
Available online at www.sciencedirect.com

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bilkent University Institutional Repository
www.elsevier.com/locate/comcom

Computer Communications 31 (2008) 240–256
A connection management protocol for promoting cooperation
in Peer-to-Peer networks q

Murat Karakaya, _Ibrahim Körpeoğlu *, Özgür Ulusoy

Department of Computer Engineering, Bilkent University, 06800 Ankara, Turkey

Available online 16 August 2007
Abstract

The existence of a high degree of free riding in Peer-to-Peer (P2P) networks is an important threat that should be addressed while
designing P2P protocols. In this paper we propose a connection-based solution that will help to reduce the free riding effects on a
P2P network and discourage free riding. Our solution includes a novel P2P connection type and an adaptive connection management
protocol that dynamically establishes and adapts a P2P network topology considering the contributions of peers. The aim of the protocol
is to bring contributing peers closer to each other on the adapted topology and to push the free riders away from the contributors. In this
way contribution is promoted and free riding is discouraged. Unlike some other proposals against free riding, our solution does not
require any permanent identification of peers or a security infrastructure for maintaining a global reputation system. It is shown through
simulation experiments that there is a significant improvement in performance for contributing peers in a network that applies our
protocol.
� 2007 Elsevier B.V. All rights reserved.

Keywords: Peer-to-Peer networks; Free riding; Connection management; Distributed systems
1. Introduction

Free riding is an important threat against efficient oper-
ation of Peer-to-Peer (P2P) networks. In a free-riding envi-
ronment, a small number of contributing peers serve a
large number of peers; many download requests are direc-
ted towards a few sharing peers. This situation may lead to
scalability problems [3] and to a more client-server-like par-
adigm [5,6], which overweigh the benefits of P2P network
architecture. Additionally, renewal or presentation of inter-
esting content may decrease in time, and the number of
shared files may grow very slowly. The quality of the search
process may degrade due to an increasing number of free
riders on the search horizon. Moreover, the large number
of free riders and their queries generate an extensive
0140-3664/$ - see front matter � 2007 Elsevier B.V. All rights reserved.

doi:10.1016/j.comcom.2007.08.010

q This work is partially supported by The Scientific and Technical
Research Council of Turkey (TUBITAK) with Grant Nos. EEEAG-
104E028, and EEEAG-105E065.

* Corresponding author. Tel.: +90 312 2902599; fax: +90 312 2664047.
E-mail address: korpe@cs.bilkent.edu.tr (_I. Körpeoğlu).
amount of P2P network traffic, which may lead to degrada-
tion of P2P services and inefficient use of the resources of
the underlying network infrastructure.

There are various reasons for free riding. Bandwidth
limitation of peers’ connections may be one reason.
Another reason might be peers’ concern about sharing
‘‘bad’’ or ‘‘illegal’’ data from their own computers, even
though they are not concerned about using this type of
data. Some peers may also have security concerns when
they share resources.

In this paper, we propose a connection-based solution
against free riding that will alleviate the problems associ-
ated with free riding. Our solution involves the definition
and use of two new connection types (IN and OUT connec-
tions) and a P2P Connection Management Protocol
(PCMP) that dynamically establishes the connections
between peers, and adaptively modifies the P2P topology
in reaction to the contributions of peers. Our protocol pro-
motes cooperation among peers and discourages free rid-
ing, and can be used in unstructured P2P networks such
as Gnutella [10]. Our claim is that if we can adjust the

https://core.ac.uk/display/52924370?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:korpe@cs.bilkent.edu.tr


M. Karakaya et al. / Computer Communications 31 (2008) 240–256 241
P2P network topology dynamically in reaction to peers’
contributions, the adapted topology can favor the contrib-
uting peers in getting service from the P2P network. The
adapted topology can also exclude the free riders from
the P2P network and therefore the adverse effects of free
riding can be reduced as well. Furthermore, we expect that
our approach will help a P2P network to become more
scalable and robust. We did extensive simulations to eval-
uate our protocol and we have seen significant improve-
ment in the performance of a P2P network with free
riders when our solution is applied.

The organization of the paper is as follows. In Section 2,
we discuss the related work. In Section 3, we describe our
solution and the PCMP connection management protocol.
In Section 4, we present our simulation model and provide
the simulation results. In Section 5, we discuss some possi-
ble attacks to our scheme and how we can cope with them.
Finally, in Section 6, we give our conclusions.

2. Related work

User traffic on the Gnutella network was extensively
analyzed by Adar and Huberman in [1], and it was
reported that 66% of the peers do not share any files at
all, while 73% of them share ten or fewer files. Further-
more, 63% of the peers who share some files do not get
any queries for these files; and 25% of all peers provide
99% of all Query Hits in the network.

Saroiu et al. confirm that there is a lot of free riding in
Gnutella as well as in Napster [6]. They observed that 7%
of the peers provide more files than all of the other peers
combined.

In a recent work [19] Hughes et al. pointed to an increas-
ing downgrade in the network’s overall performance due to
free riding. Their results indicated an increasing level of
free riding compared to Adar and Huberman’s work. For
example, they observed that 85% of peers share no files
at all. They concluded that free riding was becoming more
prevalent.

In another work, Yang et al. reported their findings
about free riding behavior in the Maze P2P system [20].
They also found a high level of free riding, with about
80% of the peers behaving like clients. They observed that
client-like users (free riders) were responsible for 51% of
downloads, but for only 7.5% of uploads. These statistics
suggest the existence of free riding in spite of the incentive
mechanism provided by the Maze P2P system.

All these observations have caused researchers to be
concerned about the free riding problem and to propose
solutions. In fact, some mechanisms against free-riding
have already been implemented ([20–23]). There are also
a number of solutions that have been proposed in research
studies ([3,7,8,11,14,24,25]).

Existing mechanisms and proposed solutions for the
free-riding problem can be categorized into two main
groups: (a) incentive-based and (b) reciprocity-based
schemes.
Incentive-based solutions have been proposed to encour-
age user cooperation within P2P systems. One of the most
common way of implementing incentives is to apply tele-
communications models for pricing network resources by
incorporating micro-payments in P2P networks, such as
KARMA [8], ARA [24], PPAY [26], etc. In these systems,
each user has to purchase service on demand, using a vir-
tual currency that is obtained as payment for providing ser-
vice in turn. Some other incentive-based approaches
implement reputation mechanisms [25,27,28]. Reputation-
based approaches depend on identifying and monitoring
peers’ contributions to other peers, and then refusing ser-
vice to peers with bad reputations.

The schemes that depend on micro payments have limi-
tations when applied to many common P2P network archi-
tectures. In general, incentive schemes based on persistent
identifiers are complicated by the anonymity of peers, by
collections of widely dispersed peers, and by the ease with
which peers can modify their online identity [7,12].

Reciprocity-based schemes have been proposed as non-
monetary mechanisms based on reciprocity among peers,
such as [3,11,14]. Peers maintain histories of past behavior
of other peers and use this information in their decision
making processes. These schemes can be based on direct
reciprocity (Tit-for-Tat) or indirect reciprocity (Utility-
Based). In direct reciprocity schemes, peer A decides how
to serve peer B based solely on the service that B has pro-
vided to A in the past. In contrast, in indirect reciprocity
schemes, the decision of A also depends on the service that
B has provided to other peers in the system. However, there
are some ways of getting around the utility values. For
example, a user can share some small files with fake names
resembling popular file names. If other users download
these files, that user’s utility value will increase. Addition-
ally, relying on information about a peer that is stored
and provided by the peer itself may cause problems as well
[6].

In [14], the authors propose an incentive model to
encourage cooperation in unstructured P2P networks. This
model, called SLIC, depends on the local interactions of
peers. In SLIC, each peer assigns weights to its neighbors
and updates these weights based on the number of Query
Hits it receives via each neighbor. Those weights determine
the amount of messaging capacity assigned to each
neighbor.

In a previous work [11], we also proposed a framework
which focuses on detection of neighbors that are free riders
and taking counter actions against them. The proposed
framework counts both query hits and query messages,
and considers the originator and receiver of these messages.
Based on this information, peers make a decision about
their neighbors. The proposed framework also categorizes
the free riders into several categories. This enables the
framework to apply several different counter-actions that
are tailored to different types of free riding. The framework
assesses the contribution of each neighbor both to the mon-
itoring peer and to the overall system.



242 M. Karakaya et al. / Computer Communications 31 (2008) 240–256
Our proposal in this paper, the P2P Connection Man-
agement Protocol (PCMP), is another solution to the free
riding problem with an approach that is quite different than
the methods mentioned above. The PCMP protocol is
based on managing connections among peers to discourage
free riding and to provide incentives for cooperation. The
scheme is distributed and does not require a central entity
to control and coordinate. It uses a new connection type to
connect peers together. The new connection allows the
requests (queries) to be passed in only one direction. Our
scheme manages those types of connections so that, eventu-
ally, contributors become more close to each other in the
network, and free riders become isolated.

There exist some other studies which also focus on modi-
fying P2P topology such as [16–18,29,30]. However, these
works aim to solve the topology mismatching problem and
improve the search quality; they do not attack the free riding
problem directly. In [16], Liu et al. proposed a solution called
the Adaptive Overlay Topology Optimization (AOTO) to
optimize inefficient overlay topologies for improving P2P
search and routing efficiency. In another work [17], Crameret
et al. also aimed to create a topology refinement by modify-
ing the bootstrapping mechanism in the P2P network. In
[18], Singh and Haahr proposed to modify the P2P network
topology so that peers with similar properties become close
to each other. Similarly, in [29], Cai and Wang proposed a
two-layer (neighbors and friends) unstructured P2P system
for better keyword searches. The neighbors overlay is cre-
ated according to network proximity while the friends over-
lay is built according to the online query activities. In order
to increase the search quality, they try to avoid the free riders
in the system while routing the queries. Primarily, the friend
overlay is used to route the queries. Because, the friends over-
lay is constructed in such a way that free riders can not be
friends of any peer. However, in their system any peer,
including free riders, may issue queries to the system which
allows free riders to use the network resources. Chawathe
et al. focused on scalability problem in unstructured P2P net-
works and applied dynamic topology adaptation [30]. They
specifically aimed to match the query capacity of the peers
with the routed queries to avoid the peers become overloaded
by high query rates.

3. P2P connection management protocol

In this section, we first describe our motivation and
highlight the benefits of our approach through a simple
analytic evaluation. We then give the details of our two
new connection types and the connection management pro-
tocol, that are proposed to control the connections between
contributors and free riders.

3.1. Our approach and motivation

P2P network topology affects the propagation of que-
ries, the quality and quantity of search results, and the
overhead imposed on the underlying physical network.
Therefore, the connections among peers should be care-
fully controlled and managed. However, in current
unstructured P2P networks, peers can try to connect to
any other peer, and they can refuse any connection
request to them. Each peer has equal right to do so,
independent of their contribution level. Moreover, each
peer can use all of its connections to send its queries.
In our work, we change these two properties of unstruc-
tured P2P network protocols to create an incentive for
cooperation and to discourage free riding.

First, instead of a single connection type that exists in
P2P networks to send and receive queries, we define two
connection types: IN and OUT connections. IN connec-
tions are used to receive queries and to reply them (i.e.,
provide service). OUT connections, on the other hand,
are used just to send queries and to receive replies (i.e.,
request service). By using two types of connections, we
can now differentiate and control service request and ser-
vice provision separately.

Second, we propose a P2P Connection Management
Protocol (PCMP) to establish and release these two types
of connections. The protocol considers the peer contribu-
tions while establishing and releasing connections. Hence
free riders can be disconnected from contributing peers
and even get isolated sometimes. In this way, the associated
problems with free riding can be alleviated. Moreover, con-
tributing peers may establish connections to not free riders,
but to other contributors and therefore the number of con-
tributors in their search horizon can be increased. Thus,
contributors can have better chance to get Query Hits
and downloads.

We foreseen several benefits of applying our protocol.
The connectivity of free riders to the contributing peers
can be reduced; in some situations, free riders can be totally
isolated from the contributors. Furthermore, the connec-
tivity among contributor peers can be increased. Also,
the workload of a contributor peer can be reduced, since
it will not serve many free riders anymore. As a result, bet-
ter scalability and robustness can be achieved in the P2P
network, since the querying overhead on contributor peers
due to free riding can be reduced.

With those benefits, we can see improvement in terms of
the following quantifiable metrics:

• Downloads for contributing peers can be increased;
• Downloads for free riders can be decreased;
• Amount of query traffic in the network can be reduced.

We now provide a motivational example about how we
can improve the performance in terms of some of these
metrics in a P2P network using our protocol.

The probability of getting a Query Hit depends on many
factors including the popularity of the requested file, the
number of files shared by peers, and the number of contrib-
uting peers in the search horizon. If we assume even popu-
larity and even number of shared files by each peer, then
the number of contributing peers in the search horizon will



M. Karakaya et al. / Computer Communications 31 (2008) 240–256 243
be the factor determining the hit probability of a query.
Therefore, increasing the number of contributors in the
search horizon is important for receiving better service
from the P2P network.

In order to calculate the number of contributors that a
contributing peer’s query can reach, we first do following
assumptions. In a P2P network there are contributors
and free riders. A peer is considered as a free rider if it does
not share any files at all. On the other hand, a peer is a con-
tributor if it shares any number of files. A Gnutella-like
protocol is used for the query dissemination with the
time-to-live (TTL) value set to m. Each peer in the network
has n one-hop neighbors on the average. The number of
peers in the network is so large that the path followed by
a flooded query constitutes a tree, not a graph. In other
words, a query reaches distinct peers at each hop while get-
ting flooded from one hop to the next. A contributor has p

number of contributor neighbors and n � p number of free
rider neighbors. Similarly, a free rider peer has q number of
contributor neighbors and n � q number of free rider
neighbors.

Let Xi denote the number of peers that are i hops away
from the querying peer. We also say Xi is the number of
peers at level i. Xi can be computed easily.
X i ¼ nðn� 1Þi�1
; i P 1 ð1Þ

Some of these Xi peers are contributors and some are free
riders. Let Ci be the number of contributors and Fi be the
number of free riders at level i. Thus, Xi = Ci + Fi. As we
deal with a contributor as the originator of the query,
C0 = 1, C1 = p, and F1 = n � p.

We will compute Ci in a recursive manner. Fig. 1 shows the
relationship between contributors at level i � 2, i � 1, and i.

If we assume that Ci�2 is known then Fi�2 can be calcu-
lated as Fi�2 = Xi�2 � Ci�2.

Upon receiving the query, Ci�2 number of contributing
peers at level i � 2 will forward it to their contributing
neighbors (whose count is denoted with C1i�1) and to their
free riding neighbors (whose count is denoted with F1i�1)
at level i � 1. Similarly, Fi�2 number of free riding peers
at level i � 2 will forward the query to their contributing
neighbors (C2i�1) and to their free riding neighbors
(F2i�1) at level i � 1.
Fig. 1. The relationship between contributors (Cont.) and free riders (FR)
at different levels.
As indicated in Fig. 1, we can compute the number of con-
tributors at level i using the number of contributors and free
riders at previous levels i � 1 and i � 2. Each of the C1i�1

contributing peers at level i � 1 will forward their query to
p � 1 contributors.1 Then we obtain the following recursive
relationship for the number of contributors at level i:

Ci¼C1i�1ðp�1ÞþF 1i�1ðq�1ÞþC2i�1ðpÞþF 2i�1ðqÞ;
Ci¼C1i�1p�C1i�1þF 1i�1q�F 1i�1þC2i�1pþF 2i�1q;

Ci¼ pðC1i�1þC2i�1ÞþqðF 1i�1þF 2i�1Þ�ðC1i�1þF 1i�1Þ:

We have the following equations:

C1i�1 þ C2i�1 ¼ Ci�1; and F 1i�1 þ F 2i�1 ¼ X i�1 � Ci�1; and

C1i�1 þ F 1i�1 ¼ Ci�2Y i�2:

Here, Yi is the number of neighbors that will receive a
query originated or forwarded by a peer i. If the peer is
the query originator, i.e. i = 0, the number of neighbors
to whom the query will be forwarded is n. Otherwise, if
the peer is a query forwarder, the number of neighbors to
whom the query will be forwarded is n � 1. In short, if i

is 0 then Yi is n, otherwise Yi is n � 1.
Now, the equation that gives the number of contributors

at level i becomes:

Ci ¼ pCi�1 þ qðX i�1 � Ci�1Þ � Y i�2Ci�2; i P 2 ð2Þ

As mentioned before, if the originator of the query is a con-
tributor, C0 = 1 and C1 = p.

As a result, the total number of contributors that will
receive the query issued by a contributor is:

C ¼
Xm

i¼1

Ci

¼ p þ
Xm

i¼2

pCi�1 þ qðX i�1 � Ci�1Þ � Y i�2Ci�2ð Þ; m P 2

ð3Þ

We can use this recursive formula to compute the number
of contributors for various settings of the parameters m, n,
p, and q. For example, in a P2P network, each peer, a con-
tributor or a free rider, has 2 contributing neighbors and 3
free riding neighbors. That is, n = 5, p = 2, q = 2, and
m = 5. Using Eq. 3, the number of contributors that a con-
tributing peer’s query can reach is computed as 692. If we
can control and modify the connections in this network
(what we aim with our approach) so that each contributor
has 4 out of its 5 neighbors as contributors (p = 4), then the
number of contributors that will receive the query message
issued by a contributor would be 1132. If we can totally
isolate free riders, no free rider will have a connection to
a contributor and vice versa. This means, p becomes 5,
1 We have p � 1 not p because, those forwarding peers have a
contributor parent that is also a neighbor of them.



Fig. 3. An OWRC between two peers, which limits the direction and the
types of P2P messages exchangeable.

244 M. Karakaya et al. / Computer Communications 31 (2008) 240–256
and q becomes 0. In this case, the number of the contribu-
tors that will receive the query would be 1706.

These examples show that we can improve the number
of contributors in a search horizon of a contributing peer
so that the peer can get better search quality. This is the
main motivation for our approach.

After searching the network and receiving the Query
Hits, a peer requests download from one of the source
peers. However, source peers are subject to high number
of download requests and since the upload capacity is
limited, they can refuse some of the download requests.
Therefore, receiving a Query Hit does guarantee a success-
ful download.

Assume that on average a contributor can upload U
number of files simultaneously at maximum, and the num-
ber of simultaneous download requests that arrive to this
contributor is D. Sometimes, contributors can have much
more download requests (D) than their upload capacity
(U). In that case, when D is larger than U, a contributor
will refuse a download request with a probability
P(refuse) = 1 � U/D. As the ratio of free riders in a P2P
network becomes greater than that of contributors, then
most of these requests will belong to the free riders. As sta-
ted above, we aim to reduce the arrival of download
requests from free riders. Therefore, we expect a reduction
in P(refuse) for the requests coming from contributors.
Hence, we expect an increase in the downloads that con-
tributors can achieve.

An important issue in realizing our approach is to iden-
tify free riders efficiently and correctly. For this, we use a
heuristic approach which depends on mutual exchanges
of files and Query Hits between a pair of peers. Based on
these exchanges, peers try to identify free riders and con-
tributors. After then they take necessary actions to modify
their connections.

3.2. A new connection type: One-way request connections

In the current unstructured P2P networks like Gnutella,
a connection established between a pair of peers is used to
exchange all types of P2P protocol messages in both direc-
tions including Queries, Query Hits, Pings and Pongs
(Fig. 2). PCMP modifies this assumption by proposing a
new P2P connection type called One-Way-Request Connec-

tion (OWRC). As seen in Fig. 3, an OWRC between two
peers is still a TCP connection and can carry messages in
both directions. However, there is a restriction on what
types of messages can be carried in which direction of the
Fig. 2. A general P2P connection between two peers, which enables both
of them exchange all types of P2P messages.
connection. The connection is called one way because it
can transfer requests in only one direction. In other words,
over any OWRC the requests (Query, Ping) can only travel
in one direction and the replies (Query Hit, Pong) can only
travel in the other direction. Such a connection cannot be
used to send and receive all kinds of protocol messages in
both directions at the same time. The restrictions on the
type of messages and their directions are enforced at the
application level by PCMP.

In Fig. 3, one end of the OWRC can be considered a
requester (Peer A) and the other end as a responder (Peer
B). The requester sends Query and Ping messages and
receives the corresponding Pong and Query Hit messages
via the OWRC. A responder, on the other hand, receives
Query and Ping messages and replies with Query Hit and
Pong messages through the same OWRC. In the rest of
the paper, we will call such an OWRC an OUT-connec-

tion at the requester end and an IN-connection at the
responder end. Hence, in Fig. 3, peer A has an OUT-
connection and peer B has an IN-connection. We will
also say that peer A has an OUT-connected peer, which
is peer B. And peer B has an IN-connected peer, which
is peer A.

If we would like to transfer requests from the other
direction as well, from B to A, we need to establish another
OWRC directed from B to A as depicted in Fig. 4. How-
ever, we stress again that these connections are logical
and can be implemented on top of either one or two TCP
connections.

A P2P network established using OWRCs can be mod-
elled as a directed graph. A directed arc represents an
OWRC: the tail of the arc has the peer that considers the
connection as an OUT-connection, and the head of the
arc (i.e. the pointing part) has the peer that considers the
connection as an IN-connection. Hence the requests can
flow along the direction of the arcs.
Fig. 4. Two OWRCs between two peers, which enable each peer to
request service from the other.



Fig. 5. A directed graph representation of a network consisting of
OWRCs.

2 Due to the power-law distribution of node degrees observed in P2P
networks [4,34], we expect the average number of neighbors of a peer to be
around 3–4, and therefore the overhead imposed by the solution on each
peer will not be very large. This implies that the framework is scalable,
thanks to its distributed nature.

3 Alternatively, the connections can be updated periodically rather than
with every upload/download operation.

4 This TCP connection will be used for PCMP’s messages exchange to
create the new OWRC connection. If desired, the TCP connection used for
file download can be used for this purpose as well.

M. Karakaya et al. / Computer Communications 31 (2008) 240–256 245
Fig. 5 shows an example model of a P2P network
consisting of OWRCs. Here, peer A has 6 neighbors. It
has four OUT-connected neighbors (B, D, F, G) and
three IN-connected neighbors (C, E, G). In other words,
the IN-connections of A are {C, E, G}, and the OUT-
connections of A are {B, D, F, G}. When Peer A would
like to search the network it can submit the Query only
to its OUT-connected neighbors, namely B, D, F, and G.
It will process the Queries only coming from its IN-
connected neighbors (C, E, G). If it receives any Query
from OUT-connected neighbors it drops the request.
The details of a peer interaction with the PCMP are
explained in Section 3.5.

We believe that peers would like to minimize the num-
ber of IN-connections, and they would like to maximize
the number of OUT-connections. Because, IN-connec-
tions require a peer to process incoming Query and Ping
messages, forwarding them and returning any replies to
the originator. In contrast, more OUT-connections will
help a peer to reach more other peers and increase the
probability of receiving a hit to its queries. In short,
IN-connections require a peer to serve other peers, while
OUT-connections allow a peer to use services offered by
the network.

3.3. Managing one-way-request connections

PCMP manages OWRCs by taking the peers’ contribu-
tions into account. Network topology adaptation as a
result of PCMP actions aims to enable contributing peers
discover each other more quickly and get connected to each
other more directly. In this way, PCMP eventually results
in topologies in which contributing peers are more closely
located with respect to each other and free riders are more
isolated.

Each peer executing PCMP can maintain zero or more
IN-connections, and zero or more OUT-connections. Max-
imum number of IN- and OUT-connections is limited by
the available bandwidth and determined by peers. The
following data structures can be used to define an IN and
OUT connection.2

IN_Connection {
long int PeerID;/*ID of the other peer*/
long int Downloads;/*download counter*/
double LastDwnldTime;/*last download

time*/
}
OUT_Connection {
long int PeerID;/*ID of the other peer*/
long int QueryHits;/*Query Hit counter*/
double LastQHitTime;/*last Query Hit

time*/
}

According to PCMP, connections are updated at a peer
whenever that peer is involved in a download or upload
operation; otherwise, PCMP does not update the connec-
tions of the peer.3 The details of the PCMP operations that
take place at requesting and providing peers are given
below.

3.3.1. Managing IN-connections

PCMP attempts to create an OWRC between the
requesting peer (downloader) and the providing peer
(uploader). The downloader will have an IN-connection
from the uploader through which it can serve any future
requests of the uploader. Since, the new OWRC is directed
from the uploader to the downloader, it is an OUT-connec-
tion for the uploader on which the uploader can request
service from the downloader.

The details of how an IN-connection is created by the
downloader are given below.

• After the download, the downloader checks if there is an
already created IN-connection coming from the upload-
er. If so, only the connection data structure is updated,
i.e. the download counter is incremented by 1 and the
last download time is set to the current time.

• If there is no existing IN-connection from the uploader
to the downloader, a TCP connection is created between
the downloader and the uploader.4 The downloader
waits for a Ping message from the uploader over the
TCP connection. Because, after uploading, uploader is
expected to request an IN-connection from downloader
by sending a Ping message.



246 M. Karakaya et al. / Computer Communications 31 (2008) 240–256
• If the downloader receives the expected Ping message
from the uploader, it proceeds with the following steps:

– If the downloader can accommodate a new IN-connec-
tion, it creates a new connection to the uploader. It
then replies with a Pong message to the uploader. In
addition, it creates an IN-connection structure, setting
the download counter to 1 and the last download time
to the current time.

– If there is no space to create a new IN-connection, con-
nection replacement takes place. An existing IN-con-
nection is replaced with the new IN-connection, i.e. the
existing connection is released. The connection replac-
ement policy is discussed in Section 3.4. Then, the do-
wnloader replies with a Pong message to the uploader.
Again, the data structure for the connection is updated.
Algorithm 1 shows the pseudo-code for managing IN-
connections.

3.3.2. Managing OUT-connections

Upon uploading a file, the PCMP attempts to create an
OUT-connection from uploader to the downloader.
If the connection is successfully established, the uploader
can then use this new connection to send requests to
downloader.
5 The existing TCP connection through which the upload has been
Algorithm 1. Sample pseudo-code for managing IN-
connections. A peer X will execute this code after
downloading a file from peer Y

Download of a file F from peer Y has been finished;
InConn = Search for an IN_Connection to Peer Y;
if (InConn is FOUND) then

/* update the connection structure */
InConn.Downloads++;
InConn.LastDwnldTime = now();

else

Wait for a Ping message from Y;
if (a Ping arrives from Y) then

newInConn = Create_IN_Connection();
newInConn.peerID = Y;
newInConn.Downloads = 1;
newInConn.LastDwnldTime = now();
if (there is space in the IN_connection list) then

Add(newInConn, IN_connections);
Send a Pong message to Y;

else

victimInConn = SelectVictim(IN_Connections);
Release(victimInConn);
Add(newInConn, IN_connections);
Send a Pong message to Y;

end if

end if

end if
performed can be used for this purpose as well, if we do not want to a
create a new TCP connection.
The operations performed by the uploader to create an
OUT-connection are described below.
• If there is an already-established OUT-connection at the
peer to the downloader, the peer does not have to do
anything, except possibly update some statistics.

• If there is no already-established OUT-connection to the
downloader, the peer first creates a TCP connection to
the downloader, through which further P2P messaging
to create the OUT-connection can be done.5 Then the
uploader sends a Ping message to the downloader
through this connection. Ping signifies that the uploader
would like to establish an OWRC to the downloader.
The downloader will consider the new OWRC an IN-
connection, and it can either accept or reject the connec-
tion request. Normally, the downloader should accept
the request if it obeys PCMP and if the downloaded file
is not a fake file. The downloader will then send a Pong
message back if it accepts the request.

• If a corresponding Pong message arrives from the down-
loader, the following operations are executed.

– If the peer can accommodate a new OUT-connection,
an OUT-connection to the downloader is created.
The information about downloader is initialized: the
downloader’s ID is stored, Query Hit counter is set to
zero, and the last Query Hit time is set to -1 (i.e. the
value used when no Query Hit have been received yet).

– If there is no space for a new OUT-connection, then the
connection replacement policy is executed and one of
the existing OUT-connections is replaced with the new
connection.
According to the PCMP protocol, a peer sends query
messages to OUT-connected peers through OUT-connec-
tions. If a Query Hit is received from an OUT-connected
peer, the respective data structure for the OUT-connec-
tion is updated: the Query Hit counter is incremented
by one, and the last Query Hit time is set to the current
time.

Algorithm 2 shows the pseudo-code for managing
OUT-connections.

Algorithm 2. Sample pseudo-code for managing OUT-
connections. A peer Y will execute this code after
uploading a file to peer X

Upload of a file F to a peer X has been finished;
OutConn = Search for an Out_Connection to Peer X;
if (OutConn is FOUND) then

Update statistics;
else

Send a Ping message to X;
if (a Pong arrives from X) then

newOutConn = Create_OUT_Connection();
newOutConn.peerID = X;



M. Karakaya et al. / Computer Communications 31 (2008) 240–256 247
newOutConn.QueryHits = 0;
newOutConn.LastQHitTime = � 1;
if (there is space in the OUT_connection list) then

Add(newOutConn, OUT_Connections);
else

victimOutConn = SelectVictim(OUT_Connections);
Release(victimOutConn);
Add(newOutConn, OUT_Connections);

end if

end if

end if
Fig. 6. A sample topology layout.
3.4. Connection replacement policy

The connection replacement policy determines how to
manage a limited number of IN and OUT-connections
when all available connections of a peer are occupied
and a new connection is required. There can be several
different approaches for designing replacement policies.
In this paper, we propose two connection replacement
policies. In the first policy, the number of downloads or
the number of hit messages provided from the neighbor-
ing peer is employed to decide which connection to
replace. The connection with the least number of down-
loads or hit messages provided is selected as a victim.
We call the PCMP protocol employing this policy Contri-

bution-based PCMP (C-PCMP). In the second connection
replacement policy, the time of the last download or the
time of the last Query Hit provided from the neighboring
peer is used to select the connection for replacement. The
connection with the oldest time of the last download or
hit messages provided is selected as a victim. We call
the PCMP protocol that applies this policy Time-based

PCMP (T-PCMP).

3.5. A Peer’s actions and PCMP

3.5.1. Search

When a peer requires a file, it submits a Query through
its OUT-connections.

3.5.2. Forward queries

When a peer receives a Query from one of its IN-con-
nections, it first searches its local files and replies according
to whether the file was found. If the TTL value of the query
is greater than 0, it forwards the Query through its OUT-
connections.

3.5.3. Forward Query Hits

When a peer receives a Query Hit message from one of
its OUT-connections and if the message is not destined to
itself, the peer forwards the message towards the destina-
tion by using the IN-connection through which it has
received the respective Query. The peer also updates the
OUT-connected peer data accordingly.
3.5.4. Download

When a peer receives a Query Hit message from one of
its OUT-connections as an answer to its Query, the peer
requests the file from the uploading peer indicated in the
Query Hit. A TCP connection is established between the
peer and the uploader, and the download is started. Upon
completion of the download, the peer receives a Ping mes-
sage from the uploader; an IN-connection is created at the
peer, and a Pong message is sent to the uploader as a reply
to the Ping.

3.5.5. Upload

When a peer receives a Query message through one of its
IN-connections, it first searches its local files. If it can
locate a matching file, it replies with a Query Hit message.
Upon receiving the Query Hit, the Query originator
requests the file from the peer. Upon completion of the
upload, the peer sends a Ping message to the downloader
to establish an OUT-connection towards that peer. Upon
receiving a corresponding Pong message from the down-
loader, the OUT-connection is created and the peer can
use it to send Queries.

3.6. PCMP operation example

As a simple example, consider the P2P network topol-
ogy given in Fig. 6. Assume each peer can only support
up to 4 IN and 4 OUT-connections and the TTL is set
to 2. The dashed circles represent the contributors (C1
and C2). In the given topology, the Query message of
an indicated contributor (C1 or C2) cannot reach to
the other one, since the indicated contributors are sepa-
rated from each other by more than two hops. Assume
a file F1 and a file F3 are stored on contributor C1,
and a file F2 is stored on contributor C2. If the
proposed PCMP is applied, the following scenario will
occur.

• Peer P searches P2P network for file F1 with TTL 2. C1
replies with a Query Hit message. Then, Peer P down-
loads the file from the contributor peer C1. Upon down-
load, Peer P deletes one of its IN-connections and adds a
connection to C1 as a new IN-connection. C1 also
removes (tears down) one of its OUT-connections and
adds a connection to peer P as a new OUT-connection
(see Fig. 7).



Fig. 7. After downloading, Peer P updates its IN-connection by adding
C1.

Fig. 8. After downloading, Peer C1 updates its IN-connection by adding
C2.

Fig. 9. After downloading, Peer C2 updates its IN-connection by adding
C1.

Table 1
Properties of peer types

Property Contributors Free riders

Population ratios 30% 70%
Ratio of shared files of each peer type to total

files
99% 1%

Peers replicate the files they have
downloaded

True False

Mean time between queries (exponentially
distributed)

60 time units 60 time
units

Maximum simultaneous uploads 10 10

248 M. Karakaya et al. / Computer Communications 31 (2008) 240–256
• Later, contributor C1 searches for file F2 and the respec-
tive Query message reaches C2 via the peer P. C2 replies
with a Query Hit message, and C1 downloads the file
from C2. After downloading, a new connection is set
up from C2 to C1. It is an OUT-connection for C2
and an IN-connection for C1 (see Fig. 8).

• Later, C2 searches for file F3, and C1 replies with a Hit
message. After the download has been finished, a new
connection is established between C1 and C2. This time
the connection is established from C1 to C2; hence it is
an OUT-connection for C1 and an IN-connection for
C2 (see Fig. 9).

As seen in the above example, when PCMP was used,
two contributing peers discovered each other and got con-
nected directly. Additionally, the free riders became further
away from the contributing peers. If PCMP was not used,
the two contributors could not benefit from each other;
only free riders would benefit from this situation.

4. Performance evaluation

In this section, we first present our simulation model and
performance metrics. Then we present the results of our
simulation experiments and discuss them.
4.1. Overview of the simulation model

We used a simulation-based approach to study the
model of a typical unstructured P2P network, namely Gnu-
tella, with free riding and our PCMP incorporated. We
implemented our simulation model including our PCMP
protocol on the GnuSim P2P network simulation tool that
we had developed earlier [13]. GnuSim was implemented as
an event-driven simulator on the Windows platform using
the CSIM 18 simulation library [9] and the C++ program-
ming language. Interactions between peers and the P2P
network, such as searching, downloading, pinging, etc.,
were implemented according to the Gnutella protocol spec-
ification given in [10].

Our model simulated a P2P network of 900 peer nodes.
The peers were inter-connected to form a mesh topology at
the beginning of a simulation run. For the base experi-
ments with only the Gnutella protocol (i.e. without
PCMP), we assumed that all the peers stayed connected
in the same way until the end of the simulation runs.

We assumed that there were two types of peers in the
simulated network: contributors and free riders. The prop-
erties of each peer type are summarized in Table 1. The
properties of each peer type include the population ratio,
shared file ratio, maximum number of simultaneous
uploads possible, mean time between query generations,
and whether peers replicate the downloaded files or not.
The default values of each of these properties are set to val-
ues similar to those reported in [1,2,6,32,33].

There were 9000 distinct files, with four copies of each,
distributed to the peer nodes at the beginning of each sim-
ulation run. These 36000 files were distributed among the
peers and shared according to the file sharing ratios shown
in Table 1. For the base experiments, we assumed that each
file was of the same size and could be downloaded in 60
units of simulation time. In Section 4.3.5 we relax this
assumption.

During a simulation run, peers randomly selected files to
search for download, and they submitted search queries for
them. The inter-arrival time between search requests gener-
ated by a peer followed an exponential distribution with a
mean of 60 time units.

Each peer’s upload capacity (the number of simulta-
neous uploads the peer could perform) was limited to 10.
If a peer reached its upload capacity, any new upload



M. Karakaya et al. / Computer Communications 31 (2008) 240–256 249
requests were rejected. The querying peer could then try to
download the file from another peer, selected from a list
obtained from the Query Hit message. We assumed that
the querying peer would repeat the same request a maxi-
mum of three times. After that, the peer would give up
and could initiate a new search for another file.

We assumed that TTL is set to be 3 hops. In fact, Gnu-
tella Protocol leaves TTL field value unsigned. In real life
applications, TTL is usually set to 7. We set it to 3 in
our simulation tests, since the network topology we simu-
late is small compared to the real world. If we had set
TTL to 7, then most of the queries would have covered
almost all of the peers, which would not have been realistic.
In addition, we observed that changing the TTL value does
not have an impact on the relative performance of Gnutella
and our PCMP protocol.

Simulation experiments were run for 4000 units of sim-
ulated time. Each simulation was repeated 10 times and
plotted on a 95% confidence interval.

In order to match the topology of the base model, we
assumed that each peer could provide up to four IN- and
four OUT-connections. This is because the base model
compared with PCMP has a mesh topology with an aver-
age of four connections per peer.

4.2. Metrics

To evaluate our protocol, we defined and studied two
families of metrics: (1) topology-related metrics, (2) perfor-
mance-related metrics. Using the first type of metrics, we
aimed to investigate the change in the P2P network topol-
ogy in favor of contributing peers. The details of the topol-
ogy-related metrics are presented below.

• Total number of connections among contributors: We
count the number of connections (IN and OUT) which
connect the contributors directly to each other. We
expect that if the number of connections among contrib-
utors is increased, the contributors will get better service
from the network. Since we assume the number of con-
nections that a peer can have to be limited, those con-
nections have to be used carefully by contributors. In
order to get better service and more Query Hits, a con-
tributor should have more connections to other contrib-
utors and less connections to free riders. In this way, a
contributor can also reduce free riding through itself.
This metric also shows how successful the PCMP proto-
col is in discovering and connecting contributors.

• Total number of OUT-connections from free riders to con-

tributors: As stated in Section 3.2, if a peer has an OUT-
connection to another peer, the peer can submit queries
through this connection to that peer. Hence, the number
of OUT-connections a peer has increases its chance to get
replies and service from the network. Therefore, we count
the total number of OUT-connections that free riders
have towards contributors to measure how effective our
protocol is in reducing free riders’ access to resources.
• Number of isolated free riders: One of the aims of our
protocol is to isolate free riders from contributors in
the P2P network. If a free rider has no OUT-connection,
then it cannot send any query and cannot receive any
service, and we consider such a peer to be isolated. An
isolated peer cannot download any files from the net-
work. The greater the number of isolated free riders,
the better it is for the network.

The second type of metrics that we defined are related to
the performance and service the peers get from the net-
work. They are used to measure the performance and ser-
vice improvement in the network when PCMP is employed.

• Number of downloaded files: This is an important metric
indicating the number of downloads that can be per-
formed in a P2P network during a fixed time interval.
If peers can download more files from the P2P network,
then the level of satisfaction with the network will be
higher.

• Download cost: We define the download cost for a peer
as the ratio of the number of uploads to the number
of downloads performed by the peer. This ratio indicates
the load imposed on a peer compared to the service the
peer gets from the network. The smaller this ratio is, the
better it is from the perspective of the peer.

• Number of P2P network protocol messages: This metric
shows the messaging overhead in the P2P network and
the underlying infrastructure. Messaging overhead
affects the scalability of a P2P system. The messaging
overhead may be high due to the flooding approach used
in querying, particularly in unstructured P2P networks.
High numbers of protocol messages sent over the net-
work also increase the level of congestion in the
network.

4.3. Simulation results and analysis

In simulation experiments, we first tested the effective-
ness of PCMP in connecting the contributors to each other.
Afterwards, we conducted experiments to observe changes
in the performance when PCMP is employed.

4.3.1. Impact of PCMP on network topology

Fig. 10 shows the number of connections established
among contributing peers over the simulation time. The
results are for a P2P network employing our PCMP proto-
col using the time-based replacement policy (T-PCMP). As
seen in the figure, the protocol causes more contributing
peers to become directly connected to each other as time
passes. By the end of the simulation time, the number of
connections (IN and OUT) among contributors had
increased from 309 to 562. Hence, connectivity among con-
tributors increased by 82%.

Fig. 11 shows the number of OUT-connections of free
riders to contributing peers plotted against the simulation



Fig. 10. Increase in the number of connections among contributing peers.

Fig. 11. Decrease in the number of OUT-connections from free riders to
contributors.

Fig. 12. The number of isolated free riders.

Fig. 13. Decrease in free riding peers’ downloads.

250 M. Karakaya et al. / Computer Communications 31 (2008) 240–256
time. As seen in the figure, the protocol caused the number
of OUT-connections of free riders to decrease by about
67% by the end of the simulation. This is because when
contributors cannot download from free riders over time,
they start dropping their IN-connections from the free rid-
ers; hence the free riders lose their OUT-connections to
contributors.

Fig. 12 shows the number of isolated free riders over
time. As time passed, more free riders were isolated from
the network (they lost all their OUT-connections). At the
end of the simulation time, a total of 24 free riders (out
of 630) had been isolated.

These results show that the PCMP updates the topology
effectively according to the contributions of peers: it
increases the connectivity among contributors, reduces
the connectivity of free riders towards the contributors,
and can totally isolate some free riders from the P2P
network.
4.3.2. Impact of PCMP on P2P network performance

This section evaluates the effectiveness of our protocol in
terms of the performance metrics described in Section 4.2.

4.3.2.1. Downloads of free riders. As Fig. 13 depicts, the num-
ber of downloads by free riders dropped when PCMP was
applied. PCMP decreases OUT-connections of free riders
towards contributors, and this reduces the chance of getting
a hit on the queries. In this way, the number of downloads
by free riders is reduced. Both C-PCMP and T-PCMP reduces
the downloads. C-PCMP caused a 14% reduction, whereas T-
PCMP achieved a 16% reduction.

4.3.2.2. Downloads of contributors. It is desirable to increase
the number of downloads for contributors. Since each
peer’s upload capacity is limited, the download requests
of contributors can sometimes be rejected. The rate of
rejection is higher when there are many free riders in the
system, so eliminating the effects of free riders on the P2P
network will help to increase the number of downloads that
contributors can make. This is indeed shown by Fig. 14;



Fig. 14. Increase in contributors’ downloads.

M. Karakaya et al. / Computer Communications 31 (2008) 240–256 251
applying our PCMP methods achieved an increase in
downloads done by contributors by 51%.

Fig. 14 shows that the improvement in downloads is
slightly greater with T-PCMP than C-PCMP. While T-
PCMP yielded an improvement of about 51%, the
improvement when C-PCMP was used was about 46%.

4.3.2.3. Download cost. The load on a contributor can also be
defined as the ratio of its uploads to its downloads. The results
of our experiments show that our PCMP methods also cause a
reduction in the download cost of contributors. As shown in
Fig. 15, both T-PCMP and C-PCMP achieve a reduction of
about 30% in the download cost for contributors.

4.3.2.4. Number of P2P protocol messages. The number of
P2P protocol messages transmitted in the network is an
important factor affecting scalability and bandwidth effi-
ciency. PCMP results in a reduction of up to 36% in the
number of transmitted P2P protocol messages (Query
and Query Hit messages) originating from and destined
for the free riders (Fig. 16). This result shows that applying
the proposed PCMP helps a P2P network to handle more
Fig. 15. Decrease in contributors’ download cost.
peers with less P2P messaging overhead and the system
becomes more scalable with respect to the peer population.
The reduction observed in the number of protocol mes-
sages is the result of reducing or stopping the propagation
of Query messages from free riders. As the number of
OUT-connections of free riders gets reduced, the propaga-
tion of Query and Query Hit messages for free riders will
get reduced as well. The reduction of control traffic in a
P2P network also means a reduction in the overhead
imposed on the underlying infrastructure. This reduction
translates to a better utilization of available bandwidths
and to a decreased processing load on each peer.
4.3.3. Reactiveness of PCMP
We also explored how PCMP reacts to the changes in the

behavior of peers. A peer can behave as a free rider at first,
but later, after observing the decrease in the service it gets,
begin to share its resources. If PCMP does not react to these
kinds of changes, it will be unfair and moreover it cannot
accomplish one of its primary goals, promoting contribution.

To observe the reactiveness of PCMP, we conducted the
following experiment. We randomly selected a probe node
which initially behaved as a free rider. After a certain
amount of time, the node changed its sharing attitude
and began to share its files. We compared the level of ser-
vice it got from the P2P network when it was behaving as a
free rider and when it was sharing its files. The number of
downloads that could be done by the probe peer is depicted
in Fig. 17. As seen in the figure, when the peer begins to
change its sharing attitude at a given time from free riding
to contributing, PCMP reacts in a positive way and allows
the peer to download more files.
4.3.4. Effects of peer and free rider population

Considering the size of the real Gnutella network, the
number of peers simulated in our work can be considered
to be very small. However, since our proposed method
requires only local interactions between neighbors, we do
not expect the impact of the number of peers on the
Fig. 16. Decrease in P2P messages from free riders.



Fig. 19. The number of contributors’ downloads when different free rider
populations are simulated.

Fig. 17. Downloads of the probe node according to when it begins to
share its files.

252 M. Karakaya et al. / Computer Communications 31 (2008) 240–256
network’s performance to be considerable. This is indeed
what we have observed in the results of our experiments
that were performed for various network sizes: 400, 900,
1600, 2500, and 4900 peers. Fig. 18 displays the perfor-
mance in terms of the number of contributor downloads.
As shown in the figure, the number of downloads by con-
tributors is increased around 45% for all network sizes.
Therefore, we conclude that increasing the number of peers
in the network does not negatively affect the performance
of our framework, and that our framework is scalable.

We also observed the effect of the size of the free rider
population. As seen in Fig. 19, regardless of the ratio of
free riders, T-PCMP achieves more downloads, around
50%, for contributors. Even at a low population ratio of
free riders, the protocol performs very well.
Fig. 18. The number of contributors’ downloads when different numbers
of peers are simulated.
4.3.5. Effects of different file sizes and popularity

In Section 4.1, we assumed that each file is of the same
size and the number of copies for each file is identical. In
this section, we relax these assumptions by considering dif-
ferent file sizes as summarized in Table 2, and different lev-
els of file replication as shown in Table 3. The values given
in tables are based on the results of the P2P network obser-
vations done in [32,33].

We proposed two connection replacement policies in Sec-
tion 3.4, namely T-PCMP and C-PCMP. To handle different
file sizes we propose a new replacement method. In this
method, the size of the file downloaded from the neighboring
peer is used to select the connection for replacement. The
connection with the least total amount of downloaded file
is selected as a victim. We call the PCMP protocol that
applies this policy Size-based PCMP (S-PCMP).

Fig. 20 shows the results of different file sizes on the con-
tributor downloads. PCMP increases the contributor
downloads as much as 55% compared to Gnutella.
Table 2
Properties of different file sizes

File type File size Ratio (%)

Very small � 0.3 10
Small �5 MB 50
Medium �40 MB 20
Large �100 MB 10
Very large >100MB 10

Table 3
Properties of different levels of file replication

Name Group A (ratio/replication) Group B (ratio/replication)

Rare 10% of files: 1 copy 90% of files: 4 copies
Popular 10% of files: 40 copies 90% of files: 4 copies
Uniform All files: 4 copies All files: 4 copies



Fig. 20. The number of contributors’ downloads with the existence of
different file sizes.

M. Karakaya et al. / Computer Communications 31 (2008) 240–256 253
For evaluating the impact of different file replication lev-
els, we used three file replication schemes as summarized in
Table 3. We split the files into two groups and replicated
them with different factors. In the RARE distribution,
10% of the files are rare (fewer replications) compared to
90% of the files. Similarly, in the POPULAR distribution,
10% of the files are more popular (more replications) than
those of 90% of the files. In UNIFORM (default) distribu-
tion all the files have the same number of copies.

The results of the simulation tests are depicted in
Fig. 21. The figure summarizes the effects of different file
distribution schemes on the contributors downloads. With
all the file distributions considered, PCMP performs about
55% better than Gnutella. Total number of downloads of
contributors is affected by the distribution strategy of file
copies. However, PCMP manages to profit the contribu-
tors with all different types of file distribution schemes
evaluated.
Fig. 21. The number of contributors’ downloads when different file
replications exist.
5. Possible attacks

There are many different kinds of attacks to the existing
P2P network protocols. Since we extend the Gnutella Pro-
tocol, we will not discuss the attacks and their effects
related to the original Gnutella Protocol. Here we would
like to discuss the several possible attacks specific to the
method we proposed against free riding.

5.1. A malicious peer does not comply with the proposed

PCMP rules

A malicious peer may refuse to add a contributor to its
list of IN-connections after downloading a file from the
contributor. We claim that by doing this the malicious peer
cannot gain anything. It can only stop incoming Query and
Ping messages via its IN-connections. This, however, may
decrease the search horizon of the contributors.

If all free riders apply this attack, then contributors
establish OUT-connections only with other contributors,
and this automatically helps them to become more con-
nected with each other. In the end, contributing peers will
have an advantage over free riders, since a peer has a
restricted number of OUT-connections and a contributor
will not waste them for connections to free riders. Because,
as discussed in Section 3.2, if a contributor uploads a file to
a peer, the contributor will update its OUT-connection
with that peer. If there is no free OUT-connection, then
it will drop an existing OUT-connection and add the new
peer. If the dropped connection is with a contributor and
the newly added connection is with a free rider, the contrib-
utor will not benefit from the new connection since free rid-
ers do not share almost any files. However, the
contributors are not aware if a peer is a free rider or not.
If free riders reject IN-connection requests by not sending
a Pong message, then the contributors will not update their
OUT-connections. The contributors will only update their
OUT-connections when they upload files to other contrib-
utors, since other contributors will accept the IN-connec-
tion requests by replying with Pong messages. Therefore,
we expect that this attack will not affect the contributors
much.

In order to observe the effects of this possible attack, we
designed a new simulation setting. In the new simulation,
we assumed that all free riders would reject creating an
IN-Connection from a source peer after downloading a
file. As seen in Fig. 22, this attack does not adversely affect
the download performance of the contributors as com-
pared to the results given in Fig. 14. On the contrary,
the contributors can download slightly more files, because
they become more closely connected to each other, as seen
in Fig. 23.

5.2. A malicious peer replies with a faked Query Hit

To establish OUT-connections, a malicious peer can
reply to a Query message as if it has the file. However,



Fig. 22. The number of contributors’ downloads when free riders are
noncooperative.

Fig. 23. Increase in the number of connections among contributing peers
when free riders are noncooperative.

254 M. Karakaya et al. / Computer Communications 31 (2008) 240–256
when the querying peer demands the file, the malicious
peer can upload a fake file. But this will not help the mali-
cious peer to establish an OUT-connection. Because, in
the proposed PCMP, the connection between two peers
is established after a file is downloaded, and connection
establishment is initiated by the uploading peer by send-
ing Ping message. If the downloader peer is not satisfied
with the file, it will not send back a Pong message and
the connection will not be established. Therefore, the
malicious peer cannot use this attack to gain more
OUT-connections.
5.3. A malicious peer behaves as a new-comer to gain more

OUT-connections

To increase the number of OUT-connections, a mali-
cious peer can request OUT-connections from peers as if
it is a new peer in the network. If the peers accept all new-
comers’ connection requests without any limitations, the
attacker can benefit from this situation. Jakobsson and
Juels proposed a method of combating such problems:
proof of work (POW) protocols [15]. The main idea of
these protocols is that a prover demonstrates to a verifier

that it has expended a certain level of computational effort
in a specified interval of time. POWs were proposed as a
mechanism for a number of security goals including server
access metering, construction of digital time capsules,
uncheatable benchmarks, and protection against spam-
ming and other denial of service attacks. However, in
[31], it was argued that the implementation of POW to
decrease spamming to very low levels could limit small
number of legitimate user’s activities as a side effect. In
our context, we believe that we can implement POW as
an effective discouraging method against Free Riders.
There are no side effects similar to the ones mentioned
above in our application. In our work, we can implement
POW to minimize these attacks to very low levels. Thus
creating new connections can cost time, limiting the ability
of the attackers to request them without a limit. We can
include a rule in the general P2P protocol for initial con-
nections stating that clients are required to solve a puzzle,
such as factoring a number, before a Ping request is
answered with a Pong message. The puzzles could require
additional work as resources become more scarce. This
increases the resources required by attackers to attack the
system proportional to the threat of the attack.

6. Conclusion

In this paper, we propose a novel approach and a con-
nection management protocol (PCMP) against free riding
in unstructured P2P networks. Our approach is based on
dynamically adapting P2P network topology via our
PCMP protocol to promote contribution in the network.
The PCMP protocol manages the connections among peers
based on the amount of contributions by peers. PCMP is
simple to implement, has low overhead to run, fully com-
plies with the concepts and protocols of unstructured P2P
networks, and is decentralized so as to operate efficiently.

By adapting the overlay topology, we aim to reduce the
amount of free riding and its adverse impact on P2P net-
works, and to increase the quality of service that peers
can get from the network, the availability of content and
services, the robustness of the system, the balance of the
load on peers, and the scalability of the network. As the
performance results of simulation experiments indicate,
the protocol does indeed reduce the adverse effects of free
riding on a P2P network, and the performance of the
P2P network is improved considerably.



M. Karakaya et al. / Computer Communications 31 (2008) 240–256 255
It is possible to conceive of various attacks and work-
arounds that free riders can try to bypass the protocol.
However, we show that our solution can cope with possible
attacks. Furthermore, simulation experiments prove that
most of the possible attacks do not render our protocol
ineffective.

References

[1] Eytan Adar, Bernardo A. Huberman, Free Riding on Gnutella,
‘‘http://www.firstmonday.dk/issues/issue5_10/adar’’, 2000.

[2] Evangelos P. Markatos, Tracing a large-scale Peer to Peer System: an
hour in the life of Gnutella, in: IEEE International Symposium on
Cluster Computing and the Grid, May 2002, 65–74.

[3] Lakshmish Ramaswamy, Ling Liu, Free riding: a new challenge to
Peer-to-Peer file sharing systems, in: Annual Hawaii International
Conference on System Sciences – Track7, Big Island, Hawaii,
January, 2003.

[4] M. Jovanovic, F.S. Annexstein, K.A. Berman, Scalability Issues in
Large Peer-to-Peer Networks – A Case Study of Gnutella, Technical
Report, University of Cincinnati, 2001.

[5] Matei Ripeanu, Ian Foster, Adriana Iamnitchi, Mapping the Gnu-
tella network: properties of large-scale Peer-to-Peer systems and
implications for system design, IEEE Internet Computing, Journal
Special Issue on Peer-to-Peer Networking 6 (1) (2002).

[6] Stefan Saroiu, P. Krishna Gummadi, Steven D. Gribble, A measure-
ment study of Peer-to-Peer file sharing systems, Multimedia Com-
puting and Networking (2002).

[7] Ramayya Krishnan, Michael D. Smith, Zhulei Tang, Rahul Telang,
The impact of free-riding on Peer-to-Peer networks, in: Annual
Hawaii International Conference on System Sciences – Track 7, 2004.

[8] Vivek Vishnumurthy, Sangeeth Chandrakumar, Emin Gun Sirer,
KARMA: a secure economic framework for P2P resource sharing, in:
Workshop on the Economics of Peer-to-Peer Systems, 2003.

[9] Herb Schwetman, CSIM: A C-based, Process Oriented Simulation
Language, in: Winter Simulation Conference, 1991.

[10] Clip2, The Gnutella Protocol Specification v0.4 (Document Revision 1.2),
‘‘http://www9.limewire.com/developer/gnutellaprotocol0.4.pdf’’, 2001.

[11] M. Karakaya, I. Korpeoglu, O. Ulusoy, A distributed and
measurement-based framework against free riding in Peer-to-Peer
networks, IEEE International Conference on Peer-to-Peer Comput-
ing (2004).

[12] Nazareno Andrade, Francisco Brasileiro, Walfredo Cirne, Miranda
Mowbray, Discouraging free-riding in a Peer-to-Peer grid, in: IEEE
International Symposium on High-Performance Distributed Com-
puting, 2004.

[13] M. Karakaya, I. Korpeoglu, O. Ulusoy, GnuSim: a Gnutella network
simulator, in: Technical Report BU-CE-0505, Department of Com-
puter Engineering, Bilkent University, 2005. ‘‘http://www.cs.bilkent.
edu.tr/tech-reports/2005/BU-CE-0505.pdf’’.

[14] Qixiang Sun, Hector Garcia-Molina, SLIC: A selfish link-based
incentive mechanism for unstructured Peer-to-Peer networks, in:
Proceedings of the 24th International Conference on Distributed
Computing Systems (ICDCS 2004), 2004.

[15] M. Jakobsson, A. Juels, Proofs of work and breadpudding protocols,
in: Proceedings of the Communications and Multimedia Security,
September 1999.

[16] Y. Liu, Z. Zhuang, L. Xiao, L. Ni, AOTO: adaptive overlay topology
optimization in unstructured P2P systems, The IEEE Global
Telecommunications Conference (Globecom) (2003).

[17] Curt Cramer, Kendy Kutzner, Thomas Fuhrmann, Bootstrapping
locality-aware P2P networks, in: The IEEE International Conference
on Networks (ICON), 2004.

[18] A. Singh, M. Haahr, Topology adaptation in P2P networks using
Schelling’s model, in: The Workshop on Emergent Behaviour and
Distributed Computing, PPSN-VIII, 2004.
[19] D. Hughes, G. Coulson, J. Walkerdine, Free riding on Gnutella
revisited: the bell tolls? IEEE Distributed Systems Online 6 (6) (2005).

[20] M. Yang, Z. Zhang, X. Li, Y. Dai, An empirical study of free-riding
behavior in the maze P2P file-sharing system, IPTPS, 2005.

[21] Bram Cohen, Incentives build robustness in bittorrent’’, Workshop
on Economics of Peer-to-Peer Systems, vol. 6, 2003.

[22] eDonkey Web Site, ‘‘http://www.edonkey2000.com’’, 2006.
[23] eMule Web Site, ‘‘http://www.emule-project.net’’, 2006.
[24] MyungJoo Ham, Gul Agha, ARA: a robust audit to prevent free-

riding in P2P networks, in: The Fifth IEEE International Conference
on Peer-to-Peer Computing (P2P2005), 2005.

[25] S.D. Kamvar, M.T. Schlosser, H. Garcia-Molina, The EigenTrust
algorithm for reputation management in P2P networks, in: The 12th
International Conference on World Wide Web (WWW), 2003.

[26] B. Yang, H. Garcia-Molina, PPay: micropayments for peer-to-peer
systems, in: Proceedings of the 10th CCS, V. Atluri and P. Liu (Eds.),
ACM Press, New York, 2003, pp. 300–310.

[27] Prashant Dewan, Partha Dasgupta, Securing P2P networks using
peer reputations: is there a silver bullet? IEEE Consumer
Communications and Networking Conference (CCNC 2005) (2005).

[28] Dipyaman Banerjee, Sabyasachi Saha, Sandip Sen, Prithviraj Das-
gupta, Reciprocal resource sharing in P2P environments, in: The 4th
International Joint Conference on Autonomous Agents and Multi
Agent Systems (AAMAS-05), July, 2005.

[29] H. Cai, J. Wang, Foreseer: a novel, locality-aware Peer-to-Peer system
architecture for keyword searches, in: Proceedings of the 5th ACM/IFIP/
USENIX international conference on Middleware, 2004, pp. 38–58.

[30] Yatin Chawathe, Sylvia Ratnasamy, Lee Breslau, Scott Shenker,
Making Gnutella-like P2P systems scalable, in: Proceedings of ACM
SIGCOMM, 2003.

[31] B. Laurie, R. Clayton, Proof-of-work proves not to work, in: The Third
Annual Workshop on Economics and Information Security, 2004.

[32] N. Leibowitz, A. Bergman, R. Ben-Shaul, A. Shavit, Are file
swapping networks cacheable? Characterizing P2P traffic, in: Pro-
ceedings of the 7th Int. WWW Caching Workshop, 2002.

[33] N. Leibowitz, M. Ripeanu, A. Wierzbicki, Deconstructing the Kazaa
network, in: The Third IEEE Workshop on Internet Applications,
WIAPP 2003.

[34] Q. Lv, P. Cao, E. Cohen, K. Li, S. Shenker, Search and replication in
unstructured peer-to-peer networks, in: ICS’02, New York, USA,
June 2002.
Murat Karakaya is currently a Ph.D. candidate in
the Computer Engineering Department of Bil-
kent University in Ankara, Turkey. His current
research interests include peer-to-peer networks
and mobile database systems.
_Ibrahim Körpeoğlu received his Ph.D. and M.S.

degrees from University of Maryland at College
Park, both in Computer Science. He is currently
an Assistant Professor in the Computer Engi-
neering Department of Bilkent University,
Ankara, Turkey. Prior to joining Bilkent Uni-
versity, he worked in Ericsson, IBM T.J. Watson
Research Center, Bell Labs, and Telcordia
Technologies, in USA. His research interests
include computer networks, wireless ad hoc and
sensor networks, mobile computing, and P2P
networks.

http://www.firstmonday.dk/issues/issue5_10/adar
http://www9.limewire.com/developer/gnutellaprotocol0.4.pdf
http://www.cs.bilkent.edu.tr/tech-reports/2005/BU-CE-0505.pdf
http://www.cs.bilkent.edu.tr/tech-reports/2005/BU-CE-0505.pdf
http://www.edonkey2000.com
http://www.emule-project.net


ommunications 31 (2008) 240–256
Özgür Ulusoy received his Ph.D. in Computer
Science from the University of Illinois at Urbana-

Champaign. He is currently a Professor in the
Computer Engineering Department of Bilkent
University in Ankara, Turkey. His current
research interests include peer-to-peer and mobile
systems, web querying, and multimedia database
systems. He has published over 80 articles in
archived journals and conference proceedings.

256 M. Karakaya et al. / Computer C


	A connection management protocol for promoting cooperation in Peer-to-Peer networks
	Introduction
	Related work
	P2P connection management protocol
	Our approach and motivation
	A new connection type: One-way request connections
	Managing one-way-request connections
	Managing IN-connections
	Managing OUT-connections

	Connection replacement policy
	A Peer ' s actions and PCMP
	Search
	Forward queries
	Forward Query Hits
	Download
	Upload

	PCMP operation example

	Performance evaluation
	Overview of the simulation model
	Metrics
	Simulation results and analysis
	Impact of PCMP on network topology
	Impact of PCMP on P2P network performance
	Downloads of free riders
	Downloads of contributors
	Download cost
	Number of P2P protocol messages

	Reactiveness of PCMP
	Effects of peer and free rider population
	Effects of different file sizes and popularity


	Possible attacks
	A malicious peer does not comply with the proposed PCMP rules
	A malicious peer replies with a faked Query Hit
	A malicious peer behaves as a new-comer to gain more OUT-connections

	Conclusion
	References


