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Abstract

Given A := {a1, . . . , am} ⊂ Rd whose affine hull is Rd , we study the problems of computing an approximate rounding of the
convex hull of A and an approximation to the minimum-volume enclosing ellipsoid of A. In the case of centrally symmetric sets,
we first establish that Khachiyan’s barycentric coordinate descent (BCD) method is exactly the polar of the deepest cut ellipsoid
method using two-sided symmetric cuts. This observation gives further insight into the efficient implementation of the BCD method.
We then propose a variant algorithm which computes an approximate rounding of the convex hull of A, and which can also be used
to compute an approximation to the minimum-volume enclosing ellipsoid of A. Our algorithm is a modification of the algorithm of
Kumar and Yıldırım, which combines Khachiyan’s BCD method with a simple initialization scheme to achieve a slightly improved
polynomial complexity result, and which returns a small “core set.” We establish that our algorithm computes an approximate
solution to the dual optimization formulation of the minimum-volume enclosing ellipsoid problem that satisfies a more complete
set of approximate optimality conditions than either of the two previous algorithms. Furthermore, this added benefit is achieved
without any increase in the improved asymptotic complexity bound of the algorithm of Kumar and Yıldırım or any increase in the
bound on the size of the computed core set. In addition, the “dropping idea” used in our algorithm has the potential of computing
smaller core sets in practice. We also discuss several possible variants of this dropping technique.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Let A := {a1, . . . , am} ⊂ Rd be a finite set of vectors whose affine hull is Rd . In this paper, we are concerned with
the problem of computing an approximate “rounding” of the convex hull of A as well as the problem of computing the
minimum-volume enclosing ellipsoid (MVEE) of A, which we shall denote by MVEE(A), also known as the Löwner
or Löwner–John ellipsoid of A.
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The MVEE satisfies [22]

1

d
MVEE(A) ⊆ conv(A) ⊆ MVEE(A), (1)

where conv(A) denotes the convex hull of A and the ellipsoid on the left-hand side is obtained by scaling MVEE(A)

around its center by a factor of 1/d . Furthermore, if A is centrally symmetric (i.e., if A = −A), the factor on the
left-hand side can be improved to 1/

√
d . Therefore, MVEE(A) provides a rounding of the full-dimensional polytope

conv(A).
Given � > 0, an ellipsoid E ⊂ Rd is said to be a (1+ �)d-rounding of conv(A) if

1

(1+ �)d
E ⊆ conv(A) ⊆ E. (2)

In the case of centrally symmetric point sets, we will be interested in finding
√

(1+ �)d-roundings, where we replace
the factor on the left-hand side of (2) by 1/

√
(1+ �)d. Similarly, for � > 0, we say that an ellipsoid E ⊂ Rd is a

(1+ �)-approximation of MVEE(A) if

A ⊆ E, Vol(E)�(1+ �) Vol(MVEE(A)), (3)

where Vol(E) denotes the volume of the ellipsoid E.
In general, there is not a strong relationship between (2) and (3). Given an ellipsoid E ⊂ Rd satisfying (2) for some

� > 0, we have

1

(1+ �)ddd
Vol(E)�Vol(conv(A))�Vol(MVEE(A))�Vol(E),

which implies that E is a (1+ �)-approximation of MVEE(A) for �= (1+ �)ddd − 1. (However, for the algorithms
we discuss, there is a much tighter bound: when we terminate with an ellipsoid giving a (1+ �)d-rounding, we have a
(1+ �)-approximation of MVEE(A) for �= (1+ �)(d+1)/2 − 1.) On the other hand, if an ellipsoid E ⊂ Rd satisfies
(3) for some � > 0, it may happen that there is no finite value of � such that (2) is satisfied. For instance, if A consists
of sampled points from the boundary of half of an ellipsoid Ẽ cut by a hyperplane through its center, then Ẽ yields a
2-approximation of MVEE(A) whereas (2) will not be satisfied for any finite value of �.

MVEEs play an important role in several diverse applications such as optimal design [32,34], computational geometry
[6,12,39]), convex optimization [20,29], computer graphics [9,13], pattern recognition [18], and statistics [31].

Several algorithms have been developed for the MVEE problem. These algorithms can be categorized as first-
order algorithms [23,26,31,34,35], second-order interior-point algorithms [30,33], or a combination of the two [23].
For small dimensions d, the MVEE problem can be solved in O(dO(d)m) arithmetic operations using randomized
[1,27,39] or deterministic [12] algorithms. A fast implementation is also available in the CGAL library1 for solv-
ing the problem in two dimensions [16]. Khachiyan and Todd [24] established a linear-time reduction of the MVEE
problem to the problem of computing a maximum-volume inscribed ellipsoid (MVIE) in a polytope described by
a finite number of inequalities. Therefore, the MVEE problem can also be solved using the algorithms developed
for the (typically, harder) MVIE problem [4,24,28,42,43]. Since the MVEE problem can be formulated as a deter-
minant maximization problem, the more general algorithms of Vandenberghe et al. [38] and Toh [37] can also be
applied.

Khachiyan [23] proposed an algorithm to compute a (1+�)d-rounding of conv(A) in polynomial time for fixed � > 0;
it can also compute a (1+ �)-approximation of MVEE(A) in polynomial time for fixed � > 0. Khachiyan’s algorithm
can be viewed as a barycentric coordinate descent (BCD) method [23] or as a Frank–Wolfe [15] or sequential linear
programming algorithm [26,33] for the dual optimization formulation of the MVEE problem. Indeed, this algorithm
was proposed for the dual of the MVEE problem, which is the optimal design problem in statistics, by Fedorov [14];
a slight variant without line searches, which may have some advantages in the statistical setting, was independently
suggested by Wynn [41] in 1970. So we could unambiguously call this the FW-method. However, Khachiyan’s analysis

1 http://www.cgal.org.
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was dependent on his choice of initialization and termination rules, so we continue to call this version Khachiyan’s
algorithm. His method computes a (1+ �)-approximation to MVEE(A) in

O(md2([(1+ �)2/(d+1) − 1]−1 + log d + log log m)) (4)

operations for � > 0. (Note that [(1+ �)2/(d+1) − 1]−1 = O(d/�) for � ∈ (0, 1].)
More recently, Kumar and Yıldırım [26] proposed a modification of Khachiyan’s algorithm (henceforth the KY

algorithm) using a simple initialization scheme, which can compute a (1+ �)-approximation to MVEE(A) in

O(md2([(1+ �)2/(d+1) − 1]−1 + log d)) (5)

operations, which is a slight improvement over (4). In addition, the algorithm of [26] computes an ellipsoid E ⊂ Rd

such that A ⊆ E and a subset X ⊆A with the property that

Vol(MVEE(X))�Vol(MVEE(A))�Vol(E)�(1+ �) Vol(MVEE(X)),

which implies that E is simultaneously a (1+�)-approximation to MVEE(X) and to MVEE(A). Such a set X is called
an “�-core set” (or a core set) of A to signify that conv(X) provides a good approximation of conv(A). Furthermore,
X satisfies

|X| = O(d[(1+ �)2/(d+1) − 1]−1 + d log d), (6)

which is independent of m, the number of points in A. (Note that John [22] shows that a 0-core set of cardinality
at most (d + 1)(d + 2)/2 exists. In Section 5, we establish that it is in fact possible to extract a core set whose size
matches that of the 0-core set with some post-processing. However, the computation in such a procedure dominates all
the work performed in the algorithm.) “Small” core set results have previously been established for several geometric
optimization problems [25,8,7,11,2] and play an important role in developing efficient and practical algorithms for
various large-scale problems in moderate dimensions.

Our contributions in this paper are twofold. In the case of centrally symmetric point sets, we establish that Khachiyan’s
BCD method is exactly the polar of the deepest cut ellipsoid method (using two-sided symmetric cuts), but with a much
improved analysis. Secondly, for arbitrary point sets, we propose a modification of the algorithm of [26], which computes
an approximate solution that satisfies a more complete set of near-optimality conditions than either of the algorithms
in [23] or in [26]. Furthermore, we establish that our modification does not lead to any increase in the asymptotic
complexity of the algorithm of [26] given by (5). Finally, the KY algorithm of [26] starts with a carefully selected,
small core set and expands it gradually. In contrast, our algorithm allows for dropping points in the working core set,
which has the potential to compute a smaller core set than that given by (6) (but certainly no bigger asymptotically).

After the first version of this paper was written, we discovered that our method was discovered in 1973 by Atwood
[5] in the context of the optimal design problem. Atwood’s work was independent of an earlier 1970 paper of Wolfe
[40], who suggests the equivalent “away steps” to improve the convergence of the Frank–Wolfe method. Wolfe hinted
at a proof of linear convergence, and this was later established rigorously by Guélat and Marcotte [21]. Their analysis
does not apply to the current setting, and recently Ahipasaoglu et al. [3] proved the linear convergence of this method
for the MVEE (or equivalently, the optimal design) problem.

The paper is organized as follows. We define notation in the remainder of this section. In Section 2, we review
formulations of the MVEE problem as an optimization problem and we describe various approximate optimality
conditions. Section 3 discusses an interpretation of Khachiyan’s algorithm as the polar of the deepest symmetric cut
ellipsoid algorithm. Then in Section 4, we describe and analyze our modification of this and the KY algorithm. We
conclude the paper in Section 5. There we also describe some preliminary computational results demonstrating the
efficiency of the proposed method (more results can be found in [3]) and its ability to generate small core sets.

1.1. Notation

Vectors are denoted by lower-case Roman letters. For a vector p, pi denotes its ith component, and P the diagonal
matrix whose diagonal entries are given by these components. Inequalities on vectors apply to each component. We
reserve e for the vector of ones of appropriate dimension, which will be clear from the context, and ej for the jth unit
vector. Upper-case Roman letters are reserved for matrices. For a finite set of vectors V, span(V) denotes the linear
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subspace spanned by V. Functions and operators are denoted by upper-case Greek letters. Scalars except for m, d, and
n are represented by lower-case Greek letters unless they represent components of a vector or elements of a sequence
of scalars, vectors or matrices. We reserve i, j, and k for indexing purposes. Upper-case script letters are used for all
other objects such as sets, polytopes, and ellipsoids.

2. Preliminaries and formulations

A (full-dimensional) ellipsoid EQ,c in Rd is specified by a d × d symmetric positive definite matrix Q and a center
c ∈ Rd and admits a representation given by

EQ,c = {x ∈ Rd : (x − c)TQ(x − c)�1}. (7)

The volume of the ellipsoid EQ,c, denoted by Vol(EQ,c), is given by Vol(EQ,c)= � det Q−1/2, where � is the volume
of the unit ball in Rd [20]. Similarly, we define the scaled volume by

vol(EQ,c) := det Q−1/2. (8)

Let A := {a1, . . . , am} ⊂ Rd be a finite set of vectors whose affine hull is Rd . If A is not centrally symmetric, we
define a “lifting” of A to Rn, where n := d + 1, by

A′ := {±q1, . . . ,±qm} where qi :=
[
ai

1

]
, i = 1, . . . , m, (9)

which is centrally symmetric. It turns out that MVEE(A) and MVEE(A′) are closely related [24,30]. More specifically,

MVEE(A)× {1} =MVEE(A′) ∩�, (10)

where

� := {x ∈ Rn : xn = 1}. (11)

In addition, for any � > 0, if E′ ⊂ Rn is a (1 + �)-approximation of MVEE(A′), then E, where E × {1} := E′ ∩�,
is a (1+ �)-approximation of MVEE(A) [24]. Henceforth, we assume that A is not centrally symmetric; clearly, if it
is, our algorithms can be simplified by omitting this lifting step.

Since A′ is centrally symmetric, it is easy to verify that MVEE(A′) is centered at the origin. If A′ ⊂ E′Q,c where

c �= 0, then A′ ⊂ E′
(1/�)Q,0, where � := 1− cTQc < 1, which implies that the latter ellipsoid has a smaller volume by

(8). Therefore, the problem of computing MVEE(A′) can be formulated as the following convex optimization problem:

(P(A′))minM − log det M

s.t. (qi)TMqi �1, i = 1, . . . , m,

M ∈ Rn×n is symmetric and positive definite, (12a)

where M ∈ Rn×n is the decision variable.
The Lagrangian dual of (P(A′)) is equivalent to

(D(A′))maxp �(p) := log det �(p)

s.t. eTp = 1,

p�0, (12b)

where p ∈ Rm is the decision variable and � : Rm→ Rn×n is the linear operator given by

�(p) :=
m∑

i=1

pi qi(qi)T. (13)
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Using the fact that the gradient of the function 	(X) := log det X over symmetric matrices is given by∇	(X)=X−1,
we see that the necessary and sufficient optimality conditions for p∗ to solve (D(A′)) are given by

wi(p
∗)+ s∗i = 
∗, i = 1, . . . , m, (14a)

eTp∗ = 1, (14b)

p∗i s∗i = 0, i = 1, . . . , m, (14c)

together with p∗�0 and s∗�0, where

wi(p) := (qi)T�(p)−1qi, i = 1, . . . , m. (15)

For any feasible solution p ∈ Rm of (D(A′)) with �(p) >−∞, we have [23, Lemma 1]

m∑
i=1

pi wi(p)= n. (16)

Therefore, multiplying both sides of (14a) by p∗i and summing up for i = 1, . . . , m, we obtain 
∗ = n by (14b) and
(14c). It follows then that the optimality conditions of (D(A′)) can be equivalently rewritten as

wi(p
∗)�n, i = 1, . . . , m, (17a)

eTp∗ = 1, (17b)

together with p∗�0. By (17) and (16),

p∗i > 0 implies wi(p
∗)= n, i = 1, . . . , m, (18)

which are simply the complementary slackness conditions (14c).
Khachiyan’s algorithm [23] is driven by computing a feasible solution p̃ of (D(A′)) that satisfies the so-called

�-relaxed optimality conditions defined by

wi(p̃)�(1+ �)n, i = 1, . . . , m. (19)

For a solution p̃ to (19), let j ∈ {1, . . . , m} be such that p̃j > 0. By (16),

wj(p̃)= 1

p̃j

⎛
⎝n−

m∑
i=1,i �=j

p̃iwi(p̃)

⎞
⎠ ,

�(n[1− (1+ �)(1− p̃j )])/p̃j ,

= n(1+ �− �/p̃j ),

where we used (19) and the feasibility of p̃ to derive the inequality. Therefore, such a solution p̃ satisfies a very weak
approximate form of the complementary slackness conditions (18).

In view of this observation, we define a more complete set of approximate optimality conditions aimed towards
a stronger approximation to the complementary slackness conditions (18). Given � ∈ (0, 1), we say that a feasible
solution p̂ satisfies the �-approximate optimality conditions if

wi(p̂)�(1+ �)n, i = 1, . . . , m, (20a)

p̂i > 0 implies wi(p̂)�(1− �)n, i = 1, . . . , m. (20b)

Note that these conditions imply that (1−�)n�wi(p̂)�(1+�)n if p̂i > 0, i=1, . . . , m, which is a better approximation
of the complementary slackness conditions (18) than the �-relaxed optimality conditions (19) provide.

Khachiyan’s algorithm [23] starts with a feasible solution p̄ > 0 of (D(A′)) and improves upon the objective function
value by increasing only one component of p̄ at each iteration and then rescaling to regain feasibility. On the other
hand, the KY algorithm [26] uses a simple initialization scheme to compute a feasible solution ṗ of (D(A′)) with
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only at most min{2d, m} positive components and then uses the same improvement idea. Therefore, neither of these
algorithms ever reduces the number of positive components of p at any iteration. In contrast, while our algorithm starts
off with the same initial feasible solution ṗ of (D(A′)), we will allow the number of positive components of p to be
reduced. Therefore, our algorithm can potentially compute an approximate solution with a smaller number of positive
components than an approximate solution computed by either of the previous two algorithms, which, in turn, will
result in a smaller core set. In addition, the asymptotic complexity of our algorithm remains the same as the improved
complexity result (5) of [26].

We close this section by relating (D(A′)) directly to the minimum-volume ellipsoid problem. First, its optimal
solution p∗ can be easily related to MVEE(A) (see, e.g., [26, Lemma 2.1]). Let A ∈ Rd×m be the matrix whose ith
column is given by ai, i = 1, . . . , m. Then MVEE(A)= EQ∗,c∗ := {x ∈ Rd : (x − c∗)TQ∗(x − c∗)�1}, where

Q∗ := 1

d
(AP ∗AT − Ap∗(Ap∗)T)−1, c∗ := Ap∗. (21)

Furthermore,

log vol(MVEE(A))= d

2
log d + 1

2
log det �(p∗). (22)

Now suppose that, instead of an optimal solution p∗, we have a feasible solution p̃ of (D(A′)) satisfying (19). Then,
by combining the arguments of Khachiyan [23, Lemmas 2 and 5] and of [26, Lemma 2.1], we find that E

Q̃,c̃
is a

(1+ ((d + 1)/d)�)d-rounding of A and a (1+ �)(d+1)/2-approximation to MVEE(A), where

Q̃ := 1

(1+ �)d
(AP̃AT − Ap̃(Ap̃)T)−1, c̃ := Ap̃. (23)

3. A new interpretation of Khachiyan’s algorithm

In this section, we establish that Khachiyan’s algorithm [23] is exactly the polar of the deepest cut ellipsoid method
(using two-sided symmetric cuts), but with a much improved analysis.

We describe Khachiyan’s algorithm below.

Algorithm 3.1. Khachiyan’s algorithm to compute a feasible solution of (D(A′)) satisfying (19).

Require: Input set of points A= {a1, . . . , am} ⊂ Rd , � > 0.
1: k← 0, n← d + 1, p0 ← (1/m)e, and qi ← ((ai)T, 1)T, i = 1, . . . , m.
2: While pk does not satisfy (19), do
3: loop
4: j ← arg maxi=1,...,m(qi)T�(pk)−1qi , �← (qj )T�(pk)−1qj ;
5: �← �−n

n(�−1)
;

6: pk+1 ← (1− �)pk + �ej, k← k + 1.
7: end loop
8: Output pk .

Khachiyan’s algorithm seeks a minimum-volume ellipsoid containing

Q := conv{±q1, · · · ,±qm},
but, since it is a dual algorithm, it constructs a sequence of ellipsoids

Ek := {y ∈ Rn : yT�(pk)−1y�1}
satisfying Ek ⊆ Q, and stops when Q ⊆ √(1+ �)nEk . Thus, the polar ellipsoids

E◦k = {z ∈ Rn : zT�(pk)z�1} (24)
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all contain the polar polytope

Q◦ = {z ∈ Rn : −1�(qi)Tz�1, i = 1, · · · , m},
and the algorithm stops when (1/

√
(1+ �)n)E◦k is contained in Q◦.

So suppose that, at a particular iteration, we have the ellipsoid E◦k , and that Q◦ does not contain (1/
√

(1+ �)n)E◦k .
This means that one of the pairs of hyperplanes (qi)Tz=±1 of Q◦ intersects E◦k “close to the origin.” So the condition
(qj )T�(pk)−1qj =: � > (1+ �)n in Khachiyan’s algorithm corresponds to

Q◦ ⊆ {z ∈ E◦k : −
((qj )T�(pk)−1qj )1/2 �(qj )Tz�
((qj )T�(pk)−1qj )1/2}
for 
 := 1/

√
� < 1/

√
(1+ �)n. (We use 
 here for � in [36], to avoid confusion with Khachiyan’s �.) This is exactly

the set-up of the deepest two-sided symmetric cut ellipsoid method, which chooses as the next ellipsoid the smallest
volume ellipsoid containing the right-hand side above. Further, in the version of Burrell and Todd [10], the initial
ellipsoid is also of the form in (24) for a suitable p.

Let us examine the next ellipsoid constructed in this ellipsoid method. According to Theorem 2 of [36], this has the
form {z ∈ Rn : zTB−1+ z�1}, with

B+ := �

(
B − �

(Bq)(Bq)T

qTBq

)
, (25)

where B := �(pk)−1, q := qj , and

� := n(1− 
2)

n− 1
, � := 1− n
2

1− 
2 .

Then, using the rank-one modification formula, we obtain

B−1+ = �−1
(

B−1 + �

(1− �)qTBq
qqT

)

= �−1
(

B−1 + �
2

(1− �)
qqT

)

= �−1(1+ �)

[(
1− �

1+ �

)
B−1 + �

1+ �
qqT

]
,

where

� := �
2

(1− �)
.

Now substituting in the value for �, we find �= (1− n
2)/(n− 1), so that 1+ �= n(1− 
2)/(n− 1), and

�

1+ �
= 1− n
2

n(1− 
2)
= 
−2 − n

n(
−2 − 1)
= �− n

n(�− 1)
= �,

using 
 := 1/
√

�. Next, substituting in the value for �, we get �−1(1+ �)= 1, so that

B−1+ = (1− �)B−1 + �qqT = (1− �)�(pk)+ �qqT = �(pk+1).

This demonstrates the equivalence of the two methods.
Above, we claimed that Khachiyan provides a much improved analysis of his method. Indeed, he showed [23,

Lemma 3] that, at every iteration, the (natural) logarithm of the volume ofEk increases by (1/2)(log(1+�k)−�k/(1+�k)),
where maxi=1,...,m(qi)T�(pk)−1qi = (1 + �k)n. He then uses this in his Lemma 4 to provide a bound on the total
number of iterations, by bounding the number required to reduce �k to 1, then to 1

2 , etc. By contrast, analyses of the
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ellipsoid method just look at the worst case volume reduction: in this case, one would bound the number of iterations
assuming that the logarithm of the volume only increased by (1/2)(log(1+ �)− �/(1+ �)) at each iteration, where �
is the final tolerance.

Remark. Let us briefly discuss implementation of Khachiyan’s algorithm (and our variants). At each iteration, we
need access to the inverse of �(pk), or to some factorization of it, and to the quantities (qi)T�(pk)−1qi for each i. At
each iteration, �(pk) is updated by adding a rank-one symmetric matrix to it, and then scaling by a positive number.
In some applications, the vectors qi and hence possibly the matrix �(pk) will be sparse. We therefore recommend
maintaining a Cholesky factorization LDLT of �(pk), where L is a lower triangular matrix with unit diagonal and D is
diagonal with positive diagonal entries. We also maintain values �i =wi(p

k)= (qi)T�(pk)−1qi for each i. From these
values we can determine � and j. We then compute q̂j := L−1qj and from this a more accurate value (q̂j )TD−1q̂j for
� and q̄j := (LDLT)−1qj = L−TD−1q̂j . Noting that

�(pk+1)= (1− �)

[
�(pk)+ �

1− �
qj (qj )T

]
,

we see that it is enough to update the Cholesky factorization after a rank-one change, and then scale the diagonal
matrix to account for the multiplicative factor. The rank-one update can be performed in an efficient and numerically
stable way using the technique of Gill et al. in [17]. This uses the already computed vector q̂j , and requires O(n2)

operations.

We also need to update the quantities �i . Using the update of the matrix �(pk)−1 in (25), we can easily check that
the formulae

�+i = �(�i − �((qi)Tq̄j )2/�), i = 1, . . . , m

(where � and � are computed as above from 
 := 1/
√

�) yield the new quantities. (For i = j , we use the formula
�+j = �(1 − �)�.) Each update of a �i requires O(n) operations to perform the inner product, for a total of O(mn).
The total complexity of O(mn) operations for each iteration is the same as in Khachiyan [23], but with a more stable
implementation. Note that Sun and Freund [33] state that O(mn2) operations are needed.

In our modified algorithm, we will occasionally subtract a rank-one matrix from �(pk) instead of adding one. Here
care must be taken to preserve numerical stability; Gill et al. [17] propose a stable technique for this also.

Our implementation recommendation is very similar to that proposed by Goldfarb and Todd [19] for the ellipsoid
method. The difference is that here we are proposing maintaining a Cholesky factorization of the possibly sparse
matrix �(pk), and in most iterations we add a rank-one matrix, while [19] maintained a factorization of �(pk)−1, and
subtracted a rank-one matrix at each iteration.

4. A modification of the KY algorithm

Let A := {a1, . . . , am} ⊂ Rd be a finite set of vectors whose affine hull is Rd . In this section, we describe a
modification of the KY algorithm [26], which, in turn, is derived from Khachiyan’s algorithm [23], to compute a
feasible solution p̂ of (D(A′)) that satisfies the �-approximate optimality conditions (20) for any given � > 0.

The main difference between the KY algorithm and Khachiyan’s algorithm is the choice of the initial feasible
solution. The former uses a simple initial volume approximation scheme in an attempt to identify a smaller sub-
set of vectors in A that provides a reasonable approximation of conv(A). We outline this scheme in the next
subsection.

4.1. Initial volume approximation

Given A = {a1, . . . , am} ⊂ Rd , the following deterministic algorithm identifies a subset X0 ⊆ A of size at most
min{2d, m} such that vol MVEE(X0) is a provable approximation to vol MVEE(A) [26].
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Algorithm 4.1. Volume approximation algorithm.

Require: Input set of points A= {a1, . . . , am} ⊂ Rd .
1: If m�2d , then X0 ←A. Return.
2: �← {0}, X0 ← ∅, k← 0.
3: While Rd\� �= ∅, do
4: loop
5: k← k + 1; pick an arbitrary direction bk ∈ Rd in the orthogonal complement of �;
6: �← arg maxi=1,...,m(bk)Tai , X0 ← X0 ∪ {a�};
7: �← arg mini=1,...,m(bk)Tai , X0 ← X0 ∪ {a�};
8: �← span(�, {a� − a�}).
9: end loop
10: Output X0.

The following lemma provides information about the running time of Algorithm 4.1 and the quality of the resulting
approximation.

Lemma 4.1 (Kumar and Yıldırım [26]). Algorithm 4.1 terminates in O(md2) time with a subset X0 ⊆ A with |X0|
at most min{2d, m} such that

Vol MVEE(A)�d2d Vol MVEE(X0). (26)

4.2. Our modification

In this section, we present a modification of the KY algorithm for approximating the MVEE of a given set A =
{a1, . . . , am} ⊂ Rd . Given � > 0, we establish that our modification computes an approximate solution that satisfies
the �-approximate optimality conditions given by (20). Note that each of the algorithms in [23] and in [26] computes
an approximate solution that satisfies the weaker �-relaxed optimality conditions given by (19). In addition, this added
benefit does not lead to an increase in the asymptotic complexity result, i.e., the running time of our modified algorithm
is asymptotically the same as that of the improved complexity result of the KY algorithm. Finally, we show that our
algorithm returns a core set whose asymptotic size has the same bound as that computed by the KY algorithm. In
contrast with the KY algorithm which only adds points to the working core set, our modification allows dropping
points throughout the algorithm. Therefore, in practice, our modification is likely to compute a smaller core set than
that computed by the KY algorithm.

We outline our algorithm below:

Algorithm 4.2. Modified algorithm to compute a feasible solution of (D(A′)) satisfying (20).

Require: Input set of points A= {a1, . . . , am} ⊂ Rd , � > 0.
1: Run Algorithm 4.1 on A to get output X0.
2: Let p0 ∈ Rm be such that p0

i = 1/|X0| for ai ∈ X0 and p0
i = 0 otherwise.

3: k← 0, n← d + 1, and qi ← ((ai)T, 1)T, i = 1, . . . , m.
4: E0 ← {y ∈ Rn : yT�(p0)−1y�1}.
5: While pk does not satisfy (20), do
6: loop
7: j+ ← arg max{(qi)T�(pk)−1qi : i = 1, . . . , m}, �+ ← (qj+)T�(pk)−1qj+ ;
8: j− ← arg min{(qi)T�(pk)−1qi : i = 1, . . . , m, pk

i > 0}, �− ← (qj−)T�(pk)−1qj− ;
9: �+ ← (�+/n)− 1, �− ← 1− (�−/n);
10: �k ← max{�+, �−};
11: if �k = �+ then
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12: �k ← �+−n
n(�+−1)

;
13: pk+1 ← (1− �k)p

k + �ke
j+ , k← k + 1;

14: else

15: �k ← min

{
n−�−

n(�−−1)
,

pk
j−

1−pk
j−

}
;

16: pk+1 ← (1+ �k)p
k − �ke

j− , k← k + 1;
17: end if
18: Ek ← {y ∈ Rn : yT�(pk)−1y�1};
19: Xk ← {ai ∈A : pk

i > 0}.
20: end loop
21: Output pk,Ek and Xk .

We now describe Algorithm 4.2 in more detail. Given A= {a1, . . . , am} ⊂ Rd , Algorithm 4.1 is called on A to get
output X0 ⊆A. This subset is used to identify an initial feasible solution p0 of (D(A′)). The KY algorithm also uses
the same procedure to obtain an initial feasible point. The main difference lies in the execution of each iteration of the
main loop. In contrast with the KY algorithm, Algorithm 4.2 computes not only the farthest point qj+ ∈A′ from the
origin in terms of the ellipsoidal norm induced by Ek but also the closest point qj− ∈A′ among those with pk

j positive.
At iteration k,

(qi)T�(pk)−1qi �(1+ �+)n, i = 1, . . . , m, and (qi)T�(pk)−1qi �(1− �−)n if pk
i > 0 (27)

by definition of �− and �+, which implies that pk satisfies the �k-approximate optimality conditions given by (20).
Both Khachiyan’s algorithm and the KY algorithm work towards improving �+. In contrast, Algorithm 4.2 is driven
by improving both �+ and �−.

Let us now describe how pk gets updated at iteration k. Since Ek ⊆ Q := conv{±q1, . . . ,±qm}, pk is updated
in a way to yield the maximum increase in the volume of Ek+1. In the case that �k = �+, pk+1 is given by a convex
combination of pk and ej+ . Since log vol(Ek+1) is exactly half log det �(pk+1), �k is given by the solution of

�k := arg max�∈[0,1] log det �((1− �)pk + �ej+)= �+ − n

n(�+ − 1)
.

Both Khachiyan’s algorithm and the KY algorithm use this update. On the other hand, if �= �−, then pk+1 is obtained
from pk by “moving away” from ej− . (Sun and Freund [33] and Kumar and Yıldırım [26] show that ej+ maximizes
a linear approximation to the objective function of (D(A′)) at the current point over the simplex: similarly, it can be
seen that ej− minimizes the same linear approximation when restricted only to the positive components of pk .) In this
case, �k is given by the solution of

�k := arg max
�∈
[

0,
pk
j−

1−pk
j−

] log det �((1+ �)pk − �ej−)=min

{
n− �−

n(�− − 1)
,

pk
j−

1− pk
j−

}
.

Note that the range of � is chosen to ensure the feasibility of pk+1.

4.3. Analysis of the modified algorithm

Our analysis is based very heavily on those for Khachiyan’s and the KY algorithm, but we need to distinguish the
three kinds of iterations. If �k= �+, we call the kth iteration a plus-iteration. If �k= �− and �k= (n−�−)/(n(�−−1)),
we call it a minus-iteration. Finally, if �k=�− and �k=pk

j−/1−pk
j− < (n−�−)/(n(�−−1)) we call it a drop-iteration,

because then a component of pk becomes zero and the associated point aj− is dropped from Xk .
We consider the quantities �k := log det �(pk) and how they change at each iteration. Note that

�(pk+1)= (1− �)�(pk)+ �qj (qj )T
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for �= �k and j = j+ in a plus-iteration, or �=−�k and j = j− in a minus-iteration or a drop-iteration. It follows that

�k+1 − �k = (n− 1) log(1− �)+ log(1+ �(�− 1)),

where � is either �+ or �− respectively. In a drop-iteration, all we can say is that this is nonnegative. (The function
above is monotonic until its maximum.) But in a plus- or minus-iteration, we can substitute for the value of � in terms
of � and then � in terms of � (either �+ or −�−, respectively) to get

�k+1 − �k = (n− 1) log

(
(n− 1)�

n(�− 1)

)
+ log

(�

n

)

= (n− 1) log

(
(n− 1)(1+ �)

n− 1+ �n

)
+ log(1+ �)

= log(1+ �)− (n− 1) log

(
1+ �

(n− 1)(1+ �)

)

� log(1+ �)− �

1+ �
. (28)

Lemma 4.2. In a plus- or a minus-iteration,

�k+1 − �k � log(1+ �k)− �k
1+ �k

.

Proof. This follows directly from (28) in a plus-iteration. To complete the proof, it suffices using (28) again to show
that

log(1− �)+ �

1− �
� log(1+ �)− �

1+ �

for � = �− = �k > 0. But if we define the functions f (�) := log(1 + �) − �/(1 + �) and g(�) := f (−�), we find
f ′(�)= �/(1+ �)2 and g′(�)=−f ′(−�)= �/(1− �)2 ��/(1+ �)2 for any nonnegative �. Also, f and g are both zero at
zero, and this gives g(�k)�f (�k) and hence the result. �

Let us define

�0 := min{k : �k �1}. (29)

Khachiyan’s analysis [23] starts by deriving an upper bound on �0.To that end, let �∗ denote the optimal value of (D(A′)).
Using Lemma 4.1 and (22), Kumar and Yıldırım [26, Theorem 4.2] establish that �∗ − �0 = O(d log d). (Khachiyan’s
algorithm [23] uses a different initial point which satisfies �∗ − �0 = O(d log m), and applies a slightly different
argument than that below. This is the reason why the KY algorithm achieves a slightly improved complexity result over
Khachiyan’s algorithm.) By Lemma 4.2, at each plus- or minus-iteration with �k �1, we have �k+1−�k � log 2−1/2 > 0.
At each drop iteration, we can no longer find a positive lower bound on �k+1 − �k �0. However, each such iteration
can be paired with a previous iteration where pk

j− was increased from zero, except for those where pk
j− is decreased to

zero for the first time and was positive at the initial iteration. Note that the initial feasible point p0 in Algorithm 4.2 has
only at most 2d positive components (in contrast with m positive components in Khachiyan’s algorithm). Therefore,
doubling the iteration count in the analysis of [26], we find that, after at most 2d +O(d log d)=O(d log d) iterations,
Algorithm 4.2 computes a solution pk with �k �1, which implies that

�0 = O(d log d). (30)

The next stage of Khachiyan’s analysis is aimed at deriving an upper bound on the number of iterations to obtain
an iterate pk with �k ��. Starting with an iterate with �k �1, Khachiyan’s clever argument [23, Lemma 4] is based on
computing an upper bound on the number of iterations to obtain the first iterate with �k � 1

2 , 1
4 , 1

8 , . . . It follows from
this argument that Khachiyan’s algorithm (or the KY algorithm) computes an iterate with �k �� after at most O(d/�)
iterations. Due to the possibility of drop-iterations, we can again invoke a similar argument based on iteration doubling
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and a “fixed charge” (the initial at most 2d positive components of pk) to establish that Algorithm 4.2 terminates after

[� := �0 + (min{k : �k ��} − �0)= O(d log d)+ O(d/�)] (31)

iterations.

Theorem 4.1. Given A = {a1, . . . , am} ⊂ Rd and � > 0, Algorithm 4.2 computes a feasible solution p of (D(A′))
that satisfies the �-approximate optimality conditions given by (20) in O(d[log d + 1/�]) iterations.

Upon termination of Algorithm 4.2, we have

Ek ⊆ Q ⊆ √(1+ �)nEk ,

where Q := conv{±q1, . . . ,±qm}. It follows that
√

(1+ �)nEk ⊂ Rn is a
√

(1+ �)n-rounding of Q. In order to obtain
a (1+ �)d-rounding of conv(A), it follows from the analysis in [23, Section 3] that Algorithm 4.2 can be called with

�′ := d

d + 1
�= d

n
�,

to obtain Ek . Then let E ⊂ Rd be defined by

E× {1} := √(1+ �′)nEk ∩�=√1+ (1+ �)d Ek ∩�,

where � is given by (11). By [23, Lemma 5],

1

(1+ �)d
E ⊆ conv(A) ⊆ E,

which implies that E is a (1+ �)d-rounding of conv(A).

Corollary 4.1. Given A={a1, . . . , am} ⊂ Rd and � > 0, Algorithm 4.2 computes a (1+ �)d-rounding of conv(A) in
O(d[log d + 1/�]) iterations.

So far we have only discussed obtaining (1+ �)d-roundings of conv(A), not approximate MVEEs. But Khachiyan
[23, Theorem 3] shows that a (1 + �)-approximation of MVEE(A) can easily be obtained from a solution to the �-
relaxed optimality conditions for (D(A′)) if 1+�= (1+ �)n/2. Thus to obtain a (1+�)-approximation of MVEE(A),
we merely apply our algorithm with � = (1 + �)2/(d+1) − 1. From this it is easily seen that our modified algorithm
achieves the same complexity (5) as the KY algorithm to obtain a (1+ �)-approximation of MVEE(A), and provides
an �-core set X with the same asymptotic size (6). (Note that each iteration requires O(md) arithmetic operations.)

Corollary 4.2. Given A = {a1, . . . , am} ⊂ Rd and � > 0, Algorithm 4.2 computes a (1 + �)-approximation of
MVEE(A) in O(md2([(1 + �)2/(d+1) − 1]−1 + log d)) arithmetic operations and returns an �-core set X ⊆ A
such that |X| = O(d[(1+ �)2/(d+1) − 1]−1 + d log d).

5. Final remarks

In this paper, we have established a close relationship between Khachiyan’s BCD method that computes an ap-
proximate rounding of the convex hull of a finite set of vectors and the ellipsoid method using two-sided deepest
symmetric cuts. Motivated by this, we have proposed an efficient way to implement Khachiyan’s BCD method. We
have also proposed a modification of the KY algorithm that computes an approximate solution to a more complete set
of approximate optimality conditions than used by either the KY or Khachiyan’s algorithm. In addition, our algorithm
maintains the same asymptotic complexity result and the same bound on core sets as the KY algorithm.

The “dropping idea” in our algorithm can also be applied in different forms yielding different variants of our
algorithm. For instance, if �k = �− at iteration k of Algorithm 4.2, �k can be set to its upper bound even if the optimal
solution of the linesearch problem defining �k is in the interior of the range as long as the objective function value does
not thereby decrease. This more aggressive dropping technique would lead to the same complexity analysis as that of
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Algorithm 4.2 and would likely return smaller core sets. We could even consider reducing each positive component of
pk to zero at every iteration, as long as the corresponding (qi)T�(pk)−1qi is less than n and the objective function
value does not increase, but this would likely be much more expensive.

We have implemented Algorithm 4.2 and made a preliminary comparison to the Khachiyan and KY methods. We
solved random problems of sizes (d, m) varying from (10, 200) to (30, 30000) generated as in [3], terminating when
we obtained a (1 + �)d-rounding for � = 10−3. From the baseline Khachiyan method, the KY algorithm reduced the
time required by 10–18% and the number of iterations by 2–7%, while the new method reduced the time required by
93–98% and the number of iterations by 95–98%. The Khachiyan method always has pk > 0, so all core sets have size
m. By contrast, the KY and the new method produce much smaller core sets, typically of size at most 5d and never
bigger than 10d. The new method always gave a core set smaller than the KY algorithm, with reductions between 17%
and 24%. More extensive computational results can be found in [3].

We finally discuss how to achieve an even smaller core set at the expense of considerable standard linear algebra. The
idea is to rewrite �(pk) at the end ofAlgorithm 4.2 as a linear combination of fewer matrices than the number of positive
components of pk . One can find a basic feasible solution p to the system

∑m
i=1piq

i(qi)T=�(pk), p�0. (The equation
corresponding to the bottom right entry of the matrix ensures that the sum of the components of p is 1.) Such a solution
can be computed in O(md4) operations and would have at most (d + 1)(d + 2)/2 positive components, matching the
John [22] bound. Indeed, this system has n(n+ 1)/2= (d + 1)(d + 2)/2 rows (note that all matrices are symmetric, so
we only need to equate the entries on and above the diagonal) and m columns. We need O(d6) operations to compute
an initial O(d2)×O(d2) basis inverse, and then at most m iterations requiring O(d4) operations each to get to a basic
feasible solution. Since we are implicitly assuming m > n(n + 1)/2, the total is O(md4) operations. However, note
that, for constant � and �, this amount of work dominates all the work performed so far, which is O(md2(log d + 1/�))
for a (1+ �)d-rounding of A, or O(md2(log d + d/�)) for a (1+ �)-approximation of MVEE(A).
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