Contents lists available at ScienceDirect

## Journal of Pure and Applied Algebra

journal homepage: www.elsevier.com/locate/jpaa

# Essential cohomology for elementary abelian p-groups

## F. Altunbulak Aksu<sup>a</sup>, D.J. Green<sup>b,\*</sup>

<sup>a</sup> Department of Mathematics, Bilkent University, Bilkent, 06800, Ankara, Turkey <sup>b</sup> Mathematical Institute, Friedrich-Schiller-Universität Jena, 07737 Jena, Germany

#### ARTICLE INFO

Article history: Received 25 September 2008 Received in revised form 19 February 2009 Available online 17 May 2009 Communicated by M. Broué

MSC: Primary: 20J06 13A50 55S10

## ABSTRACT

For an odd prime p the cohomology ring of an elementary abelian p-group is polynomial tensor exterior. We show that the ideal of essential classes is the Steenrod closure of the class generating the top exterior power. As a module over the polynomial algebra, the essential ideal is free on the set of Mùi invariants.

© 2009 Elsevier B.V. All rights reserved.

OURNAL OF URE AND IPPLIED ALGEBRA

## 1. Introduction

Let *G* be a finite group and *k* a field whose characteristic *p* divides the order of *G*. A cohomology class  $x \in H^n(G, k)$  is called *essential* if its restriction  $\text{Res}_H(x)$  is zero for every proper subgroup *H* of *G*. The essential classes form an ideal, called the essential ideal and denoted by Ess(G). It is standard that restriction to a Sylow *p*-subgroup of *G* is a split injection (see for example Theorem XII, 10.1 of [1]), and so the essential ideal can only be non-zero if *G* is a *p*-group. Many *p*-groups have non-zero essential ideal, for instance the quaternion group of order eight. The essential ideal plays an important role and has therefore been the subject of many studies: two such being Carlson's work on the depth of a cohomology ring [2], and the cohomological characterization due to Adem and Karagueuzian of those *p*-groups whose order *p* elements are all central [3].

The nature of the essential ideal depends crucially on whether or not the *p*-group *G* is elementary abelian. If *G* is not elementary abelian, then a celebrated result of Quillen (Theorem 7.1 of [4]) implies that Ess(G) is a nilpotent ideal. By contrast, the essential ideal of an elementary abelian *p*-group contains non-nilpotent classes. Work to date on the essential ideal has concentrated on the non-elementary abelian case. In this paper we give a complete treatment of the outstanding elementary abelian case. As we shall recall in the next section, the case p = 2 is straightforward and well known. So we shall concentrate on the case of an odd prime *p*.

So let *p* be an odd prime and *V* a rank *n* elementary abelian *p*-group. We may equally well view *V* as an *n*-dimensional  $\mathbb{F}_p$ -vector space. Recall that the cohomology ring has the form

$$H^*(V, \mathbb{F}_p) \cong S(V^*) \otimes_{\mathbb{F}_p} \Lambda(V^*)$$

(1)

where the exterior copy of the dual space  $V^*$  is  $H^1(V, \mathbb{F}_p)$ , and the polynomial copy lies in  $H^2(V, \mathbb{F}_p)$ : specifically, the polynomial copy is the image of the exterior copy under the Bockstein boundary map  $\beta$ . Our first result is as follows:

**Theorem 1.1.** Let *p* be an odd prime and *V* a rank *n* elementary abelian *p*-group. Then the essential ideal Ess(*V*) is the Steenrod closure of  $\Lambda^n(V^*)$ . That is, Ess(*V*) is the smallest ideal in  $H^*(V, \mathbb{F}_p)$  which contains the one-dimensional space  $\Lambda^n(V^*) \subseteq H^n(V, \mathbb{F}_p)$  and is closed under the action of the Steenrod algebra.

\* Corresponding author.



E-mail addresses: fatma@fen.bilkent.edu.tr (F. Altunbulak Aksu), david.green@uni-jena.de (D.J. Green).

<sup>0022-4049/\$ –</sup> see front matter s 2009 Elsevier B.V. All rights reserved. doi:10.1016/j.jpaa.2009.04.016

Our second result concerns the structure of Ess(V) as a module over the polynomial subalgebra  $S(V^*)$  of  $H^*(V, \mathbb{F}_p)$ . It was conjectured by Carlson (Question 5.4 in [5]) – and earlier in a less precise form by Mùi [6] – that the essential ideal of an arbitrary *p*-group is free and finitely generated as a module over a certain polynomial subalgebra of the cohomology ring. In [7], the second author demonstrated finite generation, and for most *p*-groups of a given order was able to prove freeness as well: specifically the method works provided the group is not a direct product in which one factor is elementary abelian of rank at least two. Our second result states that Carlson's conjecture holds for elementary abelian *p*-groups too, and gives explicit free generators.

**Theorem 1.2.** Let p be an odd prime and V a rank n elementary abelian p-group. Then as a module over the polynomial part  $S(V^*)$  of the cohomology ring  $H^*(V, \mathbb{F}_p)$ , the essential ideal Ess(V) is free on the set of Mùi invariants, as defined in Definition 3.3.

Structure of the paper. In Section 2 we briefly cover the well-known case p = 2. We introduce the Mùi invariants in Section 3. After proving Theorem 1.2 in Section 4 we consider the action of the Steenrod algebra on the Mùi invariants in order to prove Theorem 1.1 in Section 5.

## 2. Elementary abelian *p*-groups and the case p = 2

The cohomology group  $H^1(G, \mathbb{F}_p)$  may be identified with the set of group homomorphisms  $Hom(G, \mathbb{F}_p)$ . This set is an  $\mathbb{F}_p$ -vector space, and – assuming that *G* is a *p*-group – the maximal subgroups of *G* are in bijective correspondence with the one-dimensional subspaces: the maximal subgroup corresponding to  $\alpha: G \to \mathbb{F}_p$  being ker( $\alpha$ ). Of course, the cohomology class  $\alpha \in H^1(G, \mathbb{F}_p)$  has zero restriction to the maximal subgroup ker( $\alpha$ ). Note that in order to determine Ess(*G*) it suffices to consider restrictions to maximal subgroups.

**Definition.** Denote by *L<sub>n</sub>* the polynomial

$$L_n(X_1,...,X_n) = \det \begin{vmatrix} X_1 & X_2 & \cdots & X_n \\ X_1^p & X_2^p & \cdots & X_n^p \\ \vdots & \vdots & \ddots & \vdots \\ X_1^{p^{n-1}} & X_2^{p^{n-1}} & \cdots & X_n^{p^{n-1}} \end{vmatrix} \in \mathbb{F}_p[X_1,...,X_n].$$

There is a well-known alternative description of  $L_n$ .

**Lemma 2.1.**  $L_n$  is the product of all monic linear forms in  $X_1, \ldots, X_n$ . So for an n-dimensional  $\mathbb{F}_p$ -vector space V we may define  $L_n(V) \in S(V^*)$  up to a non-zero scalar multiple by

$$L_n(V) = \prod_{[x] \in \mathbb{P}V^*} x.$$
<sup>(2)</sup>

**Proof.** First part: Here we call a linear form monic if the first non-zero coefficient is one. The right hand side divides the left. Both sides have the same total degree. And the coefficient of  $X_1 X_2^p X_3^{p^2} \cdots X_n^{p^{n-1}}$  is +1 in both cases. The second part follows.  $\Box$ 

Let *V* be an elementary abelian 2-group. Then  $H^*(V, \mathbb{F}_2) \cong S(V^*)$ , where the dual space  $V^*$  is identified with  $H^1(V, \mathbb{F}_2)$ . Pick  $x_1, \ldots, x_n$  to be a basis for  $H^1(V, \mathbb{F}_2)$ . The following is well-known:

**Lemma 2.2.** For an elementary abelian 2-group V, the essential ideal is the principal ideal in  $H^*(V, \mathbb{F}_2)$  generated by  $L_n(x_1, \ldots, x_n)$ .

Moreover, Ess(V) is the free  $S(V^*)$ -module on  $L_n(V)$ , and the Steenrod closure of this one generator.

**Proof.**  $L_n(V)$  is essential, because every non-zero linear form is a factor and every maximal subgroup is the kernel of a non-zero linear form. Now suppose that y is essential, and let  $x \in V^*$  be a non-zero linear form. Let  $U \subseteq V^*$  be a complement of the subspace spanned by x. So y = y'x + y'' with  $y' \in S(V^*)$  and  $y'' \in S(U)$ . Hence  $\text{Res}_H(y'') = 0$  for H = ker(x), as y is essential and  $\text{Res}_H(x) = 0$ . But the map  $\text{Res}_H: V^* \to H^*$  satisfies  $\text{ker}(\text{Res}_H) \cap U = 0$ , and so  $\text{Res}_H$  is injective on S(U). Hence y'' = 0, and x divides y. By unique factorization in  $S(V^*)$  it follows that  $L_n(V)$  divides y. So Ess(V) is the principal ideal generated by  $L_n(V)$ , and the free module on this one generator. Finally, the definition of the essential ideal means that it is closed under the action of the Steenrod algebra.  $\Box$ 

We finish off this section by recalling the action of the Steenrod algebra on the cohomology of an elementary abelian p-group in the case of an odd prime. So let p be an odd prime and V an elementary abelian p-group. Recall that the mod-p-cohomology ring is the free graded commutative algebra

 $H^*(V, \mathbb{F}_p) \cong \mathbb{F}_p[x_1, \ldots, x_n] \otimes_{\mathbb{F}_p} \Lambda(a_1, \ldots, a_n),$ 

where  $a_i \in H^1(V, \mathbb{F}_p)$ ,  $x_i \in H^2(V, \mathbb{F}_p)$ , and n is the rank of V. That is,  $a_1, \ldots, a_n$  is a basis of the exterior copy of  $V^*$ , and  $x_1, \ldots, x_n$  is a basis of the polynomial copy. The product  $a_1a_2 \cdots a_n \in H^n(V, \mathbb{F}_p)$  is a basis of the top exterior power  $\Lambda^n(V^*)$ . The Steenrod algebra  $\mathcal{A}$  acts on the cohomology ring, making it an unstable  $\mathcal{A}$ -algebra with  $\beta(a_i) = x_i$  and  $\mathcal{P}^1(x_i) = x_i^p$ . Observe that  $L_n(x_1, \ldots, x_n)$  is essential, for the same reason as in the case p = 2.

## 3. The Mùi invariants

Let *k* be a finite field and *V* a finite dimensional *k*-vector space. Consider the natural action of GL(V) on  $V^*$ . The Dickson invariants generate the invariants for the induced action of GL(V) on the polynomial algebra  $S(V^*)$ . But there is also an induced action on the polynomial tensor exterior algebra  $S(V^*) \otimes_k \Lambda(V^*)$ , and the Mùi invariants are SL(V)-invariants of this action: see Mùi's original paper [8] as well as Crabb's modern treatment [9].

We shall need several properties of the Mùi invariants. For the convenience of the reader, we rederive these from scratch: but see Mùi's papers [8,10] and Sum's work [11].

Notation. Often we shall work with the direct sum decomposition

$$H^*(V,\mathbb{F}_p) = \bigoplus_{r=0}^n N_r(V),$$

where n is the rank of V and we set

$$N_r(V) = S(V^*) \otimes_{\mathbb{F}_n} \Lambda^r(V^*).$$

Observe that restriction to each subgroup respects this decomposition. This means that the essential ideal is well-behaved with respect to this decomposition:

$$\operatorname{Ess}(V) = \bigoplus_{r=0}^{n} N_r(V) \cap \operatorname{Ess}(V) \,. \tag{3}$$

**Definition.** Recall that  $L_n(x_1, \ldots, x_n)$  is the determinant of the  $n \times n$ -matrix

$$C = \begin{pmatrix} x_1 & x_2 & \cdots & x_n \\ \vdots & \vdots & \ddots & \vdots \\ x_1^{p^{n-1}} & x_2^{p^{n-1}} & \cdots & x_n^{p^{n-1}} \end{pmatrix},$$

where  $C_{s,i} = x_i^{p^{s-1}}$  for  $1 \le s \le n$ . For each such *s*, define E(s) to be the matrix obtained from *C* by deleting row *s* and then prefixing  $\begin{pmatrix} a_1 & a_2 & \cdots & a_n \end{pmatrix}$  as new first row: so

$$\det E(s) = \sum_{i=1}^{n} (-1)^{i+1} \gamma_{s,i} a_i,$$

where  $\gamma_{s,i}$  is the determinant of the minor of *C* obtained by removing row *s* and column *i*.

Now define the Mùi invariant  $M_{n,s} \in H^*(V, \mathbb{F}_p)$  by  $M_{n,s} = \det E(s)$ . Note that our indexing differs from Mùi's: our  $M_{n,s}$  is his  $M_{n,s-1}$ .

Example. So 
$$M_{4,3} = \begin{vmatrix} a_1 & a_2 & a_3 & a_4 \\ x_1 & x_2 & x_3 & x_4 \\ x_1^p & x_2^p & x_3^p & x_4^p \\ x_1^{p^3} & x_2^{p^3} & x_3^{p^3} & x_4^{p^3} \end{vmatrix}$$
 and  $\gamma_{2,3} = \begin{vmatrix} x_1 & x_2 & x_4 \\ x_1^p & x_2^p & x_4^{p^2} \\ x_1^p & x_2^p & x_4^{p^2} \\ x_1^p & x_2^p & x_4^{p^3} \end{vmatrix}$ .

**Lemma 3.1.**  $M_{n,s} \in N_1(V) \cap Ess(V)$ .

**Proof.** By construction  $M_{n,s} \in N_1(V)$ . Restricting to a maximal subgroup of V involves killing a non-zero linear form on  $V^*$ : That is, one imposes a linear dependence on the  $a_i$  and consequently the same linear dependency on the  $x_i$ . So one obtains a linear dependency between the columns of E(s), meaning that restriction kills  $M_{n,s} = \det E(s)$ .  $\Box$ 

**Lemma 3.2.** 
$$Ess(V)^2 = L_n(V) \cdot Ess(V)$$
.

**Proof.** As  $L_n(V)$  is essential, the left hand side contains the right. Now let H be a maximal subgroup of V. Then  $H = \ker(a)$  for some non-zero  $a \in H^1(V, \mathbb{F}_p)$ . Let  $x = \beta(a) \in H^2$ . Observe that the kernel of restriction to H is generated by a, x. Suppose that f, g both lie in this kernel: then we may write f = f'a + f''x, g = g'a + g''x, and so  $fg = (f''g' \pm f'g'')ax + f''g''x^2$ , that is fg = xh for  $h = (f''g' \pm f'g'')a + f''g''x \in \ker \operatorname{Res}_H$ .

Since  $H^*(V, \mathbb{F}_p)$  is a free module over the unique factorization ring  $S(V^*)$ , this means that  $fg = L_n(V) \cdot y$  for some  $y \in H^*(V, \mathbb{F}_p)$ . So  $h = \frac{L_n(V)}{x} \cdot y$ . As  $\operatorname{Res}_H(h) = 0$  and  $\operatorname{Res}_H\left(\frac{L_n(V)}{x}\right)$  is a non-zero divisor, we deduce that  $\operatorname{Res}_H(y) = 0$ . So  $y \in \operatorname{Ess}(V)$ .  $\Box$ 

**Definition 3.3.** Let  $S = \{s_1, \ldots, s_r\} \subseteq \{1, \ldots, n\}$  be a subset with  $s_1 < s_2 < \cdots < s_r$ . In view of Lemmas 3.1 and 3.2 we may define the Mùi invariant  $M_{n,S} \in N_r(V) \cap Ess(V)$  by

$$M_{n,S} = \frac{1}{L_n(V)^{r-1}} M_{n,s_1} M_{n,s_2} \cdots M_{n,s_r}$$

Note in particular that  $M_{n,\emptyset} = L_n(V)$ .

Remark. Observe that

$$M_{n,S}M_{n,T} = \begin{cases} \pm L_n(V)M_{n,S\cup T} & \text{if } S \cap T = \emptyset; \\ 0 & \text{otherwise.} \end{cases}$$
(4)

#### 4. Joint annihilators

In this section we study the joint annihilators of the  $M_{n,S}$  with |S| = r as a means to prove Theorem 1.2.

**Lemma 4.1.** The joint annihilator of  $M_{n,1}, \ldots, M_{n,n}$  is  $N_n(V)$ .

**Proof.** The element  $a_1 ldots a_n$  is a basis for  $\Lambda^n(V)$  and is clearly annihilated by each  $M_{n,s}$ . Conversely, suppose that  $y \neq 0$  is annihilated by every  $M_{n,s}$ . As  $M_{n,s}N_r(V) \subseteq N_{r+1}(V)$  we may assume without loss of generality that  $y \in N_r(V)$  for some r. If  $r \leq n - 1$ , then for some i we have  $0 \neq a_i y \in N_{r+1}(V)$ . So as  $a_i y$  also lies in the joint annihilator, it will suffice by iteration to eliminate the case  $y \in N_{n-1}(V)$ .

Suppose therefore that  $0 \neq y \in N_{n-1}(V)$  lies in the joint annihilator. Denote by K the field of fractions of  $S(V^*)$ , and let  $W = K \otimes_k A^{n-1}(V^*)$ . Each  $M_{n,s}$  induces a linear form  $\phi_s: W \to K$  given by  $\phi_s(w)a_1 \cdots a_n = M_{n,s}w$ . By assumption,  $y \neq 0$  lies in the kernel of every  $\phi_s$ . A basis for W consists of the elements  $a_1 \cdots \widehat{a_r} \cdots a_n$  for  $1 \leq r \leq n$ , where the hat denotes omission. Now,

$$M_{n,s} \cdot a_1 \cdots \widehat{a_r} \cdots a_n = (-1)^{r+1} \gamma_{s,r} a_r \cdot a_1 \cdots \widehat{a_r} \cdots a_n,$$

and so

$$\phi_{s}(a_{1}\cdots \widehat{a_{r}}\cdots a_{n})=\gamma_{s,r}.$$

Now consider the matrix  $\Gamma \in M_n(K)$  given by  $\Gamma_{s,r} = \gamma_{s,r}$ . If one transposes and then multiplies the *i*th row by  $(-1)^i$  and the *j*th column by  $(-1)^j$ , then one obtains the adjugate matrix of *C*. As the determinant of *C* is  $L_n(V)$  and in particular non-zero, it follows that det  $\Gamma \neq 0$ .

So by construction of  $\Gamma$ , the  $\phi_s$  form a basis of  $W^*$ . So their common kernel is zero, contradicting our assumption on *y*.  $\Box$ 

**Corollary 4.2.** The joint annihilator of  $\{M_{n,S}: |S| = r\}$  is  $\bigoplus_{s>n-r+1} N_s(V)$ .

**Proof.** By induction on r, Lemma 4.1 being the case r = 1. As  $M_{n,S} \in N_{|S|}(V)$  and  $N_r(V)N_s(V) \subseteq N_{r+s}(V)$ , the annihilator is at least as large as claimed. Now suppose that  $y \in H^*(V, \mathbb{F}_p)$  does not lie in  $\bigoplus_{s \ge n-r+1} N_s(V)$ . We may therefore write

$$y = \sum_{s=0}^{n} y_s$$

with  $y_s \in N_s(V)$ , and we know that  $s_0 \le n - r$  for  $s_0 = \min\{s \mid y_s \ne 0\}$ . As  $y_{s_0} \ne 0$  and  $y_{s_0} \notin N_n(V)$ , Lemma 4.1 tells us that  $y_{s_0}M_{n,t} \ne 0$  for some  $1 \le t \le n$ . As  $y_{s_0}M_{n,t} \in N_{s_0+1}(V)$ , we conclude that  $yM_{n,t}$  lies outside  $\bigoplus_{s \ge n-r+2} N_s(V)$ . So the inductive hypothesis means that there is some T with |T| = r - 1 and  $yM_{n,t}M_{n,T} \ne 0$ . So  $yM_{n,S} \ne 0$  for  $S = T \cup \{t\}$  and |S| = r: Note that  $t \in T$  is impossible.  $\Box$ 

**Corollary 4.3.** Every  $M_{n,S}$  is non-zero. For  $S = \underline{n} = \{1, \ldots, n\}$  we have

 $M_{n,n}$  is a non-zero scalar multiple of  $a_1a_2 \cdots a_n$ .

**Proof.** Observe that  $M_{n,\underline{n}}$  is a scalar multiple of  $a_1 \cdots a_n$  for degree reasons. The case r = n of Corollary 4.2 says that  $1 \in N_0(V)$  does not annihilate  $M_{n,n}$  and therefore  $M_{n,n} \neq 0$ . But from Eq. (4) we see that every  $M_{n,S}$  divides  $L_n(V)M_{n,n} \neq 0$ .

**Proof of Theorem 1.2.** In view of Eq. (3) it suffices to show that for each *r* the Mùi invariants  $M_{n,S}$  with |S| = r are a basis of the  $S(V^*)$ -module  $N_r(V) \cap \text{Ess}(V)$ . We observed in Definition 3.3 that these  $M_{n,S}$  lie in this module.

So suppose that  $y \in N_r(V) \cap Ess(V)$ . We should like there to be  $f_S \in S(V^*)$  such that

$$y = \sum_{|S|=r} f_S M_{n,S}.$$
(5)

Note that for  $T = \underline{n} - S$  we have  $M_{n,S}M_{n,T} = \pm L_n(V)M_{n,\underline{n}}$  by Eq. (4). Define  $\varepsilon_S \in \{+1, -1\}$  by  $M_{n,S}M_{n,T} = \varepsilon_S L_n(V)M_{n,\underline{n}}$ . So Eq. (5) implies that we should define  $f_S$  by

$$f_{S}M_{n,\underline{n}}=\frac{1}{L_{n}(V)}\varepsilon_{S}yM_{n,T},$$

since  $T \cap S' \neq \emptyset$  and therefore  $M_{n,S'}M_{n,T} = 0$  for all  $S' \neq S$  with |S| = r. Note that this definition of  $f_S$  makes sense, as  $yM_{n,T}$  lies in both  $N_r(V)N_{n-r}(V) = N_n(V)$  and  $L_n(V)$  Ess(V), the latter inclusion coming from Lemma 3.2.

With this definition of  $f_S$  we have

、

$$\left(y - \sum_{|S|=r} f_S M_{n,S}\right) M_{n,T} = 0$$

for every |T| = n - r. As  $y - \sum_{|S|=r} f_S M_{n,S}$  lies in  $N_r(V)$ , this means that  $y = \sum_{|S|=r} f_S M_{n,S}$  by Corollary 4.2.

Finally we show linear independence. Suppose that  $g_S \in S(V^*)$  are such that  $\sum_{|S|=r} g_S M_{n,S} = 0$ . Pick one S and set  $T = \underline{n} - S$ . Multiplying by  $M_{n,T}$ , we deduce that  $g_S = 0$ .  $\Box$ 

## 5. The action of the Steenrod algebra

To prepare for the proof of Theorem 1.1 we shall study the operation of the Steenrod algebra on the Mùi invariants.

#### Lemma 5.1.

$$\beta(M_{n,s}) = \begin{cases} L_n(V) & s = 1\\ 0 & otherwise \end{cases} \quad \beta(L_n(V)) = 0.$$
(6)

For  $0 \le s \le n - 2$  we have:

$$\mathcal{P}^{p^{s}}(M_{n,r}) = \begin{cases} M_{n,r-1} & r = s+2\\ 0 & otherwise \end{cases} \quad \mathcal{P}^{p^{s}}(L_{n}(V)) = 0.$$

$$\tag{7}$$

**Proof.** One sees Eq. (6) by inspecting the determinants in the definition of  $M_{n,s}$  and  $L_n(V)$ . The proof of Eq. (7) is also based on an inspection of these determinants. Recall that  $\mathcal{P}^m(a_i) = 0$  for every m > 0, and that  $\mathcal{P}^m(x_i^{p^s})$  is zero too except for  $\mathcal{P}^{p^s}(x_i^{p^s}) = x_i^{p^{s+1}}$ . We may use the Cartan formula

$$\mathcal{P}^m(xy) = \sum_{a+b=m} \mathcal{P}^a(x) \mathcal{P}^b(y)$$

to distribute  $\mathcal{P}^{p^s}$  over the rows of the determinant. As  $p^s$  cannot be expressed as a sum of distinct smaller powers of p, we only have to consider summands where all of  $\mathcal{P}^{p^s}$  is applied to one row and the other rows are unchanged. This will result in two rows being equal unless it is the row consisting of the  $x_i^{p^{s+1}}$  that is missing.  $\Box$ 

**Lemma 5.2.** Let  $S = \{s_1, ..., s_r\}$  with  $1 \le s_1 < s_2 < \cdots < s_r \le n$ .

- 1. Suppose that  $1 \notin S$ . Then  $M_{n,S} = \beta(M_{n,S\cup\{1\}})$ . 2.  $L_n(V)^{r-1}\mathcal{P}^m(M_{n,S}) = \mathcal{P}^m(M_{n,s_1}\cdots M_{n,s_r})$  for each  $m < p^{n-1}$ . 3. For  $2 \le u \le n$  set  $X = \{s \in S \mid s \le u\}$  and  $Y = \{s \in S \mid s > u\}$ . Then  $L_n(V)\mathcal{P}^{p^{u-2}}(M_{n,S}) = \mathcal{P}^{p^{u-2}}(M_{n,X}) \cdot M_{n,Y}$ .
- 4. For  $1 \le r \le n$  and  $0 < m < p^{n-1}$  one has  $\mathcal{P}^m(M_{n,\{1,...,r\}}) = 0$ .
- 5. For  $2 \le u \le n$  one has  $\mathcal{P}^{p^{u-2}}(M_{n,\{1,...,u-2,u\}}) = M_{n,\{1,...,u-1\}}$ .

Proof. Recall that

$$L_n(V)^r M_{n,S} = L_n(V) M_{n,S_1} \cdots M_{n,S_r} .$$

The first two parts follow by applying Eqs. (6) and (7).

Recall that by the Adem relations each  $\mathcal{P}^m$  may be expressed in terms of the  $\mathcal{P}^{p^s}$  with  $p^s \leq m$ . So the third part follows from the second, since we deduce from Eq. (7) that  $\mathcal{P}^m(M_{n,s}) = 0$  if  $0 < m \le p^{u-2}$  and s > u.

Fourth part: By induction on r. Follows for r = 1 from the Adem relations and Eq. (7). Inductive step: Enough to consider  $\mathcal{P}^{p^s}$  for  $0 \le s \le n-2$ . By the inductive hypothesis and a similar argument to the third part, deduce that

$$L_{n}(V)\mathcal{P}^{p^{s}}(M_{n,\{1,...,r\}}) = M_{n,\{1,...,r-1\}}\mathcal{P}^{p^{s}}(M_{n,r})$$

But this is zero by Eq. (7), since  $M_{n,\{1,...,r-1\}}M_{n,r-1} = 0$ .

Fifth part: Using the fourth part and an argument similar to the third, deduce that

$$L_n(V)\mathcal{P}^{p^{u-2}}(M_{n,\{1,\dots,u-2,u\}}) = M_{n,\{1,\dots,u-2\}}\mathcal{P}^{p^{u-2}}(M_{n,u}) = M_{n,\{1,\dots,u-2\}}M_{n,u-1}$$

but this is  $L_n(V)M_{n,\{1,\ldots,u-1\}}$ .  $\Box$ 

**Proof of Theorem 1.1.** We shall show that for every  $M_{n,S}$  there is an element  $\theta$  of the Steenrod algebra with  $M_{n,S} = \theta(M_{n,\underline{n}})$ . We do this by decreasing induction on r = |S|. It is trivially true for r = n, so assume now that r < n. Amongst the S with |S| = r we shall proceed by induction over *u*, the smallest element of n - S. So

 $S = \{1, \ldots, u - 1\} \cup Y$  with s > u for every  $s \in Y$ .

Part 1 of Lemma 5.2 covers the case u = 1, so assume that u > 2. Set  $T = \{1, \ldots, u - 2, u\}$ . We complete the induction by showing that  $M_{n,S} = \mathcal{P}^{p^{u-2}}(M_{n,T\cup Y})$ . Part 3 of Lemma 5.2 gives us

$$L_n(V)\mathcal{P}^{p^{u-2}}(M_{n,T\cup Y})=\mathcal{P}^{p^{u-2}}(M_{n,T})M_{n,Y}$$

But  $\mathcal{P}^{p^{u-2}}(M_{n,T}) = M_{n,\{1,\dots,u-1\}}$ , by Part 5 of that lemma. So  $\mathcal{P}^{p^{u-2}}(M_{n,T\cup Y}) = M_{n,S}$ , as claimed. 

**Remark.** Theorem 1.2 shows that the  $S(V^*)$ -module generated by the Mùi invariants  $M_{n,S}$  is the essential ideal and therefore closed under the action of the Steenrod algebra. One may however see more directly that this  $S(V^*)$ -module is Steenrod closed under the action of the steelinod algebra. One may noweer see more uncerty that this  $S(V^{-})$  module is steelinod algebra. One may noweer see more uncerty that this  $S(V^{-})$  module is steelinod algebra. One may noweer see more uncerty that this  $S(V^{-})$  module is steelinod algebra. One may noweer see more uncerty that this  $S(V^{-})$  module is steelinod algebra. One may noweer see more uncertained algebra. So show that  $\mathcal{P}^{p^{n-1}}(M_{n,s})$  lies in our  $S(V^{*})$ -module. Now  $\mathcal{P}^{p^{n-1}}(M_{n,n}) = 0$  by the unstable condition, so suppose s < n. Recall that  $M_{n,s}$  is a determinant, the last row of the matrix having entries  $x_i^{p^{n-1}}$ . So applying  $\mathcal{P}^{p^{n-1}}$  replaces these entries by  $x_i^{p^n}$ . But it is well known that  $x_i^{p^n}$  is an  $S(V^*)$ -linear combination of the  $x_i^{p^r}$  for  $r \le n-1$ , and that the coefficients are independent of *i*: this is the "fundamental equation" in the sense of [12], and the coefficients are the Dickson invariants  $c_{n,r}$  in  $S(V^*)$ . Applying  $S(V^*)$ linearity of the determinant in the bottom row of the matrix, one deduces that  $\mathcal{P}^{p^{n-1}}(M_{n,s})$  is an  $S(V^*)$ -linear combination of the  $M_{n,r}$ .

## Acknowledgements

The first author was supported by a Ph.D. research scholarship from the Scientific and Technical Research Council of Turkey (TÜBİTAK-BAYG). The first author wishes to express her gratitude to her research supervisor Prof. Ergün Yalcın for advice and guidance. Both authors thank him for suggesting this problem.

#### References

- [1] H. Cartan, S. Eilenberg, Homological algebra, Princeton University Press, Princeton, NJ, 1956.
- [2] J.F. Carlson, Depth and transfer maps in the cohomology of groups, Math. Z. 218 (3) (1995) 461-468.
- [3] A. Adem, D. Karagueuzian, Essential cohomology of finite groups, Comment. Math. Helv. 72 (1) (1997) 101–109.
- [4] D. Quillen, The spectrum of an equivariant cohomology ring: I, Ann. Math. 94 (2) (1971) 549-572.
- [5] J.F. Carlson, Problems in the calculation of group cohomology, in: P. Dräxler, G.O. Michler, C.M. Ringel (Eds.), Computational Methods for Representations of Groups and Algebras (Essen, 1997), Birkhäuser, Basel, 1999, pp. 107–120.
- [6] H. Mùi, The mod p cohomology algebra of the extra-special group  $E(p^3)$ , unpublished essay (1982).
- [7] D.J. Green, The essential ideal is a Cohen–Macaulay module, Proc. Amer. Math. Soc. 133 (11) (2005) 3191–3197.
- [9] J. Mùi, Modular invariant theory and cohomology algebras of symmetric groups, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 22 (3) (1975) 319–369.
   [9] M.C. Crabb, Dickson–Mui invariants, Bull. London Math. Soc. 37 (6) (2005) 846–856.
- [10] H. Mùi, Cohomology operations derived from modular invariants, Math. Z. 193 (1) (1986) 151-163.

[12] C. Wilkerson, A primer on the Dickson invariants, in: H.R. Miller, S.B. Priddy (Eds.), Proceedings of the Northwestern Homotopy Theory Conference (Evanston, Ill., 1982), in: Contemporary Math., vol. 19, Amer. Math. Soc., Providence, RI, 1983, pp. 421–434. Revised version: URL http://hopf.math. purdue.edu//Wilkerson-80s/dickson.pdf.

(8)

<sup>[11]</sup> N. Sum, Steenrod operations on the modular invariants, Kodai Math. J. 17 (3) (1994) 585–595. workshop on Geometry and Topology (Hanoi, 1993).