
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bilkent University Institutional Repository
Computers & Industrial Engineering 53 (2007) 394–400

www.elsevier.com/locate/dsw
Batch scheduling to minimize the weighted
number of tardy jobs q

Erdal Erel a,*, Jay B. Ghosh b

a Faculty of Business Administration, Bilkent University, 06800 Bilkent, Ankara, Turkey
b Apratech, LLC, Los Angeles, CA, USA

Received 1 August 2005; accepted 15 March 2007
Available online 13 May 2007
Abstract

In this paper, we address a single-machine scheduling problem with due dates and batch setup times to minimize the
weighted number of tardy jobs. We give a pseudo-polynomial dynamic program and a fully-polynomial approximation
scheme for the case where the due dates are uniform within a family.
� 2007 Elsevier Ltd. All rights reserved.

Keywords: Scheduling; Batch setup times; Dynamic programming; Approximation
1. Introduction

Suppose that we have a single machine that can process at most one job at a time. Suppose also that a set of
N independent jobs is ready at time zero that requires uninterrupted processing on the machine. The jobs
belong to F different families, family f having Nf jobs (so that

P
1 6 f 6 F Nf = N). Job j of family f has a pro-

cessing time pfj, a due date dfj and a weight wfj. A setup time sf in incurred whenever the machine changes over
to the processing of a family f job from a job that belongs to another family. Let Cfj be the completion time of
job j of family f in some schedule. The job is called tardy if Cfj > dfj; this is indicated by setting Ufj = 1. Sim-
ilarly, the job is called early if Cfj 6 dfj; this is indicated by Ufj = 0. (Note that we follow the so-called item-

availability model in that we assume that all jobs are available as soon as they are completed, without having
to wait until the completion of other jobs in their families.) Our objective is to schedule all the jobs on the
machine so that

P
1 6 f 6 F

P
1 6 j 6 Nf

wfj Ufj is minimized. In other words, we seek to minimize the weighted
number of tardy jobs. Extending the standard notation, this is the 1/sf/

P
wfjUfj problem. The interested reader

is referred to Webster and Baker (1995) for a comprehensive overview of batch scheduling problems of this
and other kinds.
0360-8352/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cie.2007.03.006

q This manuscript was processed by Area Editor Subhash C. Sarin.
* Corresponding author. Tel.: +90 312 266 4164; fax: +90 312 266 4958.

E-mail address: erel@bilkent.edu.tr (E. Erel).

https://core.ac.uk/display/52924385?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:erel@bilkent.edu.tr

E. Erel, J.B. Ghosh / Computers & Industrial Engineering 53 (2007) 394–400 395
It follows from Bruno and Downey (1978) that the 1/sf/
P

wfjUfj problem is NP-hard at least in the ordinary
sense. Monma and Potts (1989) presented a dynamic programming solution for this problem that is pseudo-
polynomial only for a fixed F. A special case of the 1/sf/

P
wfjUfj problem is realized if we assume that dfj = df

for all j and f (that is, all jobs within a family have identical due dates). We call this as 1/sf, dfj = df/
P

wfjUfj

problem. It follows from Karp (1972) that this problem is also NP-hard at least in the ordinary sense (as is its
extreme special case of 1/sf, dfj = d, pfj = p, wfj = wf/

P
wfjUfj problem). Rote and Woeginger (1998) have

recently addressed the easier 1/sf, dfj = df/
P

Ufj problem and shown that it is O(N2) solvable. Finally, in the
separate context of scheduling on a batch processing machine (where the jobs do not necessarily belong to
families but are batched together for processing), Hochbaum and Landy (1994) have studied a similar problem
to minimize the weighted number of tardy jobs under the batch-availability model. In this model, all the jobs in
a batch are processed consecutively and a job is deemed available only when the last job in its batch is com-
pleted. This problem is shown to be NP-hard, but it admits a pseudo-polynomial time solution.

In this paper, we address the 1/sf, dfj = df/
P

wfjUfj problem in its general form. Specifically we give a
O(Nmin {

P
f sf +

P
f

P
j pfj, maxf {df},

P
f

P
j wfj}) pseudo-polynomial dynamic programming solution. We

also give a O(N2 max{log N, 1/e}) fully-polynomial approximation scheme which delivers a solution within
(1 + e) times the optimal solution for any e > 0. We note at this point that the 1//

P
wjUj problem, without

family setup times, admits a pseudo-polynomial solution (Lawler & Moore, 1969) and a fully-polynomial
approximation scheme (Gens & Levner, 1981) that has complexity orders comparable to those that we have
obtained for the 1/sf, dfj = df/

P
wfjUfj problem; this shows that the 1/sf, dfj = df/

P
wfjUfj problem is not much

harder than the 1//
P

wjUj problem.

2. Dynamic programming solution

Assume, without loss of generality, that the job families are indexed such that d1 6 d2 6. . .6 dF and that the
jobs within family f, 1 6 f 6 F, are indexed such that pf1/wf1 6 pf2/wf2 6. . .6pfNf

=wfNf
. Assume also that all

the parameters are integer valued. For future use, let S =
P

f sf, P =
P

f

P
j pfj, D = maxf {df} and W =

P
f

P
j

wfj. We have already let N =
P

1 6 f 6 F Nf.
It is known (Monma & Potts, 1989) that the main challenge here is the identification of the early jobs that

are scheduled without any inserted idle time in the earliest due date (EDD) order; the scheduling of the tardy

jobs is inconsequential. Two observations are important to the development of our dynamic program (DP)
and the fully-polynomial approximation scheme. The first observation, which is easily proved through a sim-
ple job exchange argument, has also been made for the 1/sf, dfj = df/

P
Ufj problem (Rote & Woeginger, 1998).

This observation holds as well for the 1/sf, dfj = df/max{wfjUfj} problem (we will call this problem as MinMax
hereafter), which we use for developing lower and upper bounds on the optimal solution of the 1/sf, dfj = df/P

wfjUfj problem (this problem will be called as MinSum) and whose DP solution we describe below in
parallel.

Observation 1: (General) There is an optimal schedule where the early jobs have at most one setup per fam-
ily and are processed without any inserted idle time in the EDD order.

We describe the DP in an enumerative form. In our enumeration, we build a schedule starting with job 1 of
family 1 (stage 1) and ending with job NF of family F (stage N). At stage k, 1 6 k 6 N, we consider if we should
schedule job j of family f as an early or a tardy job (clearly,

P
1 6 g 6 f�1 Ng < k 6

P
1 6 g 6 f Ng). At the end of

stage k, let Lk be the set of early jobs and Rk be the set of tardy jobs; note that Lk and Rk are mutually exclu-
sive and that jLkj + jRkj = k. Also, let Tk be the total processing and setup times of the jobs in Lk, nk be the
number of jobs from family f that are in Lk. Finally, let W R

k be the total weight of the jobs in Rk (and wR
k the

maximum weight among these jobs). To solve MinSum, we minimize W R
N over all complete schedules (and

wR
k for MinMax). For MinSum, the triple hT k; nk; W R

ki adequately represents a partial schedule at the end
of stage k (as does hT k; nk; wR

ki for MinMax). Letting d(x) = 1 if x > 0 and 0 otherwise, we can now state
our second observation (which helps us identify a minimal set of nondominated partial schedules at each stage
of DP). The observation is easily proved through a straightforward identical completion argument.

Observation 2: (For MinSum): Given two partial schedules, represented respectively by the triples
hT k; nk; W R

ki and hT 0k; n0k; W 0R
ki at stage k of DP, such that T k 6 T 0k, dðnkÞ ¼ dðn0kÞ and W R

k 6 W 0R
k, it

is sufficient to retain only hT k; nk; W R
ki for further enumeration.

396 E. Erel, J.B. Ghosh / Computers & Industrial Engineering 53 (2007) 394–400
(For MinMax): Given the triples hT k; nk; wR
ki and hT 0k; n0k; w0Rki at stage k of DP, such that

T k 6 T 0k,dðnkÞ ¼ dðn0kÞ and wR
k 6 w0Rk, it is sufficient to retain only hT k; nk; wR

ki.
Letting Xk be the set of partial schedules (equivalently, triples) at stage k of DP and UB be a known upper

bound on the minimum of W R
N (MinSum) or wR

N (MinMax) over all complete schedules, we can state the
following procedure.

Procedure DP_MinSum (DP_MinMax):

Step 0: Set X0 = {h0,0,0i} and k = 0.
Step 1: For f = 1, . . ., F and j = 1, . . ., Nf:

(a) Set k = k + 1.
(b) Reset the 2nd co-ordinate (nk�1) of all triples in Xk�1 to 0 if j = 1.
(c) For each triple in Xk�1, create 2 new triples and add temporarily to Xk:
(For MinSum)
(i) hT k�1; nk�1; W R
k�1 þ wfji.

(ii) hT k�1 þ sf þ pfj; nk�1 þ 1; W R
k�1i if d(nk�1) = 0

and hT k�1 þ pfj; nk�1 þ 1; W R
k�1i otherwise.

(For MinMax)
(i) hT k�1; nk�1; maxfwR

k�1;wfjgi.
(ii) hT k�1 þ sf þ pfj; nk�1 þ 1; wR

k�1i if d(nk�1) = 0

and hT k�1 þ pf j; nk�1 þ 1; wR

k�1i otherwise.
(d) Delete, from Xk, all triples with Tk > df.
(e) Delete, from Xk, all triples with W R

k (or wR
k) > UB.

(f) Extract a minimal set of nondominated triples from among the survivors in the current Xk and let this set
be the final Xk (cf., Observation 2).

Step 2: From XN, find the triple with the minimum W R
N (MinSum) or wR

N (MinMax).
The above procedure is exact as it never discards a partial schedule that upon completion may lead to an

optimal schedule (unless there is another equivalent or better partial schedule) and it counts the weighted num-
ber of tardy jobs correctly.

As for the complexity of MinSum, note that for each value of d(nk), the procedure retains at most one triple
for each distinct value of Tk or W R

k at stage k. The number of values of Tk, W R
k, d(nk) are bounded by

min{S + P,D}, UB, and 2, respectively. Note that UB 6W. The cardinality of Xk is thus
O(min{S + P,D,W}). Over N stages, this translates to O(Nmin{S + P,D,W}).

Similarly, for MinMax, the number of triples retained at stage k depends on the distinct values of Tk or wR
k

and d(nk). Note that wR
k takes on at most N distinct values. The cardinality of Xk in this case is

O(min{S + P,N}) or O(N) and the overall complexity is O(N2).
In sum, Procedure DP_MinSum solves the 1/sf, dfj = df/

P
wfjUfj problem exactly in O(Nmin{S + P,D,W})

time. Also, Procedure DP_MinMax solves the 1/sf, dfj = df/max{wfjUfj} problem in O(N2) time. An example to
illustrate the procedure is given in Appendix A.
2.1. Remarks on the DP solution

1. If S + P, D or W is bounded above by a polynomial function poly(N) of N, we immediately have a O(Npo-
ly(N)) algorithm for MinSum. Thus, for the 1/sf, dfj = df/

P
Ufj problem, where W = N, we get a O(N2) solu-

tion as in Rote and Woeginger (1998).
2. There are other cases of MinSum where a poly(n) bound on W may apply such as when the wfj is

a notional penalty. For example, when there is a designated subset of jobs that should not be tardy,
it suffices to assign these jobs a weight of N and the rest a weight of 1. This case is solved in
O(N3) time.

3. Finally, the inclusion of nk in the description of a partial schedule makes DP quite versatile. It can now
handle side constraints such as those on the maximum number of jobs per family that can be tardy.

E. Erel, J.B. Ghosh / Computers & Industrial Engineering 53 (2007) 394–400 397
3. Fully-polynomial approximation scheme
Our fully-polynomial approximation scheme (FPAS) for MinSum is obtained through a simple modifica-
tion of the DP_MinSum procedure. Let OPT be the unknown optimal solution value of MinSum and let LB
be a lower bound on OPT. Note that UB is an upper bound on OPT as before. Let WMAXR

k ¼ maxfW R
kg,

where the maximum is taken over all triples in Xk at the end of Step 1(e) in the DP_MinSum procedure.
Finally, let D = (eLB)/(N). The basic procedure (which delivers a solution value within eLB of OPT) can
now be described as follows.

Procedure APPROX_MinSum:

All Steps (0–2) are identical to Procedure DP_MinSum except for Step 1(f). Replace Step 1(f) with the
following:

Step 1 0(f):

(i) Divide the interval ½0; WMAXR
k� into subintervals of width D.

(ii) From all the triples in Xk that have W R
k in a given subinterval and the same d(nk), retain in the final Xk

one with the smallest Tk.

At stage k of Procedure APPROX_MinSum, the number of subintervals is dWMAXR
k=De. Substituting for

D, we have:
dWMAXR
k=De 6 ðN=eÞðWMAXR

k=LBÞ þ 1 6 ðN=eÞðUB=LBÞ þ 1:
Note that WMAXR
k 6 UB follows from Step 1(e) of Procedure DP_MinSum. Each subinterval retains at

most two triples and thus the cardinality of Xk at the end of Step 1 0(f), after the modification, is O((N/
e)(UB/LB)). Over N stages, we can then say that Procedure APPROX_MinSum has time complexity
O((N2/e)(UB/LB)).

As for the approximation error, keeping Observation 2 in mind, it is clear that the maximum error that is
admitted at stage k is bounded by D. Over N stages, the maximum total error is thus bounded by DN. Substi-
tuting for D, it is easy to see that the error is bounded by eLB.

3.1. Remarks on the FPAS

1. If UB/LB is bounded above by a constant c or a polynomial poly(N), we immediately get an FPAS
for MinSum by setting e = e; the time complexities are O(N2/e) and O(N2 poly(N)/e), respectively.
Following Gens and Levner (1981), it is indeed possible to derive such an FPAS (as we will see
shortly).

2. Even if a valid lower bound LB on OPT is not available, it is still possible to derive an FPAS for MinSum
with O(N2 max{log(eW), 1/e}) complexity. This is done by searching for a valid lower bound over the inter-
val [1/e,W]. We omit the details.

3. Sahni (1976) gives an FPAS for maximizing the weighted number of early jobs when there are no batch setup
times. For this objective, we can easily get a O(N2/e) FPAS in our case by modifying DP and Procedure
APPROX_MinSum. We omit the details.

Let opt be the optimal solution value of MinMax, obtained in O(N2) time by running Procedure DP_Min-
Max. The following observation is easily made.

Observation 3: opt 6 OPT 6 N opt.
Using LB = opt, UB = N opt and e = e in Procedure APPROX_MinSum, we immediately get a O(N3/e)

FPAS for MinSum. A better complexity can be realized if we are able to tighten the bounds such that UB/
LB 6 c. The following procedure delivers LB and UB with UB/LB 6 2 in O(N2 logN) time. (In other words,
it gives a 2-approximation for MinSum.) Note that, in what follows, LB is always a valid lower bound, while
UB is only an estimated upper bound (and remains so until the procedure terminates). Also note that LB > 0,
since LB = 0 implies that opt = 0, which in turn implies that there is an optimal solution to MinMax with a
maximum tardiness value of 0 and further that this solution must also be optimal for MinSum as the weighted

398 E. Erel, J.B. Ghosh / Computers & Industrial Engineering 53 (2007) 394–400
number of tardy jobs in this case takes on the minimum possible value of 0 (thus obviating the need for an
approximate solution).

Procedure BOUNDS_MinSum:

Step 0: Set LB = opt, UB = 4 opt, e = 1 and DONE = ‘false’.
Step 1: Do While (DONE = ‘false’):

(a) Invoke Procedure APPROX_MinSum.
(b) If Procedure APPROX_MinSum delivers a solution, call it APX.
(i) If APX 6 2 LB, set LB = LB and UB = APX.
Else, set LB = APX � LB and UB = APX.

(ii) Set DONE = ‘true’.
Else, set LB = 2 LB and UB = min {N opt, 4 LB}.

Step 2: Deliver LB and UB as the desired bounds.
Notice that UB/LB 6 4 and e = 1 in Procedure APPROX_MinSum; therefore, it runs in O(N2) time. We

invoke it at most log(N) times, since log(N) P max{i: 2i opt 6 N opt}. Thus, the overall time complexity of
Procedure BOUNDS_MinSum is O(N2 logN).

To see that Procedure BOUNDS_MinSum delivers the desired bounds, first note that LB remains a valid
lower bound throughout the procedure and that UB upon delivery is valid and satisfies UB/LB 6 2. Finally,
note that Procedure APPROX_MinSum will always deliver a solution before LB is updated to LB > N opt.

Finally, we state the O(N2max{log N, 1/e}) FPAS for the 1/sf, dfj = df/
P

wfjUfj problem as follows:
Procedure FPAS_MinSum:

Step 1: Call DP_MinMax to get opt; call BOUNDS_ MinSum to get LB and UB.
Step 2: Invoke APPROX_MinSum with e (= e), LB and UB and deliver the solution.
The procedure is obviously correct. Step 1 takes O(N2) plus O(N2 logN) time and Step 2 takes O(N2/e) time.

The complexity of Procedure FPAS_MinSum is thus O(N2 max{log N, 1/e}). The above procedures are also
applied to the example problem in Appendix A.

4. Concluding remarks

In this paper, we have addressed the 1/sf, dfj = df/
P

wfjUfj single machine scheduling problem, which tries to
minimize the weighted number of tardy jobs in presence of family setup times and a uniform due date for each
family. The problem can be seen to be NP-hard. We have provided both a O(Nmin{S + P,D,W}) pseudo-
polynomial dynamic programming solution and a O(N2max{log N,1/e}) fully-polynomial approximation
scheme. These results specialize easily to the previously studied cases where there is no setup time and where
there is no weight.

Appendix A. An illustrative example

Consider a problem with 2 families, each of which includes 3 jobs. All parameters of the problem are given
in Table 1 below.

In Table 2 below, we show how Procedure DP_MinSum works. We assume that we have already obtained a
heuristic upper bound UB = 8 (by including jobs 1 and 2 of family 1 and job 1 of family 2 in the early set).
Table 1
Problem parameters

Family Job Due date Setup time

1 2 3

Time Weight Time Weight Time Weight

1 1 1 3 2 6 3 19 10
2 4 3 5 2 8 3 30 12

Table 2
Stage-by-stage description of procedure DP_MinSum

Set of all generated triples

Stage 0 Stage 1
(f = 1, j = 1)

Stage 2
(f = 1, j = 2)

Stage 3
(f = 1, j = 3)

Stage 4
(f = 2, j = 1)

Stage 5
(f = 2, j = 2)

Stage 6
(f = 2, j = 3)

h0,0,0i h0,0,1i h0,0,3i h0,0,6i h0,0,9ic h16,1,8i h16,1,11ic
h11,1,0ia h13,1,1ia h16,1,3ia,d h16,1,6ia h21,2,6ia h24,2,8ia

h11,1,2i h13,1,4i h13,0,7i h13,0,9ic h21,2,9ic
h14,2,0ia h19,2,1ia h29,1,4ia h30,1,7ia,d h29,3,6ia

h11,1,5i h19,0,4i h29,1,6id h19,0,9ic
h17,2,2ia h35,1,1ia,b h34,2,4ia,b h39,1,6ia,b

h14,2,3i h11,0,8i h19,0,6i h11,0,13ic
h20,3,0ia,b h27,1,5ia h36,1,4ia,b h31,1,10ia,b

h17,0,5i h11,0,10i h27,1,10ic
h33,1,2ia,b h28,1,8ia,d h35,2,7ia,b

h14,0,6i h27,1,7i h17,0,10ic
h30,1,3ia h32,2,5ia,b h37,1,7ia,b

h17,0,7i h14,0,11ic
h34,1,5ia,b h34,1,8ia,b

h14,0,8i h30,1,8i
h31,1,6ia,b h38,2,5ia,b

h30,1,5i
h35,2,3ia,b

a The job associated with a given stage is scheduled early.
b The triple is eliminated in Step 1(d) of the procedure.
c The triple is eliminated in Step 1(e) of the procedure.
d The triple is eliminated in Step 1(f) of the procedure.

E. Erel, J.B. Ghosh / Computers & Industrial Engineering 53 (2007) 394–400 399
Three triples, h24,2,8i, h29,3,6i and h30,1,8i survive at the end of stage 6. The triple with the minimum
WR

6, h29,3,6i, determines the optimal schedule where jobs 1 through 3 of family 2 are scheduled first followed
by the family 1 jobs. The family 2 jobs are all early, while the family 1 jobs are all tardy. The weighted number
of tardy jobs is 6.

As indicated earlier, Procedure DP_MinMax works in a similar way. The difference is how the 3rd
coordinate of the triple is computed. We simply observe that the optimal maximum tardiness in this case
is 3 (given, for example, by the heuristic schedule mentioned above), but omit the procedural
details.

Coming to Procedure FPAS_MinSum as applied to this problem, we note that BOUNDS_MinSum is
invoked first with e = 1 and LB = 3. For these values, D = 0.5. Thus, because of the integrality of the triple
coordinates, APPROX_MinSum essentially generates the same set of triples as in Table 2, delivering
h29,3,6i as a 2-approximate solution (which, we know from above, is actually optimal) and yielding
LB = 3 and UB = 6, and comes to termination in the first pass itself. At this point, when APPROX_MinSum
is invoked with any e < 1 (leading to D < 0.5) h29,3,6i is delivered once again as a (1 + e)-approximate
solution.

References

Bruno, J., & Downey, P. (1978). Complexity of task sequencing with deadlines, set-up times, and changeover costs. SIAM Journal of

Computing, 7, 393–404.
Gens, G. V., & Levner, E. V. (1981). Fast approximation algorithms for job sequencing with deadlines. Discrete Applied Mathematics, 3,

313–318.
Hochbaum, D. S., & Landy, D. (1994). Scheduling with batching: Minimizing the weighted number of tardy jobs. Operations Research

Letters, 16, 79–86.
Karp, R. M. (1972). Reducibility among combinatorial problems. In R. E. Miller & J. W. Thatcher (Eds.), Complexity of Computer

Computations (pp. 85–104). New York: Plenum Press.
Lawler, E. L., & Moore, J. M. (1969). A functional equation and its application to resource allocation and sequencing problems.

Management Science, 16, 77–84.

400 E. Erel, J.B. Ghosh / Computers & Industrial Engineering 53 (2007) 394–400
Monma, C. L., & Potts, C. N. (1989). On the complexity of scheduling with batch set-up times. Operations Research, 37,
798–804.

Rote, G., & Woeginger, G. J. (1998). Minimizing the number of tardy on a single machine with batch setup time. Acta Cybernetica, 13,
423–430.

Sahni, S. (1976). Algorithms for scheduling independent tasks. Journal of the ACM, 23, 116–127.
Webster, S., & Baker, K. R. (1995). Scheduling groups of jobs on a single machine. Operations Research, 43, 692–703.

	Batch scheduling to minimize the weighted number of tardy jobs
	Introduction
	Dynamic programming solution
	Remarks on the DP solution

	Fully-polynomial approximation scheme
	Remarks on the FPAS

	Concluding remarks
	An illustrative example
	References

