomes apparent with the high data update rates.
PT and APT approaches have an important bene®t over IT in terms of the
retransmission overhead. Another observation is that the periodic adjustment
of w according to the criterion we have formulated in APT provides some
improvement over the performance of PT.

The reader may notice from Fig. 7 that the number of retransmissions per
CQ may not always be 0 with the DT approach. This may seem contradictory
as we have limited the scope of retransmissions to those of Case 2 (in Section 3)
which excludes the retransmissions due to an update after the begin time of a
tuple. However, when a tuple is changed due to an explicit update to the
database, it is immediately retransmitted. Therefore, Case 2 retransmissions are
also possible with DT.

As we have discussed before, supporting the ability for an MH to work in
the stand-alone mode in case of disconnections can be very important in some
applications. Fig. 8 shows the availability of tuples in the answer set of a CQ in
case of disconnections. As expected, IT has the highest availability since this

Table 4

Parameter settings for the base experiment

Parameter Value

NumMobileHosts 100

ThinkTime 1000 s

MaxQueryDuration Varied from 240 to 360 s

QueryRequestSize 256 bytes

DisconnectProb 1=10

DisconnectTime Varied from 50 to 1000 s

ConnectMessageSize 4 bytes

ClientMsgTime 0.0001 s/byte

NetworkBandwidth 19200 bps

ControlMsgSize 256 bytes

DatabaseSize 1000 objects

ObjectSize 256 bytes

TupleSize 264 bytes

UpdateArrTime Varied from 1 to 5 s

HotUpdateBounds All the database

NumCPU 1

ServerQueryTime 0.01 s

ServerUpdateTime 0.02 s

MaxNumTuple 40 tuples

HotRemoveProb 0.01

WindowSize 180 s

EvaluationPeriod 500 s

� 1 s
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approach transmits all the tuples together as soon as they are determined. The
performance results of PT and APT in terms of availability are nearly the same.
DT is the worst approach in supporting the stand-alone working ability since
the transmission of a tuple is delayed until its begin time. We also observe that
increasing data update rate does not have an impact on the performance of any
approach in terms of availability.

Fig. 6. Average number of control messages vs data update rate.

Fig. 5. Average number of bits transmitted vs data update rate.
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6.1.1. Evaluation of the impact of query duration
In this experiment, we examine the performance in terms of the average

number of bits in response to a CQ for the tuple transmission approaches as
the maximum query duration is varied while setting UpdateArrTime to 1. In-
creasing the maximum query duration increases the probability that a tuple will
be updated, therefore the probability that it will be retransmitted as shown in
Fig. 9. This increase is dramatic in IT, since IT is the most prone approach to
retransmissions.

Fig. 7. Average number of retransmitted tuples per CQ vs data update rate.

Fig. 8. Availability of tuples vs data update rate.
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The average number of bits transmitted in response to an issued CQ in-
creases as the query duration increases as shown in Fig. 10. As compared to
Fig. 5, the relative performance of the approaches does not change and DT is
still the worst performing approach. The performance di�erence between IT
and the other two approaches PT, APT becomes more apparent as the query
duration is increased.

6.1.2. Evaluation of the impact of disconnection period
In this section, we investigate the impact of the time period an MH stays

disconnected after issuing a CQ, on the availability of the tuples. MaxQuery-
Duration is set to 300 s. As expected, the availability ratio of tuples in IT is
always 1 independent of the disconnection period. The availability of tuples in
all the other approaches decreases up to a certain point as the disconnection
period increases as shown in Fig. 11. After that particular point, the avail-
ability of tuples remains constant. This is a reasonable result because the
availability of tuples is the same for disconnection periods longer than the
query duration. Suppose that an MH issued a CQ with duration 200 s and is
disconnected. The availability of tuples will be the same for disconnections
lasting more than 200 s.

6.2. Evaluation of the impact of hotspots

As we have discussed earlier, the database may consist of a mixture of
frequently changing and rarely changing objects. We set up an experiment in
order to observe the performance of tuple transmission approaches in case

Fig. 9. Average number of retransmitted tuples vs maximum query duration.
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there exists a hotspot in the database. Table 5 lists the values of the related
parameters used in this experiment. According to the new update pattern in
this experiment, 80% of the updates are applied to 20% of the database and the
object a tuple will refer to is uniformly chosen from the database.

The comparison of Figs. 5 and 12 shows that the relative performance of IT,
PT, and APT does not change in terms of the average number of bits trans-
mitted in response to a CQ. MT performs the best in terms of reducing the

Fig. 10. Average number of bits transmitted vs maximum query duration.

Fig. 11. Availability of tuples vs disconnection period.
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communication overhead. Figs. 13 and 14 show that transmitting the tuples
referring to ``hot'' objects as in APT and the tuples referring to ``cold'' objects
as in IT reduces the communication overhead and o�ers the best performance
among all the tuple transmission approaches we presented in case of a hotspot
in the database.

MT performs closer to the performance of IT than that of DT, PT, and APT
in terms of the availability of tuples in case of a disconnection (Fig. 15). Since
the tuples forming the answer set are chosen uniformly from the database, 80%
of the tuples in the answer set of a CQ are supposed to be those referring to
``cold'' objects. MT transmits the tuples referring to ``cold'' objects immedi-
ately at the time they are determined. Therefore, those tuples are always
available to the MH in case of a disconnection. Tuples referring to ``hot''
objects are partially available in case of a disconnection and the above com-
bination leads to a higher availability of tuples than those of PT and APT.

Table 5

Parameter settings

Parameter Value

HotUpdateBounds 1±200

ColdUpdateBounds 201±1000

HotRemoveProb 0.01

ColdRemoveProb 0.04

HotUpdateProb 0.8

HotQueryProb 0.2

WindowSize 180 s (for PT & APT), 150 s (for MT)

Fig. 12. Average number of bits transmitted vs data update rate.
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6.3. Evaluation of the impact of query hotspots

In a mobile database system, it is also possible that some objects are ac-
cessed more frequently than the others. We examine the impact of such a sit-
uation in this experiment by setting HotQueryProb to 0.8. It means that the
hotspot of updates which is bounded by HotUpdateBounds is now a hotspot in
terms of access workload too.

Fig. 13. Average number of retransmitted tuples vs data update rate.

Fig. 14. Average number of control messages vs data update rate.
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As shown in Fig. 16, the new query pattern does not change the relative
performance of the tuple transmission approaches we propose in terms of the
average number of bits transmitted in response to a CQ. However, the per-
formance di�erence between MT and the other approaches becomes more
apparent with the high data update rates. In this experiment, the answer to a
CQ consists mostly of ``hot'' objects. Therefore, retransmissions are more
frequent compared to the previous experiments (see Fig. 17). Heavy retrans-

Fig. 16. Average Number of bits transmitted vs data update rate.

Fig. 15. Availability of tuples vs data update rate.
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mission overhead makes IT perform worse than DT with an update rate of 1
update per second.

7. Conclusions

In this paper, we present new approaches for the transmission of the answer
of a location-dependent CQ in mobile computing systems. We also evaluate the
performance of proposed approaches in terms of the communication overhead
imposed on the wireless network in response to a CQ and the availability of
tuples in the answer set of a CQ in case of a disconnection. The experiments
conducted demonstrate that the choice between proposed transmission ap-
proaches depends on the answer to the following question: How critical is it for
the MHs to be able to continue displaying tuples on the screen in case of
disconnections? Once the tradeo� between the high availability of tuples in case
of disconnections and the low communication overhead is determined, the
appropriate tuple transmission approach would be one of the approaches
adaptive periodic transmission and mixed transmission for low communication
overhead, or the immediate transmission approach otherwise.

A possible direction of future research is to extend our simulation model to
support caching of database objects at MHs. Frequently accessed database
objects can be broadcast by the data server to MHs and stored in caches of
MHs. In such a system, the data server processes the CQs submitted by an MH
and transmissions will be limited to only those tuples referring to objects that
are not cached at the MH. For the tuples referring to objects that are cached at

Fig. 17. Average number of retransmitted tuples per CQ vs data update rate.
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the MH, only begin and end time attributes, and the object id need to be
transmitted to the MH. Such a caching mechanism can reduce the communi-
cation overhead signi®cantly especially if database objects are large. Adapting
a caching strategy pops up new issues such as cache invalidation mechanisms
and the period of the broadcast cycle which are subject to further investigation.
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