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Abstract

In this study, we analyze an inventory system facing stochastic external demands and an autonomous supply (indepen-
dent return flow) in the presence of fixed disposal costs and positive lead times under a continuous review replenishment–
disposal policy. We derive the analytical expressions of the operating characteristics of the system; and, construct the
objective function to minimize the total expected costs of ordering, holding, purchasing and disposal per unit time subject
to a fill rate constraint. An extensive numerical analysis is conducted to study the sensitivity of the policy parameters and
the benefit of employing a policy which allows for disposal of excess stock in this setting. We model the net demand process
as the superposition of normally distributed external demand and inflows, which is expressed as a Brownian motion pro-
cess. Our findings indicate that the disposal option results in considerable savings even (i) in the presence of non-zero fixed
disposal costs, (ii) large actual demand rates with high return ratios (resulting in small net demands) and (iii) for moderate
return ratios with high demand variability.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper, we study a single item, single-location inventory system facing continuous stochastic demand
with two sources of supply. One source is an external supplier with a constant lead time and the other is an
independent continuous autonomous supply (inflow) joining stock immediately upon arrival. Replenishment
from the outside supplier incurs variable and fixed costs. Due to the stochastic nature of the inflow process,
inventories may reach undesirably high levels and it may be desirable to dispose of the excess stock in the form
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of sales in a secondary market and/or temporary relocation. We assume that both replenishment and disposal
actions incur variable and non-zero fixed costs. Zero setup cost for disposal (zero fixed disposal cost) makes
perfect sense when the system can operate as a gatekeeper, especially for big items, such as, home appliances
and used cars. However, for other types of goods (i.e. returnable containers, refillable bottles), there may be
non-zero fixed costs associated with disposing of excess stock and/or stopping the inflow of reusable goods.
The main contribution of our work lies in that we take into account settings, where disposals may incur
non-zero fixed costs.

An example that the authors are familiar with comes from refillable bottles used in the beverage industry in
Denmark, where all beer producers are required to use refillable bottles and to be registered with the Dansk
Retursystem, a non-profit organization coordinating the deposit-return activities (see www.dansk-retursys-
tem.dk). Danish beer producers are responsible by law for the recollection of refillable bottles and for refund-
ing of deposit on return plus the logistic fee to Dansk Retursystem. Although there is an effective deposit-
return system bearing high return rates (98–99%), demand for new bottles is inevitable due to depreciation
and loss of refillables. Therefore, when on-hand refillable bottles are not enough to satisfy the production
demand, new bottles are ordered from an outside supplier. Both kinds of bottles are deemed immediately
usable. Inherent demand variability combined with take-back obligations may result in excess stocks of
returned bottles at certain times which requires disposal or relocation. For example, the management at
Tuborg, a large Danish brewer, has the option of relocating some of the bottle stocks at the Fredericia brewery
to another of its warehouses near Copenhagen, if holding them at the former location is deemed not desirable
[3]. Such a relocation action may involve some fixed as well as variable costs of transportation. Use of identical
bottles by different firms creates also the opportunity of exchanging excess bottles in a secondary market for
some firms. Similar inventory systems exist in bottle-washing companies providing new and resterilized glass
bottles mostly to wine producers (CWC and Skookum Inc. [4]). (We refer the reader to Platt and Rowe [17]
and González-Torre et al. [13] for other examples of similar practice.)

Another example of this setting is returnable containers that are used as secondary packaging materials
(e.g., pallets, drums and slipsheets). Such standardized containers are interchangeable among different users
and are immediately reusable after inspection and cleaning operations of negligible duration (e.g., IBM, Ford,
General Motors and Toyota using returnable containers instead of one-way packaging materials as told in
[24,1,16]). Typically, a third-party logistic (3PL) service provider manages the reusable containers for a num-
ber of industrial customers. The inventory system in this study mimics a depot for such a 3PL organization. At
the aggregate level, the return and demand processes are independent and stochastic. Strict safety and fire haz-
ard regulations exist for the storage of such containers; and, at some locations, there are physical capacity lim-
its that inventory levels cannot exceed (e.g. a pile volume of wooden pallets cannot exceed 100,000 cubic feet in
the state of California [City of Newark Fire Prevention Bureau [5]]). Kroon and Vrijens [16] observed that
stock is relocated when there is an imbalance in the amount of containers held at different depots. Such relo-
cation actions may be viewed as temporary disposals and may involve some fixed as well as variable costs of
transportation. A European network of logistics firms using identical pallets also creates opportunities in sec-
ondary markets to exchange excess inventory (see Europal, www.europal.net).

Inventory management of such reusable containers and packaging materials has recently become more
important due to the increased governmental regulations on take-back obligations for consumer protection
and recycling/waste reduction objectives for environmental protection (see e.g. the European Parliament
and Council Directive 94/62/EC, [10] and Platt and Rowe [17]). Beside such regulatory pressures, companies
have also found it economically beneficial to cultivate a ‘green’ image among the consumers (see [23]).

There have been a number of studies in the literature on inventory management of reusables. In the brief
literature review below, we mainly focus on the continuous review models.

The earliest work for an inventory system facing stochastic demands and returns is Heyman [15] who exam-
ines a single-item inventory system with unit Poisson processes and the options of purchase, repair and dis-
carding of excess stock. In an extension, he also provides a diffusion approximation based on the simple
netting of demand and return processes. Both models assume zero lead times and negligible fixed costs for
the replenishment, repair and disposal options. Van der Laan et al. [20] consider the disposal option for
the above model in the presence of a positive lead time with zero fixed and non-zero variable costs. In [22],
van der Laan and Salomon consider a single-product, hybrid production/inventory system where push-dis-
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posal and pull-disposal strategies are employed. The disposal action incurs only positive variable costs. For
the same control strategies, the effects of lead time characteristics on total costs are investigated by van der
Laan et al. [21]. Teunter and Vlachos [19] study a single-item production system with manufacturing and
remanufacturing under periodic review in the presence of disposal options. They assume that there is no setup
cost for disposal (fixed disposal cost is zero). Using simulation, they numerically show that disposal is an eco-
nomically viable option if an item is slow-moving, the recovery rate is high and remanufacturing is as expen-
sive as manufacturing.

To the best of our knowledge, the only works that consider non-zero fixed disposal costs are Constantinides
[6], Constantinides and Richard [7], Beltran and Krass [2], and Golany et al. [12]. The first two consider sto-
chastic demands with zero lead times and analyze the optimal two-sided (s, S) control policy. The last two
consider a deterministic demand and return setting in the presence of disposal options with concave costs
and provide polynomial solution algorithms.

We are not aware of any study in the literature that models a stochastic inventory system with an auton-
omous supply in addition to a regular supplier when (i) there is a positive lead time for delivery from the reg-
ular supplier and (ii) there are non-zero fixed (setup) costs for disposal. In this paper, we provide this model
for constant lead times, normally distributed demands and autonomous supply. Since disposals incur positive
setup, we employ a four-parameter replenishment–disposal control policy under continuous review. Our main
contribution is that we model explicitly the non-zero fixed disposal cost. Thus, our analytical model enables
one to determine the optimal disposal batch size and timing (in terms of inventory levels) as well as the order
size and the reorder point that minimize the expected cost rate in the presence of non-zero fixed replenishment
and disposal costs. Our numerical study also supports the previous findings with zero fixed disposal costs that
disposals may result in considerable savings even when disposals incur non-zero setup costs.

The rest of this paper is organized as follows: in Section 2, we introduce the basic assumptions of the inven-
tory model and the control policy. In Section 3, we provide some preliminary results for the Brownian motion
process, and in Section 4, the operating characteristics of the system are derived. In Section 5, we provide the
results of our numerical study on the sensitivity of the policy parameters to various system parameters and on
the benefits of incorporating a disposal option. Finally, in Section 6, we present our concluding remarks.

2. The model

We consider a single item, single-location inventory system facing continuous stochastic demand. Inventory
holding cost is charged at h per unit of on-hand stock per unit time. All unmet demand is backordered under a
desired fill rate measure. The system has two external sources of supply. One is a regular supplier with ample
capacity and has a positive shipment lead time, L. The other supply source is a stochastic, continuous auton-
omous supply which joins the stock and may be used to satisfy the demand immediately. As such, we do not
model remanufacturing or recovery operations explicitly; similarly, we consider yields on these operations out-
side the scope of our analysis. We assume that the inflow of material is beyond managerial control except for a
batch disposal option. That is, we exclude regulation of the autonomous supply process through economic or
non-economic mechanisms, but solely rely on discarding accumulated stock. External material inflows are not
sufficient to satisfy the entire demand due to depreciation and loss. Hence, the stock is occasionally replenished
from an outside regular supplier with a fixed cost of Ko for each replenishment order and a unit purchasing
cost of co for every unit. Furthermore, a positive cost cr is incurred per unit of autonomous supply.

The inflow per unit time, XR, and external demand per unit time, XD, are assumed to be stationary normal
random variables with means lR and lD, and variances r2

R and r2
D, respectively. We define the net demand per

unit time, XN = XR � XD. Then, XN is normal with mean l = lR � lD and variance r2 ¼ r2
R þ r2

D�
2CovðX R;X DÞ where Cov(XR, XD) is the covariance of inflow and demand per unit time. Both the inflows
from the autonomous supply and demands are assumed to be independent over non-overlapping unit time
intervals. Consequently (in conjunction with the stationarity and normality assumptions), the cumulative
net demand at time t is expressed as a Brownian motion process with drift l and variance coefficient r2. In
a realistic setting with more demand than returns on average, l may take zero or negative values only. Sim-
plistic netting of inflows and external demands via a single parameter distribution has been found to be inad-
equate to capture the true behavior due to negligence of added variances (e.g. Poisson process). Excellent
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discussions on the inadequacy of single parameter netting approaches can be found in [20,9,11]. The use of a
two-parameter distribution herein overcomes this netting difficulty.

If the inflow and external demand processes are Brownian motion processes, this net flow is an exact rep-
resentation. If the processes themselves are not Brownian motions, for high rates of inflows and external
demands of, say, Poisson processes, Brownian motion assumption can be taken as a good continuous approx-
imation (see [15]). Due to the existence of an autonomous supply process, on-hand inventories may accumu-
late to levels which are deemed prohibitively high from either an economic perspective (e.g., excessive holding
costs) or a physical perspective (e.g., storage capacity limitations). In such cases, it may be desirable to dispose
of some of the accumulated stock. We consider positive fixed and variable costs of disposal, Kd and cd, respec-
tively. The objective is to minimize the expected total cost rate subject to a fill rate constraint. The expected
total cost consists of expected ordering, holding, purchasing and disposal costs; backordering costs are treated
implicitly. We express the fill rate measure through the fraction of time that there is positive inventory on
hand; we will set the fill rate measure to be at least a where 0 < a < 1.

With both disposal and reordering options, we employ the following four-parameter continuous review
policy:

Policy: A replenishment order of size Q is placed whenever the inventory position drops to the reorder point r,

and, whenever the inventory position exceeds the disposal trigger level S, excess inventory is disposed of to bring

the inventory position down to s immediately, so long as there are no outstanding orders.

This control policy will be referred to as the (S, s, r, Q) policy, where Q and r denote the replenishment deci-
sion variables, and S and s denote the disposal decision variables. A continuous review control policy may be
implemented when the inventory system can be monitored continuously at negligible cost as the modern tech-
nology currently enables; and, it provides a lower bound on the expected cost rate with respect to its periodic
review counterpart. We consider only non-negative values for the control variables in our analysis and set
S P s and s > r. The first follows from the definition of a disposal trigger level and the second is required since,
otherwise, a disposal would trigger a simultaneous reordering decision.

For analytical convenience, we assume that the inventory level is always above the reorder point r when an
order is received. That is, we assume that the net demand during a lead time period never exceeds the ordering
quantity. With this assumption, we, slightly, overestimate holding and disposal costs and, underestimate
ordering and purchasing costs, fill rate and time between successive replenishment orders. Since, under the
proposed policy, disposal and reordering decisions are made only when there are no outstanding orders, there
will be only one outstanding order at any time.

In our analysis, we use the renewal theoretic approach. Under the control policy stated above, the stochas-
tic process representing the inventory position repeats itself probabilistically at the epochs when the inventory
position hits r. Therefore, the reordering instances constitute regeneration points and a cycle is defined as the
time between two consecutive order placements. A cycle consists of two segments – a lead time period of con-
stant length, L, and a stochastic segment lasting from the receipt of the order until the next reorder instance.
The derivation of the expressions for the operating characteristics of the inventory system rests on some fun-
damental results regarding the behavior of Brownian motions moving either in an unrestricted fashion or
within a strip (an interval bounded from above and under). We present these results in the next section
and proceed with the derivation of the operating characteristics in Section 4.

3. Preliminaries

In this section we present some results on the behavior of a Brownian motion moving within a strip. From
Cox and Miller [8, p. 222], we immediately have

Proposition 3.1. Let b < x < a. Then, for a Brownian motion {X(t), t P 0} with drift l, variance coefficient r2

and X(0) = x, moving in the strip [b, a], the probability density function of the location, y, of X(t) is given by
fX ðtÞðy; t; xÞ ¼ e
lðy�xÞ

r2

X1
n¼1

ane�knt sin
npðy � bÞ

a� b

� �
; ð1Þ
where
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an ¼
2

a� b
sin

npðx� bÞ
a� b

� �
kn ¼

1

2

l2

r2
þ npr

a� b

� �2
� �

: ð2Þ
Next, we consider the probability of a Brownian motion hitting the boundaries of a strip and the correspond-
ing expected first escape times. Although their derivation rest on known properties, some of them are not read-
ily available in the literature. For this, we introduce the following variables: Tu,v denotes the time the
Brownian motion, starting at u, hits v for the first time; and, T z

u;v denotes the time it takes the process, starting
at u, to hit v for the first time, without hitting z, where z < u < v. Finally, Tu,vz denotes the time it takes the
process, starting at u, to escape from the strip [v, z] for the first time. Similarly, let P z

u;v be the probability that
the process, starting at u, hits v before z, that is P z

u;v ¼ P ðT u;v < T u;zÞ.

Proposition 3.2. Let b < x < a. Then for a Brownian motion {X(t), t P 0} with X(0) = x, drift l, variance

coefficient r2 and moving in the strip [b, a], we have
ðiÞ P b
x;a ¼

ðe�
2lx

r2 � e�
2lb

r2 Þ
ðe�

2la

r2 � e�
2lb

r2 Þ
and P a

x;b ¼
ðe�

2la

r2 � e�
2lx

r2 Þ
ðe�

2la

r2 � e�
2lb

r2 Þ
;

ðiiÞ EðT x;baÞ ¼ �
x
l
þ ða� bÞ

lðe�
2la

r2 � e�
2lb

r2 Þ
e�

2lx

r2 þ be�
2la

r2 � ae�
2lb

r2

lðe�
2la

r2 � e�
2lb

r2 Þ
:

Proof. See Appendix.

For the special case of l = 0, Proposition 3.2 reduces to

Corollary 3.1. Let b < x < a. Then for a Brownian motion {X(t), t P 0} with X(0) = x, l = 0, variance coefficient

r2 and moving in the strip [b, a], we have
ðiÞ P b
x;a ¼

x� b
a� b

and P a
x;b ¼

a� x
a� b

;

ðiiÞ EðT x;baÞ ¼
ðx� bÞða� xÞ

r2
:

Finally, we need following results for the expected on-hand derivations.

Proposition 3.3. Let b < x < a. Then for a Brownian motion {X(t), t P 0} with X(0) = x, drift l, variance

coefficient r2 and moving in the strip [b, a], the expected area under its trajectory until the escape time is
Ax;ba ¼ e�
lx

r2

X1
n¼1

an

kn
F ðb; a; n; lÞ ð3Þ
where
F ðb; a; n; lÞ ¼ �K1 ae
la

r2 cosðnpÞ � be
lb

r2

h i
þ 2K2

1K2 e
la

r2 cosðnpÞ � e
lb

r2

h i
;

K1 ¼
ða� bÞ

npð1þ K2
2Þ

K2 ¼
lða� bÞ

r2np
:

Proof. See Appendix h.

Similarly, for the special case of l = 0, we have

Corollary 3.2. Let b < x < a. Then for a Brownian motion {X(t), t P 0} with X(0) = x, l = 0, variance coefficient

r2 and moving in the strip [b, a], the expected area under its trajectory until the escape time is
Ax;ba ¼
4ða� bÞ2

r2

X1
n¼1

sin
npðx� bÞ

a� b

� �
b� a cosðnpÞ½ �
ðnpÞ3

: ð4Þ
We are now ready to develop the expressions for the operating characteristics of the inventory system.
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4. Operating characteristics and objective function

4.1. Operating characteristics

Under the proposed policy there is no intervening action on the inventory levels during the lead time per-
iod. Hence, the inventory level behaves as an unrestricted Brownian motion process throughout the lead time
period with drift l and variance coefficient r2. When the order is received, however, the policy may dictate an
intervention. Specifically, if the inventory level is found to exceed S, an immediate disposal action is taken to
reduce the inventory level immediately to s; otherwise, no action is taken. Therefore, there may be a sudden
jump in the inventory level at the end of lead time period in some cycles. Thus, the end of a lead time period
corresponds to the instance when the outstanding order arrives and an immediate disposal action is taken, if
necessary. The inventory level at the end of the lead time period is denoted by x. As discussed, we reasonably
assume r < x < S.

In the remaining part of the cycle, the inventory level behaves as a Brownian motion (with drift l and var-
iance coefficient r2) moving within strips, defined by the parameters of the control policy. (See Figs. 1–7 for
hypothetical realizations of various cycle types.) Due to an abrupt regime change right after the lead time, we
develop the expressions for the operating characteristics of the inventory system, separately, for the lead time
period and for the segment after the order arrives until the end of the cycle. Throughout, we let the position of
the inventory level at time t be denoted by I(t).
4.2. Analysis of the lead time period

We begin with the analysis within a lead time period. As we employ a renewal theoretic approach, without
loss of generality, we will set the time origin t = 0 as the beginning of a regenerative cycle, which, by definition,
coincides with the beginning of the lead time period. Since, under the (S, s, r, Q) policy, no replenishment–dis-
posal action is taken during the lead time period, the inventory process behaves as an unrestricted Brownian
motion within this period. Therefore, for 0 6 t < L, I(t) is normally distributed with mean (r + lt) and vari-
ance r2 t, where r is the initial position of the process in a cycle (see [8]). We assume that l takes only zero or
negative values. Hence, the expected on-hand inventory carried during the lead time period, E(LOH), and the
expected time that the inventory system is out of stockout in a cycle, E(SO), can be computed as follows:
EðLOHÞ ¼
Z L

0

Eð½IðtÞ�þÞdt ð5Þ
with
Eð½IðtÞ�þÞ ¼
Z 1

0

xfIðtÞðxÞdx ¼
ffiffiffiffiffiffi
r2t
2p

r
e�
ðrþltÞ2

2r2 t þ ðr þ ltÞU r þ ltffiffiffiffiffiffi
r2t
p

� �
; ð6Þ
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Fig. 1. Possible realization of the inventory level process for r < x 6 s.



Cycle

t
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

+
+

+
+

+

+

+
+

+
+

+

+

s

S

r

x

Ts
r

Tx,s
Tx L

I(t)

A2

.
.

.

.

.

.

.
.

+

++

B

.

Fig. 2. Possible realization of the inventory level process for r < x 6 s.
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where fI(t)(x) denotes the probability density of I(t) and U is the cumulative distribution function of a standard
normal distribution. Substituting (6) in (5) yields the following result:
EðLOHÞ ¼
Z L

0

ffiffiffiffiffiffi
r2t
2p

r
e�
ðrþltÞ2

2r2 t dt þ r
Z L

0

U
r þ ltffiffiffiffiffiffi

r2t
p

� �
dt þ l

Z L

0

tU
r þ ltffiffiffiffiffiffi

r2t
p

� �
dt: ð7Þ
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Fig. 5. Possible realization of the inventory level process for s < x < S.
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Similarly, the expected stockout period during the lead time is given by
EðSOÞ ¼
Z L

0

P ðIðtÞ 6 0Þdt ¼
Z L

0

1� U
r þ ltffiffiffiffiffiffi

r2t
p

� �� �
dt ð8Þ

¼ L�
Z L

0

U
r þ ltffiffiffiffiffiffi

r2t
p

� �
dt: ð9Þ
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4.3. Analysis after the lead time period

We first derive the expressions for the operating characteristics conditional on the inventory level x after the
lead time period ends and denote them by subscript x. Later we will uncondition them to obtain the operating
characteristics of the system. In this segment of the cycle, the behavior of I(t) is identical to that of a Brownian
motion moving in strips. Therefore, our analysis rests on the results given in Section 3.

Under the proposed control policy, whenever the inventory level exceeds S, the excess inventory is disposed
of and the inventory level is brought down to s. Since the material inflow and demand processes are random,
there may be a multiple of such disposal actions before the cycle ends, leading to a possible repetitive behavior
for the process within a regenerative cycle (e.g. Figs. 3, 5 and 7).

Fig. 1 illustrates an example of a trajectory where the process, starting at some level x (r < x 6 s), escapes
from the strip [r, s] for the first time through the lower-boundary r and completes the cycle. However, if the
first escape occurs at the upper boundary, s, then the inventory process initiates a new movement within the
strip [r, S] starting from s. Here again, if the process hits r before S, then the cycle is completed (see Fig. 2).
Otherwise, at the instance of hitting S, a disposal occurs to make the process jump down to s, restarting a
probabilistically identical movement. Such restarts may occur repeatedly; Fig. 3 depicts an example. (Similar
examples for the case of an immediate disposal action after the order arrives are illustrated in Figs. 6 and 7.)

These repeated restarts generate a maze-type (i.e. recurrent) behavior which we exploit in deriving the oper-
ating characteristics of interest. In particular, we will derive the expressions for the expected cycle length,
expected inventory-days (i.e., inventory carried over time) after the lead time period and the expected number
of disposal actions and the quantity disposed of in a cycle by considering the behavior of the inventory level as
a Brownian motion moving in strips and invoking some of the key results presented in Section 3. Since the
underlying process is a Brownian motion, we consider each strip separately and, for convenience, take the time
origin within that strip as the time instance when the process enters that strip. We, then, patch such strips
together to obtain the behavior within the totality of the cycle.

We begin our analysis with the expected time until the cycle ends. Define Tu as the remaining time until the
end of a regenerative cycle from any instance when the inventory level is u. Then, Tx will be the time until the
cycle is completed if the inventory level after the lead time period is x.

Case 1: r < x 6 s. According to the possible cycle realizations discussed above, for x 2 (r, s] we can write
T x ¼
T x;r if T x;r < T x;s;

T x;s þ T s if T x;s < T x;r;

	
ð10Þ

¼ T x;rs þ T svðT x;s < T x;rÞ; ð11Þ
where v(Æ) is the indicator function and
T s ¼
T s;r if T s;r < T s;S ;

T s;S þ T s if T s;S < T s;r;;

	
ð12Þ

¼ T s;rS þ T svðT s;S < T s;rÞ: ð13Þ
In (10), the first line corresponds to a realization where the process leaves the strip [r, s] at level r, completing
the cycle; and, the second line corresponds to a realization where the process leaves the strip at s, starting a
motion in a new strip [r, S], for which the time until the cycle ends is given by (12). Noting the maze-type
behavior discussed above, we find
EðT xÞ ¼ EðT x;rsÞ þ EðT sÞP r
x;s;
where
EðT sÞ ¼
EðT s;rSÞ

P S
s;r

:

Using Proposition 3.2 and the above relations, the expected time remaining until the end of a cycle with x units
of on-hand inventory after the lead time period is given as follows:
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EðT xÞ ¼ �
ðx� rÞ

l
þ ðS � sÞ

l
� ðe

�2lx

r2 � e�
2lr

r2 Þ
ðe�

2lS

r2 � e�
2ls

r2 Þ
: ð14Þ
Case 2: s < x < S. The remaining cycle time at the end of the lead time for this case is written as
T x ¼ T x;sS þ T s: ð15Þ

The first term in the above expression is the time until the process escapes from the strip [s, S]; the second term
comes from the fact that regardless of the boundary from which the process escapes, the remaining cycle time
is given by Ts. Again invoking Proposition 3.2 to obtain the expected value of the expression given in (15), we
find that this expectation is exactly the same as the one given by (14).

Next, we consider the expected inventory-days (the area under the inventory level curve) within a cycle after
the lead time period.

Let OHu be the inventory carried until the end of the cycle from any instance when the inventory level is u.
Also, let OHz

u;v be the inventory carried until the inventory level hits v before z for the first time starting at u

and OHu,vz be the inventory carried until the process escapes from strip [v, z]. We again consider the cases
separately:

Case 1: r < x 6 s. The inventory carried until the end of the cycle if the inventory level after the lead time is
x, can be written as follows:
OHx ¼
OHs

x;r if T x;r < T x;s;

OHr
x;s þOHs if T x;s < T x;r:

(
ð16Þ
The first line of (16) corresponds to the area denoted by A1 in Fig. 1, where the process hits r before s. The
second line corresponds to the case where s is hit before r (see Figs. 2 and 3). The first term of the second line is
the area, A2, whereas the second one is, B, the total inventory carried until the end of the cycle from the point
s, denoted by OHs.

Similar to the cycle length arguments, we see that there exists a maze-type structure in the carried inventory
expressions. Hence, we have
EðOHxÞ ¼ EðOHx;rsÞ þ EðOHsÞP r
x;s;
where
EðOHsÞ ¼
EðOHs;rSÞ

P S
s;r

:

Case 2: s < x < S. In this case, we have
OHx ¼
OHS

x;s þOHs if T x;s < T x;S ;

OHs
x;S þOHs if T x;S < T x;s:

(
ð17Þ
Similarly, the expressions OHS
x;s and OHs

x;S given by (17) correspond to the areas A3 and A4 in Figs. 4 and 5,
respectively. Therefore, we can write as before
EðOHxÞ ¼ EðOHx;sSÞ þ EðOHsÞ:

In order to evaluate the above expectations, we employ the result given by Proposition 3.3 in which the term
Ax,ba corresponds to the expected inventory carried until the process escapes from strip [b, a] starting from x.
Thus, we have E(OHx,rS) = Ax,rS and E(OHs,rS) = As,rS.

Next, we develop the expressions for the expected number of disposal actions, each incurring a fixed cost of
Kd, and the expected quantity disposed of with each disposal action. Under the proposed policy, whenever the
inventory level exceeds the disposal threshold S, excess amount is disposed of, as long as there are no out-
standing orders. Therefore, the expected number of disposal actions and the total number of units disposed
of are evaluated only for the remainder of the cycle after the order arrives. Since the inventory levels may grow
excessively during a lead time period due to inflow of material, it is possible that, just when the order arrives,
the inventory level, I(L) + Q, may be found at or above S. If so, a disposal action is taken immediately reduc-
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ing the inventory level instantaneously to s and the quantity disposed of is (I(L) + Q � s). Such an immediate
disposal occurs with probability P(I(L) + Q P S), where I(L) is normally distributed with mean lL + r and
variance r2L. In this case, the remaining segment of the cycle begins with inventory level x = s with the posi-
tive probability given above. (See Figs. 6 and 7.) If, however, I(L) + Q is found to be less than S, then, no
disposal action is taken and the remainder of the cycle begins with the inventory level x = I(L) + Q with
the probability density of a normal variate with mean lL + r + Q and variance r2L. Due to the one order
outstanding assumption, we assume the probability that x 6 r is negligibly small, and, hence, consider only
the case when r < x < S. Let Nx be the number of disposal actions until the end of the cycle, if the inventory
level after the lead time is x. Observe that x may attain the value s in two ways: Either when an immediate
disposal action is taken after the order arrives, or when the level of the unrestricted Brownian motion imme-
diately before the order arrives is found to be s � Q. The first case has the positive probability given above,
whereas the latter is described by a normal probability density. We consider these cases separately.

First, consider the realizations when there is no immediate disposal action after an order arrives. Starting at
x, if the process directly goes down to r, without hitting S, then Nx = 0 with probability P S

x;r. In order that
there are n disposals, the process, starting from x, first goes to S without hitting r with probability P r

x;S and
the inventory level is immediately reduced to level s by disposal. Then, the process, starting at s reaches S

before r with probability P r
s;S consecutively for n � 1 times, and finally, starting at s, it reaches the level r before

S and completes the cycle. Hence, we can write the following probability mass function for Nx:
P ðNx ¼ nÞ ¼
P S

x;r if n ¼ 0;

P r
x;SP S

s;rðP r
s;SÞ
ðn�1Þ

: if n > 0

(
ð18Þ
Then, the expected number of disposal actions when the inventory level at the end of the lead time is x, is given
by the following expression for which the proof is given in Appendix.
EðN xÞ ¼
e�

2lx

r2 � e�
2lr

r2

e�
2lS

r2 � e�
2ls

r2

: ð19Þ
In each disposal action, the quantity disposed of is exactly (S � s); therefore, the expected total amount of
stock disposed of in a cycle with x units of on hand stock at the end of the lead time period can be found
by multiplying this number by E(Nx).

Next, consider the realizations where an immediate disposal is made after an order arrives; that is, x = s with
a positive probability. In this case, the number of disposal actions is one more than the case when x = s without
any disposal action. In the particular disposal action immediately after the order arrives, the number of units
disposed of depends on the inventory level immediately before the order arrives. Let n(t;u,v) and
Nðt; u; vÞ ¼

R1
t nðx; u; vÞdx denote henceforth the probability density and the tail probability of a normal ran-

dom variable with mean u and variance v. Then, since I(L) is normally distributed with mean r + lL and var-
iance r2L, the expected number of units disposed of immediately after the order arrives is given by
R1

ðS�QÞðy þ Q� sÞnðy; r þ lL; r2LÞdy

NðS � Q; r þ lL; r2LÞ
:

4.4. Special case of zero drift (l = 0)

For the case of perfect balance between the external demand and autonomous supply rates, some expres-
sions of the operating characteristics yield simple elegant expressions provided below:
EðLOHÞ ¼
Z L

0

ffiffiffiffiffiffi
r2t
2p

r
e�

r2

2r2 tdt þ r
Z L

0

U
rffiffiffiffiffiffi
r2t
p
� �

dt; ð20Þ

EðSOÞ ¼ L�
Z L

0

U
rffiffiffiffiffiffi
r2t
p
� �

dt; ð21Þ
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EðT xÞ ¼
ðx� rÞðS þ s� x� rÞ

r2
; ð22Þ

EðCLxÞ ¼ Lþ ðx� rÞðS þ s� x� rÞ
r2

; ð23Þ
where E(CLx) denotes the expected cycle length conditioned on x. Finally, for r < x < S, the expected number
of disposals given by (19) reduces to
EðNxÞ ¼
x� r
S � s

: ð24Þ
The expressions for E(OHx) for Cases 1 and 2 are obtained by employing the result given by Corollary 3.2.
Similarly, for x = s, the expressions for the expected number of disposal actions and the quantities disposed
of are found as discussed above by setting l = 0.

4.5. Objective function

The expected total cost under the (S, s, r, Q) policy can now be obtained by using the equations above. The
operating characteristics we have derived so far were conditional on the level of the inventory at the end of the
lead time period. Therefore, we first express the unconditional expectations, and then, construct the expected
cost rate. The distribution of x has both a continuous component described by a normal density and a discrete
point, the probability of which is given by the tail probability of a normal random variable.

The expected cycle length, E(CL), and the expected on-hand inventory carried during a cycle, E(OH), are
given by
EðCLÞ ¼ Lþ
R S

r EðT xÞnðx; r þ lLþ Q; r2LÞdxþ EðT sÞNðS; r þ lLþ Q;r2LÞ ð25Þ

EðOHÞ ¼ EðLOHÞ þ
R S

r EðOHxÞnðx; r þ lLþ Q; r2LÞdxþ EðOHsÞNðS; r þ lLþ Q; r2LÞ ð26Þ
The expected disposal cost, E(DC), which includes both fixed and variable components, is similarly found as
EðDCÞ ¼ ½Kd þ cdðS � sÞ�
Z S

r
EðNxÞnðx; r þ lLþ Q; r2LÞdxþ ½Kd þ cdðS � sÞ�EðNsÞNðS; r þ lLþ Q; r2LÞ

þKdNðS; r þ lLþ Q; r2LÞ þ cd

Z 1

ðS�QÞ
½y þ Q� s�nðy; r þ lL; r2LÞdy ð27Þ
In a cycle, the total inflow of returns and replenished units must equal the total outflow of external demand
and disposed of units. Hence,
EðDCÞ ¼ Kd

Z S

r
EðN xÞnðx; r þ lLþ Q; r2LÞdxþ KdEðN sÞNðS; r þ lLþ Q; r2LÞ þ KdNðS; r þ lLþ Q; r2LÞ

þcd½ðlR � lDÞEðCLÞ þ Q� ð28Þ
where the last term is unit disposal cost multiplied by the expected quantity disposed of in a cycle, E(DQ).
Invoking the Renewal Reward Theorem (see [18]), the expected total cost rate is given by the ratio of the

expected cycle cost to the expected cycle length yielding
TCðS; s; r;QÞ ¼ coQþ Ko þ hEðOHÞ þ EðDCÞ
EðCLÞ þ crlR ð29Þ
After some algebra, we get
TCðS; s; r;QÞ ¼
½co � cr�Qþ Ko þ hEðOHÞ þ Kd

R S
r EðN xÞnðx; r þ lLþ Q; r2LÞdx

n
EðCLÞ

þ
½EðNsÞ þ 1�NðS; r þ lLþ Q; r2LÞ



EðCLÞ þ ½cd þ cr�EðDQÞ

EðCLÞ þ crlD ð30Þ
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The optimization problem is then stated as
min TCðS; s; r;QÞ;

s:t:
EðSOÞ
EðCLÞ 6 1� a:
In the foregoing model, we make a couple of basic assumptions: (i) there is at most one outstanding order at
any time and, (ii) the on-hand inventory at the end of a lead time period is always greater than the reorder
point, x > r. Next, we briefly discuss their impact on our analysis. Under (i), we underestimate the expected
on-hand inventory, the expected ordering/purchasing costs and the fill rate. As the inventory level at the
end of the lead time period is also being overestimated, it is likely that we are underestimating the expected
number of disposals and ensuing disposal costs. For high desired fill rates, the assumption of at most one out-
standing order would hold well since r would be set accordingly high. Assumption (ii) holds when the prob-
ability that the net demand during lead time exceeds the order quantity Q is very small. If this assumption does
not hold, it would imply in general that the expected on-hand inventory during the lead time and the fill rate
are overestimated, resulting in underestimation of the ordering/purchasing costs and overestimation of dis-
posal costs.

In our numerical study, we also adopted an approximation to alleviate the numerical tedium, by replacing
the inventory level at the end of the lead time by its expected value. This approximation is similar to the one
commonly used for the classical (Q, r) model where it is assumed that, on average, only the ‘safety stock’ com-
ponent of the reorder point level remains at the end of lead time (see [14]). Hence, we set x = Q + r + lL in the
expected cycle cost and cycle length expressions given in Section 4. In a preliminary numerical investigation on
270 instances, we compared the approximate and the exact expected cost rates. The return ratio and coeffi-
cients of variation of return and demand processes are denoted by c(=lR/lD), CVR(=rR/lR) and
CVD(=rD/lD), respectively. The instances were generated from a set where h = 1, cr = 4, cd = 1, l = �20,
L = 0.1, CVD = 0.3, a 2 {0.95, 0.99, 0.999}, Kd/Ko 2 {0.1, 0.2, 0.5}, Ko 2 {500, 1000}, CVR 2 {0.5, 1, 2} and
c varying between 0.50 and 0.95 at increments of 0.05. Overall, the mean and the median of the percentage
deviation between the exact and approximate computations were �0.27 and �0.19%, respectively. Thus,
we conclude that this approximation would not confound the main implications of our study.
5. Numerical study

We conducted our numerical study to investigate two aspects: (i) the sensitivity of the control policy param-
eters to various system parameters, and (ii) the comparison of the proposed policy with the disposal option vis

a vis the classical (Q, r) policy without such an option.
The test bed used in our numerical study was generated with the following cost parameters: h = 1,

Ko 2 {50, 100, 500, 1000}, Kd/Ko 2 {0.05, 0.1, 0.2, 0.25, 0.5} and unit disposal cost, cd, is taken as 11–400%
of the value of a new item, co (cd = 1, 2, 4; co + cd = 5, 10). We set cr = co so that arbitrage opportunities
are not allowed. We considered L 2 {0.1,1,5}, a 2 {0.95,0.99, 0.999}, c over a range of 0.50 to 0.97 and
l 2 {0,�1,�20,�200,�2000}. (Taking into account c and annual cost of capital of, say, around 10%, the
actual demand rates considered would range between 2 and 40,000 per year.) For large net demand rates
(l 2 {�20, �200, �2000}), we also tested Ko/jlj 2 {2.5, 5, 25, 50} which result in alike inventory turnover
rates, while retaining the rest of the parameter set. For a given non-zero net demand rate, r can be calculated

from the relationship between c, CVR and CVD; that is, r ¼ jlj
1�c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½cCVR�2 þ CV2

D

q
. Thus, for non-zero net

demand rates, a broad set of r values are obtained by setting CVR 2 {0.5, 0.75, 1, 1.5, 2} and CVD = 0.3
for different c. Although it does not confound our results in any way, we chose our parameters such that
the return process is more variable than the external demand process. This would be the case when the return
process is determined by the consumers’ environmental awareness and propensity to return reusables. Since
these propensities would not be uniform across the consumer population, they would add to the uncertainties
of the return process.

For the special case of no drift, l = 0, we only examined the cases where CVD = 0.3, CVR = 0.4 and r = 1.
With this construction, we generated a total of 24,912 instances: (i) 324 instances for l = 0, (ii) 24,300
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instances for l = �1 and �20 and (iii) 288 additional instances for l = �200 and �2000. (The entire data set
and numerical results can be obtained from the authors.)

Our experimental set consists of realistic scenarios as well as somewhat extreme situations for sensitivity
analysis. For example, with l = �200, c = 0.95, L = 0.1, cd = 1 and cr = 9 we have a scenario where, for
an annual cost of capital of slightly more than 11%, the demand rate is approximately 4000 units per year,
the delivery lead time is about 5 weeks and unit disposal cost is almost 10% of a new product – a realistic high
demand, low unit disposal cost setting. However, with l = 0, CVD = 0.3, CVR = 0.4, r = 1, L = 0.1, cd = 1
and cr = 4, we would be considering a scenario where, for an annual cost of capital of 25%, the demand rate
is only 2 units per year and unit disposal cost is a quarter of the cost of a new item – an extreme setting with
slow-moving items and high holding costs. Hence, we are able to observe the impact of disposals with fixed
costs over a large range of demand settings. Throughout, we use (*) to denote the optimal value of a policy
parameter or of an entity of interest.
5.1. Sensitivity analysis

We begin our discussion with the special case of l = 0, which corresponds to a return ratio of one. A
perfectly-balanced system provides an interesting benchmark case and highlights the fundamental trade-
off between inventory concerns and the disposal option. In Table 1, we provide results as we vary the max-
imum inventory level S at different values. Setting S externally enables us to observe the impact of disposal
thresholds and may as well be viewed as corresponding to a physical constraint on the inventory system such
as limited warehouse or storage capacities. First, we observe that the expected total cost rate is unimodal in
S. (See also Fig. 8.) Incidentally, our numerical studies indicate joint unimodality of the expected cost rate
function with respect to the policy parameters for all net demand rates, although we have not been able to
show this analytically. A second observation from Table 1 concerns the appropriateness of the (Q, r) policy.
By definition, as S!1, the proposed policy reduces to the (Q, r) control policy which prohibits any dis-
posal. We see that employing the best (Q, r) policy instead of the best (S, s, r, Q) policy more than triples the
cost rates for the no drift case in this setting! We shall discuss policy comparison in detail further below. We
proceed to discuss the results on sensitivity of the control policy parameter for demand settings with neg-
ative drift.

From the results presented in Table 2, we observe that the overall behavior of the policy parameters with
respect to the system parameters is intuitive. As the fixed disposal cost, Kd, increases, S* increases, whereas, s*

decreases. This behavior can be explained as follows. As Kd increases, a disposal decision becomes more
costly. The system should either reduce the number of instances of disposal or increase the quantity disposed
of in each instance. Hence, we observe that (S* � s*) increases. Similarly, as Kd increases, Q* decreases to pre-
vent possible disposals, which become more expensive.

The net demand variability is governed by c and CVR in our numerical experiments. The impact of each on
the policy parameters is similar. As c increases, both Q* and (S* � s*) tend to increase. This implies that larger
net demand variability results in more disposals. As expected, the reorder point is also increasing in c since r*

implicitly depends on the fill rate.
The impact of the desired fill rate is not monotonic on S*, s* and Q*; it appears that other system param-

eters as Kd, c and l also have an effect on them simultaneously. However, the reorder point is monotonically
increasing in a. This is expected since a larger r* value means a higher fill rate. Sensitivity results for lead time
and fixed ordering cost are not tabulated herein for brevity. In these unreported results, similar effects are
observed for the lead time.

As to the fixed ordering cost, as Ko increases, the optimal order quantity is observed to increase, as
expected. In our model, a larger order quantity implies that the inventory level as a stochastic process is more
likely to visit the states in the neighborhood of the disposal trigger level. Hence, with a larger order quantity,
the likelihood of a disposal is larger. In order to compensate for this, S* increases, thereby, making less likely
the event of hitting the disposal trigger; and s* increases to reduce the incurred variable disposal costs, but not
as much as S*, so that (S* � s*) also increases with Ko. Hence, one can conclude that the increase in the opti-
mal order quantity is also partly due to an increase in the quantity disposed of.



Table 1
Sensitivity analysis when S is set exogenously (L = 5, l = 0, r = 1, a = 0.99, Ko = 500, cd = 1, cr = 4)

Kd S s* r* Q* TC*

50 10 7.89 2.02 6.66 27.31
100 10 7.90 2.04 6.13 30.00
250 10 7.91 2.05 5.35 37.37

50 15 10.54 0.75 9.21 21.02
100 15 9.88 0.86 8.59 21.70
250 15 8.86 1.03 7.55 23.46

50 17 10.74 0.53 9.53 20.79
100 17 10.21 0.61 9.06 21.22
250 17 9.28 0.76 8.17 22.41

50 20 10.36 0.33 9.41 20.93
100 20 10.08 0.37 9.16 21.18
250 20 9.48 0.47 8.59 21.89

50 25 9.38 0.13 8.80 21.68
100 25 9.29 0.14 8.71 21.81
250 25 9.04 0.19 8.47 22.17

50 40 6.31 0.00 6.09 25.24
100 40 6.30 0.00 6.09 25.27
250 40 6.31 0.00 6.09 25.38

50 200 1.61 0.00 1.57 75.74
100 200 1.61 0.00 1.57 75.74
250 200 1.61 0.00 1.57 75.74
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Fig. 8. Total cost rate vs. warehouse capacity (l = 0, r = 1).
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5.2. Comparison with the (Q, r) Policy

Next, we compare the performance of the system under the proposed control policy with the disposal
option vis a vis that under the classical (Q, r) policy. Our goal in this part of the numerical study is to inves-
tigate the utility of the disposal option in inventory control of reusables and to assess the impact on costs of
ignoring such an option. We do not report the values of the parameters of the best (Q, r) policy but only pres-

ent the percentage cost difference between the two policies, D% ¼ TCjðQ� ;r�Þ�TCjðS� ;s� ;r� ;Q�Þ
TCjðQ� ;r�Þ

� 100. A positive value

for D% indicates the savings obtained by employing the proposed policy which allows for disposals. Some
of the cost comparisons have been tabulated in Tables 2–5.

As the fixed disposal cost Kd increases, the difference between the two policies decreases. This is best
observed in Table 2. This is to be expected since the disposal option becomes more costly. Recall that the



Table 2
Sensitivity analysis (L = 0.1, l = �20, Ko = 1000 and CVR = 2)

cd = 1, cr = 9 cd = 4, cr = 6

a c Kd S* s* r* Q* TC* D% TC* D%

100 3302.65 2594.43 0.00 423.21 6345.72 54.32 5145.72 59.46
0.95 200 3408.22 2515.92 0.00 421.77 6357.59 54.24 5157.59 59.36

500 3598.14 2387.08 0.00 418.57 6384.33 54.04 5184.33 59.15
100 1782.50 1351.75 0.00 324.16 3162.48 40.24 2562.48 45.38

0.90 200 1848.84 1306.06 0.00 322.82 3170.08 40.09 2570.08 45.22
500 1969.03 1232.26 0.00 319.86 3187.08 39.77 2587.08 44.86
100 973.67 722.04 0.00 242.82 1539.90 12.20 1239.90 14.72

0.95 0.80 200 1014.53 697.32 0.00 241.68 1543.32 12.01 1243.32 14.48
500 1089.48 658.49 0.00 239.25 1550.78 11.58 1250.78 13.97
100 698.97 522.23 0.00 211.73 999.29 2.37 799.29 2.95

0.70 200 729.95 506.87 0.00 210.97 1000.47 2.26 800.47 2.81
500 787.87 483.71 0.00 209.41 1002.91 2.02 802.91 2.51
100 519.60 389.34 0.00 199.83 661.40 0.03 528.07 0.04

0.55 200 565.72 389.00 0.00 199.79 661.43 0.03 528.10 0.03
500 614.98 390.92 0.00 199.62 661.50 0.02 528.17 0.02

100 3782.84 2915.76 298.15 520.31 6653.13 53.22 5453.13 58.12
0.95 200 3783.12 2915.74 298.14 520.29 6663.99 53.14 5463.99 58.04

500 3965.20 2862.43 297.61 511.34 6690.88 52.95 5490.88 57.83
100 1960.68 1529.90 122.73 379.60 3289.18 39.03 2689.18 43.92

0.90 200 2026.88 1484.10 122.56 378.30 3296.62 38.89 2696.62 43.76
500 2146.78 1410.02 122.17 375.44 3313.28 38.58 2713.28 43.41
100 1051.56 771.66 50.00 251.01 1590.02 11.69 1290.02 14.02

0.999 0.80 200 1074.84 763.40 49.94 249.92 1593.30 11.51 1293.30 13.81
500 1138.44 754.75 49.64 247.49 1600.74 11.09 1300.74 13.31
100 746.73 554.95 27.29 226.48 1027.01 2.25 827.01 2.77

0.70 200 787.82 539.01 27.19 226.11 1028.19 2.13 828.19 2.64
500 822.16 530.73 27.17 224.57 1030.53 1.91 830.53 2.36
100 567.35 416.07 14.89 207.79 676.39 0.03 543.06 0.04

0.55 200 567.35 416.07 14.89 207.79 676.44 0.02 543.11 0.03
500 629.99 413.00 14.89 207.44 676.50 0.01 543.17 0.02
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effective unit disposal cost is cd + cr as given in Eq. (30). In Table 2, we vary cd as a fraction of cr while main-
taining the unit effective disposal cost. We observe that as cd increases, D% also increases. This implies that for
systems with the same effective unit disposal cost, the savings under the proposed policy are larger when cd gets
larger with respect to cr. This interesting result arises from the fact that the constant term cr lD constitutes a
larger fraction of the total cost rate under the proposed policy than under the (Q, r) policy. We also observe
that D% decreases as the desired service level a increases. As the fixed ordering cost Ko increases, D% also
decreases (see Table 4). This is largely due to the fact that replenishment costs start constituting a larger por-
tion of the total costs; also, effective costs associated with disposed quantities become larger. The impact of the
lead time duration on D% does not exhibit a clearly distinguishable pattern (see Table 5).

The savings one gets from the disposal option depend on the mean and variance of the net demand. For the
same r, the performances of the two policies converge (D% approaches zero) as the magnitude of net demand
(jlj) increases. This is because the inventory level, as a stochastic process with negative drift, does not fre-
quently visit the states in the positive half-plane and, thereby, the system does not incur too much inventory
holding cost. Hence, no need arises to reduce inventory costs through disposing of some stock. The same argu-
ment holds for decreasing r as l is kept constant, as well. We observe that changes in the mean net demand
rate have more influence on D% than those in r.

In line with these general observations, we find the following. As c decreases, the net demand variability r
decreases and, thereby, D% also decreases. On the other hand, as CVR begins to increase, D% begins to
increase. This happens because high variability in return flows leads to accumulation of stock and necessitates
the disposal of the excess. Although the effects are more pronounced for high return ratios, we observe, for



Table 3
Sensitivity analysis (L = 0.1, l = �200, Ko = 1000, CVR = 1, cd = 1 and cr = 9)

a c Kd S* s* r* Q* TC* D%

0.95 0.05*Ko 7879.92 6853.91 0.00 616.58 23357.17 14.11
0.90 0.1*Ko 8025.77 6733.05 0.00 615.71 23363.93 14.09

0.25*Ko 8285.13 6530.34 0.00 613.74 23379.24 14.03
0.05*Ko 5611.26 4854.40 0.00 630.72 15219.61 5.47

0.85 0.1*Ko 5721.10 4767.68 0.00 630.08 15223.42 5.45
0.25*Ko 5918.09 4623.19 0.00 628.63 15232.01 5.40
0.05*Ko 4505.77 3838.95 0.00 620.91 11171.45 1.83

0.80 0.1*Ko 4579.60 3819.73 0.00 620.43 11173.29 1.81
0.25*Ko 4721.44 3736.51 0.00 619.39 11177.53 1.78

0.999 0.05*Ko 9046.76 8020.68 893.56 889.82 24286.82 13.76
0.90 0.1*Ko 9192.57 7899.77 893.45 889.02 24293.53 13.74

0.25*Ko 9451.79 7697.01 893.18 887.23 24308.71 13.68
0.05*Ko 6322.22 5565.31 542.01 799.65 15776.48 5.21

0.85 0.1*Ko 6432.16 5478.37 541.91 799.04 15780.21 5.18
0.25*Ko 6628.80 5333.88 541.69 797.66 15788.62 5.13
0.05*Ko 4988.37 4385.24 380.43 739.28 11559.24 1.72

0.80 0.1*Ko 5127.02 4292.19 380.27 738.81 11561.13 1.71
0.25*Ko 5255.22 4184.89 380.26 737.81 11565.19 1.67

Table 4
Policy comparison (L = 0.1, l = �20, CVR = 1, cd = 1 and cr = 4)

a = 0.95 a = 0.999

Ko = 500 Ko = 1000 Ko = 500 Ko = 1000

c Kd TC* D% TC* D% TC* D% TC* D%

0.95 50 2703.28 52.01 2834.07 50.49 2870.33 50.38 2980.15 48.95
100 2710.80 51.88 2845.26 50.29 2877.68 50.25 2991.06 48.76
250 2727.61 51.58 2870.06 49.86 2894.11 49.97 3015.25 48.35

0.90 50 1368.60 25.06 1457.00 22.87 1439.90 23.77 1518.34 21.79
100 1372.92 24.83 1463.14 22.54 1444.03 23.55 1524.95 21.45
250 1382.43 24.31 1476.46 21.84 1455.14 22.96 1537.72 20.79

0.85 50 915.65 11.00 988.09 9.26 962.69 9.91 1039.61 7.39
100 918.18 10.75 991.50 8.95 966.80 9.53 1048.43 6.60
250 923.62 10.23 998.64 8.29 970.04 9.22 1061.72 5.42

0.80 50 688.81 4.26 753.55 3.24 718.58 3.94 780.92 2.76
100 690.18 4.07 755.26 3.02 719.76 3.79 782.75 2.53
250 693.02 3.67 758.65 2.58 723.05 3.35 788.15 1.86

0.75 50 554.67 1.38 615.66 0.93 577.01 1.27 634.65 0.86
100 555.30 1.27 616.38 0.81 577.64 1.16 635.36 0.75
250 556.54 1.05 617.66 0.60 578.80 0.97 637.03 0.49

0.70 50 468.04 0.35 527.44 0.20 485.78 0.31 542.66 0.16
100 468.28 0.30 527.67 0.16 485.96 0.27 542.72 0.15
468.68 0.21 528.02 0.09 486.32 0.20 543.06 0.09
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instance in Fig. 10, that the disposal policy results in substantial cost savings even for the systems with mod-
erate return ratios but high return variability (e.g. when CVR = 2 and c = 0.75 the cost rate difference is
approximately 10%). For the same CVR, D% increases as jlj increases for slow-moving to moderate demands.
For example, in the cases considered in Fig. 9 and Fig. 10, we see that for CVR = 0.5, 1, 1.5, 2, a = 0.99 and
c = 0.90, the cost rate difference takes on the range of values, 0.91 � 36.76 and 5.29 � 54.71 for l = �1 and
�20, resp. (Recall that we set CVD = 0.3 throughout the numerical study.) We see that the increase in D% is



Table 5
Policy comparison (l = �1, Ko = 500, CVR = 1, cd = 1 and cr = 4)

a = 0.95 a = 0.999

L = 0.1 L = 1 L = 0.1 L = 1

c Kd TC* D% TC* D% TC* D% TC* D%

0.95 50 183.49 40.69 178.86 40.83 187.39 39.75 210.34 36.42
100 185.22 40.13 180.56 40.27 189.39 39.11 211.96 35.93
250 188.88 38.95 184.15 39.08 193.19 37.88 215.39 34.89

0.90 50 101.80 12.53 99.79 12.66 104.33 10.99 114.33 10.55
100 102.54 11.89 100.53 12.01 104.87 10.52 114.88 10.12
250 104.02 10.62 102.00 10.73 106.02 9.55 116.33 8.99

0.85 50 73.82 3.12 72.46 3.17 74.42 3.02 81.41 2.69
100 74.11 2.73 72.75 2.77 74.71 2.64 81.70 2.36
250 74.63 2.04 73.27 2.08 75.21 1.98 82.19 1.77

0.80 50 60.25 0.61 59.13 0.63 60.85 0.28 65.78 0.33
100 60.34 0.46 59.22 0.47 60.91 0.18 65.85 0.23
250 60.47 0.25 59.35 0.25 61.00 0.04 65.91 0.13

0.75 50 52.73 0.00 51.71 0.00 53.05 0.00 56.80 0.00
100 52.73 0.00 51.71 0.00 53.05 0.00 56.80 0.00
250 52.73 0.00 51.71 0.00 53.05 0.00 56.80 0.00

0.70 50 48.07 0.00 47.11 0.00 48.33 0.00 51.27 0.00
100 48.07 0.00 47.11 0.00 48.33 0.00 51.27 0.00
250 48.07 0.00 47.11 0.00 48.33 0.00 51.27 0.00
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more pronounced for l = �20 than for l = �1. However, as jlj gets larger, we observe that D% drops to zero
(for l = �200 and l = �2000), which follows from the interplay between jlj and r as mentioned above.

Previously, Teunter and Vlachos [19] have shown that, for zero fixed disposal cost, disposals are beneficial
only when the item is slow-moving and the return rate is high. Our results support this finding. This is as
expected since addition of a fixed disposal cost makes disposal decisions less desirable. However, we should
also report our observation that systems with high actual demand rates may also experience savings if the
net demand rate for the system is low. For instance, with c = 0.95, l = �200 and cr = 9 in Table 3, the actual
demand rate is 4000 units per year with an annual cost of capital of slightly more than 11% and, the corre-
sponding saving is 14.1%. Hence, the actual demand figures may be misleading in stating a priori when dis-
posals may be beneficial. We recommend that the net demand’s mean and variability be considered. We
also observe that for large net demand values, the fixed ordering and disposal costs must also be relatively
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Fig. 9. Disposal vs. no disposal (l = �1, L = 0.1, a = 0.99, Ko = 1000, Kd = 100, cd = 1, cr = 4).
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high to obtain benefits from disposals. For instance, for l = �20,�200 and �2000, equivalent cost savings
(�14%) were obtained only if the ratios of fixed costs to demand rates (Ko/jlj, Kd/jlj) were maintained as
jlj grows large for the same CV; otherwise, disposal option becomes uneconomical quickly as jlj grows large.
The above behavior is seen at all service levels considered.

In addition to the tabulated results, we should report summaries of our findings on policy comparison over
the entire experimental set for negative drift: Over all experiment instances with negative drift (24588 out of a
total of 24,912 instances), we have observed D% to a have a mean value of 4.5% and a maximum of 76.4%. We
see that incorporating the disposal option in the presence of positive fixed disposal costs can result in savings.
The savings diminish for large net demand rates, l ow net demand variance, low fixed ordering/disposal costs
and low holding costs.
6. Conclusion

In this paper, we considered a single-location inventory system for a reusable item with stochastic external
demand and an autonomous supply providing an independent inflow of material in addition to a regular sup-
plier with constant delivery lead time. Our model differs from the available models on resuables facing random
demand in that we allow for non-zero fixed disposal costs. We proposed a continuous review, four parameter
replenishment–disposal policy for inventory control. As such, we are able to determine the optimal disposal
batch size as well as the disposal action trigger level, reordering quantity and its timing. We modeled the
net demand process as the superposition of the normally distributed demand and inflows resulting in inventory
levels represented by a Brownian motion. Under the assumption of at most one order outstanding at any time,
the operating characteristics of the system were derived and the optimal values of the policy parameters that
minimize expected total cost rate were obtained under a fill rate measure constraint.

The benefits of a disposal option on reduction of cost have been studied in the literature for systems with
random demand when fixed disposal cost is zero. The main conclusion from that research has been that dis-
posal option can lead to considerable savings, but only for cases with slow-moving items and large return
ratios. In our study, we strengthen these findings and extend them in a number of directions. First, disposals
of excess stock may result in significant savings even in the presence of non-zero fixed disposal costs. Secondly,
we observe in our numerical study that benefits arising from disposals depend on the net demand rate and that
savings are possible for large actual demand rates if the return rates are also high. Substantial savings can be
achieved even for moderate return rates as long as the net demand variability and fixed costs are sufficiently
high.

There are a number of possible extensions to our model. Non-linear holding costs may be incorporated
which would imply further penalization of excessive inventory build-up and increase the attractiveness of dis-
posals. Also the assumption of constant lead times may be relaxed to allow for uncertainty in delivery times.
In this study, we considered an independent inflow; correlated demand and return processes would be
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interesting to study as well. Finally, another possible extension that can build on the elements of our model is
to look at the same problem with an NPV approach instead of a cost rate. Such an approach would be most
useful to study the impact of additional uncertainties in the operating environment such as prices and discount
rates.

Appendix

Proof of Proposition 3.2

(i) Let pþðxÞ ¼ P b
x;a. Then p+(x) satisfies the following differential equation (see [8, p. 231]):
1

2
r2 d2pþðxÞ

dx2
þ l

dpþðxÞ
dx

¼ 0: ð31Þ

The general solution of (31) is given by pþðxÞ ¼ Aþ Be�
2lx

r2 , and solving with the boundary conditions
p+(a) = 1 and p+(b) = 0 yields the following first hitting probability

pþðxÞ ¼
ðe�

2lx

r2 � e�
2lb

r2 Þ
ðe�

2la

r2 � e�
2lb

r2 Þ
The expression for P a

x;b immediately follows from setting P a
x;b ¼ 1� P b

x;a.

(ii) The moment generating function, c(x), of the first escape time from the interval [b, a], Tx,ba, satisfies the

following differential equation (see [8, p. 230]):
1

2
r2 d2cðxÞ

dx2
þ l

dcðxÞ
dx
¼ scðxÞ ð32Þ

with the boundary condition c(b) = c(a) = 1. The general solution of (32) is given by

cðxÞ ¼ Aexh1ðsÞ þ Bexh2ðsÞ; ð33Þ
where

h1ðsÞ ¼
�l�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ 2sr2

p
r2

h2ðsÞ ¼
�lþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ 2sr2

p
r2

Solving (33) with the boundary condition, we have
cðxÞ ¼ ebh1ðsÞþah2ðsÞ � eb½h1ðsÞþh2ðsÞ�

e2bh1ðsÞþah2ðsÞ � eah1ðsÞþb½h1ðsÞþh2ðsÞ�

� �
exh1ðsÞ þ ebh1ðsÞ � eah1ðsÞ

ebh1ðsÞþah2ðsÞ � ebh2ðsÞþah1ðsÞ

� �
exh2ðsÞ: ð34Þ

Hence,

EðT x;baÞ ¼ �c0ðxÞjs¼0 ¼ �
x
l
þ ða� bÞ

lðe�
2la

r2 � e�
2lb

r2 Þ
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2lx
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r2 � ae�
2lb

r2
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2la

r2 � e�
2lb

r2 Þ
�

Proof of Proposition 3.3

Using the probability density function given by Proposition 3.1 we can find the expected inventory carried
until the process escapes from strip [b, a] as follows:
Ax;ba ¼
Z 1

0

Z a

b
yfX ðtÞðy; t; xÞdy dt

¼
Z 1

0

Z a

b
ye

lðy�xÞ
r2

X1
n¼1

ane�knt sin
npðy � bÞ

a� b

� �
dy dt

¼
X1
n¼1

ane�
lx

r2

Z 1

0

e�kntF ðb; a; n; lÞdt ¼
X1
n¼1

an

kn
e�

lx

r2 F ðb; a; n; lÞ;
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where
F ðb; a; n; lÞ ¼
Z a

b
ye

ly

r2 sin
npðy � bÞ

a� b
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dy

¼ y
ða� bÞe
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Letting
K1 ¼
ða� bÞ

npð1þ K2
2Þ
;

K2 ¼
lða� bÞ

r2np
and observing that n takes integer values with sin(np) = 0, we have
F ðb; a; n; lÞ ¼ aK1e
la
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Proof of Eq. (19)

From Proposition 3.2 (i) we know
P r
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e�
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2lr

r2

e�
2lS

r2 � e�
2lr

r2

; P r
s;S ¼

e�
2ls

r2 � e�
2lr

r2

e�
2lS

r2 � e�
2lr

r2

; P S
s;r ¼

e�
2lS

r2 � e�
2ls

r2

e�
2lS

r2 � e�
2lr

r2

:

Hence, we can write the conditional expectation as
EðN xÞ ¼
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nP r
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