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Abs t r ac t - -We  prove a global error bound result on the quadratic perturbation of linear programs. 
The error bound is stated in terms of function values. (~) 2002 Elsevier Science Ltd. All rights re- 
served. 
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The quadratic perturbation of linear programs is intimately related to the quadratic penalty 
functions applied to the linear program. More precisely, the quadratic perturbation is obtained in 
the primal problem if a quadratic penalty function is applied to the dual. The above observation 
was made and pursued in a series of papers by Mangasarian [1,2] and Li [3]. The application of 
quadratic penalty functions to linear programs was also studied by Pmar [4]. In a recent paper [5], 
Tseng derived a local error bound result for perturbation of linear programs. In the present note, 
we give a simple, global error bound result in Theorem 1 for the quadratic perturbation of linear 
programs. The result is inspired by early work of Giiler [6] on the global convergence estimates 
of augmented Lagrangian algorithms on linear programs. It is given in terms of function values. 

Consider the linear program 

min {c T x l A x  = b,x >_ 0} (1) 
x 

with its dual 
max {--bTy I ATy  + c  > 0}. (2) 

y 
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We use the quadratic penalty function 

• (y, t) =-- tbYy + ~r T (y)W(y)r(y) ,  (3) min 
Y 

where t is a positive scalar, W(y)  is a diagonal matr ix  with diagonal entries defined as 

f 0, i f r i (y )  >_ O, W.(y) l 1, ifr~(y) < O, 

and r(y) = A T y  + c. The dual of this problem is precisely the perturbat ion problem 

min CTX + ~ x x [Ax  = b, x > 0 . (4) 

A solution Yt of the quadratic penalty problem (3) satisfies the following identity: 

( A W ( y t ) A  T) Yt = - A W ( y t ) c  - tb. (5) 

Now, it was shown in [4] tha t  

W(yt)r(y t )  W(yt )  (ATyt  + c) 
X t --  _~. 

t t 

solves the per turbat ion problem (4) if Yt solves the quadratic penalty problem (3), and tha t  W(yt )  
is constant for any yt which is a minimizer of O(., t). Pmar  [4] also shows that  W(yt )  behaves 
as a piecewise linear function of t and there exists t* > 0 such that  W(yt) remains constant 
for 0 < t  < t * .  

The main result of this note is the following theorem. 

THEOREM 1. Let t* > 0 be such that W(y t )  remains constant for 0 < t < t*. For any t > 0 such 
that t > t*, the following bound holds: 

cTxt --OJ* = O (-~ -- ~ )  , (6) 

where xt solves the perturbation problem (4), and w* is the optimal walue of prob]em (1). 

We will give the proof of the theorem after establishing some useful facts. We use N ( B )  
and R(B)  to denote the null space and range of a matr ix  B, respectively. 

LEMMA 1. I f  the system B x  = b is consistent, then b E R ( B B T ) .  

PROOF. Consider the problem min{[]x[[ 2 : B x  = b}. The optimal solution satisfies x* = B T y  
for some y, and thus, b = Bx* = B B T y  E R ( B B T ) .  | 

Incidentally, Lemma 1 proves that  R(B)  = R ( B B  T) for any matrix B. 

LEMMA 2. ITU = V -- W such that v and w are orthogonal, then uTw = --[[W[[ 2. 

The proof of this lemma is trivial, and is therefore omitted. The following lemma is a s tandard 
result in penalty methods, which we include for completeness. 

LEMMA 3. cTxt iS decreasing, that  is i f0  < tl  < t2, then c T x t l  <_ CTZt2. 

PROOF. Suppose t2 > tl  > 0. One has 

~2 ~2 cTxt2 "Jr -~ Ilxt~ II 2 < cTz t ,  + "~" I lxt,  II 2 

t l  
c-Fxt, + ~ IIx~, II 2 ~< cTx~ + -- IIx~ It 2 
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Divide the inequalities by 1/t2 and 1 / t l ,  respectively. The proof is completed by adding the 
resulting inequalities and simplifying the results. | 

Now, equipped with these facts, we can give the proof of Theorem 1. We can write Wt = W ( y t ) ,  
without ambiguity. Since xt  = - -Wt(  A T yt 4- c) / t  and A x t  = b, 

A W t  (ATy t  + c) = - tb .  (7) 

Thus, b E R ( A W t ) ,  and Lemma 1 implies that  A W t ( A W t ) T d  = b for some d. Since W 2 = Wt ,  
we have A W t A T d  = b. Substituting this in equation (7) and setting 

fit = Yt + t d (8) 

gives 
AWt (,WtATfit + Wtc) ---- O, 

that  is, WtATf i t  + Wtc  e N ( A W T ) .  Since W t A T # t  e R ( W t A  T) = N ( A W t )  -L, we see that  

Wtc = (WtA T fit -4- Wtc) - WtA T tjt 

(9) 

(lO) 

is an orthogonal decomposition of Wtc  onto N ( A W t )  and its orthogonal complement R ( W t A T ) .  
Suppose now that  t2 > tl > 0 such that  Wt2 = Wt~ := W. Then, using the notation 

u T v  = (u, v), we have 

1 <c,W(ATyt l  4-C)> 1 <c,W(ATyt,+c))4-~l o < ( c ,  x t ,  - z , ~ )  = -~ 

( 1  1)ilWcll = l ( c  , W A T y t 2 > + l  = ~1 -- ~2 -- ~2 ~1 <c'WATytl>" 
(11) 

Now, we have 

1 <Wc, WATy t , )4 -  1 <Wc, WATyt l  > 
t 2  

= --~21 (Wc, WATfit2} -~- -~11 <Wc, WAT~t ,  ) 

1 [[WAT#t2112 1 = I l w A T f i t ' l l  
(12) 

where the first equality comes from (8), and the second one from (10) and Lemma 2. 
Note that  (9) implies that  u :-- Yt2 - Yt, satisfies A W A T u  = O. But, then 0 = u T A W A T u  = 

[[WATu[[ 2. Thus, W A T u  ---- O. Then, WATfh2  = W A T ~ t , .  This shows that  the quantity in (12) 
is nonpositive. Thus, i l l )  reduces to 

(1 1) 
0 ___< cTxt2 -- cTxt, ___< ~1 ~ IIc112" (13) 

If t~ > t2 > t l  > t~ where t~ and t~ are consecutive breakpoints, then Wt2 = Wtl, and inequal- 
ity (13) applies. Now, xt is a minimizer of the optimization problem (4). It is easy to verify that  
tha t  xt is the projection of the vector - c / t  on the feasible set F := {x : A x  -- b, x ~ 0}, that  
is, xt is the solution to the problem min {[Ix + (c/t)l  I : x E F} .  The projection operator onto 
a convex set is nonexpansive, so that  Hxt2 - x t l H  <- (1 / t l  - 1/t2)[[c[[. This proves that  xt is a 
continuous function o f t  when t > 0. Consequently, we see that  (13) also holds when t2 and tt are 
replaced by t~ and t~, respectively. Since cTxt .  = w* (in fact cTxt  = W* for all t E (0, t*], [1,2,4]), 
where w* is the optimal value of the original linear program, the proof is completed. 

Interestingly Giiler [6] first gives a global convergence rate estimate of (9(1/ k-1 ~]~=0 Ai) for the 
augmented Lagrangian algorithm, where Ai is the penalty parameter. Then he modifies the 
multiplier iteration and sharpens the bound to (9((1/~-~_~1 v ~ ) 2 ) .  It is interesting that  the 
bound we obtain in the theorem is also linear in the inverse of t. 
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