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Abstract

The interest for multimedia database management systems has grown rapidly due to the need for the storage of huge volumes of

multimedia data in computer systems. An important building block of a multimedia database system is the query processor, and a

query optimizer embedded to the query processor is needed to answer user queries efficiently. Query optimization problem has been

widely studied for conventional database systems; however it is a new research area for multimedia database systems. Due to the

differences in query processing strategies, query optimization techniques used in multimedia database systems are different from

those used in traditional databases. In this paper, a query optimization strategy is proposed for processing spatio-temporal queries

in video database systems. The proposed strategy includes reordering algorithms to be applied on query execution tree. The per-

formance results obtained by testing the reordering algorithms on different query sets are also presented.

� 2003 Elsevier Inc. All rights reserved.
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1. Introduction

The interest for Multimedia Database Management
Systems (MDBMSs) has grown rapidly with the ad-

vances in computer technology. The research on con-

tent-based image retrieval by low-level features (color,

shape and texture) and keywords (Chang and Fu, 1980;

Flickner et al., 1995) has progressed in time towards

video databases dealing with spatio-temporal and

semantic features of video data. Some video database

systems such as VideoQ (Chang et al., 1997), KMED
(Chu et al., 1995), QBIC (Flickner et al., 1995) and

OVID (Oomoto and Tanaka, 1993) were implemented.

Querying video objects by motion properties has also
qThis work is supported by the Scientific and Research Council of

Turkey (T €UB_ITAK) under Project Code 199E025.
*Corresponding author. Tel.: +90-312-290-1386; fax: +90-312-266-

4047.

E-mail addresses: gunel@cs.uwaterloo.ca (G. €Unel), mehmet.don-

derler@asu.edu (M.E. D€onderler), oulusoy@cs.bilkent.edu.tr (Ö. Ul-
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been studied (Nabil et al., 2001; Guting et al., 2000; Li

et al., 1997; Sistla et al., 1997).

Building blocks for MDBMSs are multimedia data
model, multimedia storage management, query inter-

face, and query processing and retrieval. Data models

used in MDBMSs are different from those used in

conventional DBMSs; therefore, new modeling tech-

niques are required to represent the semantics of mul-

timedia data. Besides, a multimedia storage manager is

needed and storage devices capable of storing large

volumes of data must be supported to achieve better
performance. Query interface in a multimedia database

system must enable the user to construct well-defined

queries easily. Query processing and retrieval is also

important since providing powerful querying facilities

on multimedia data is a very crucial issue. The con-

ventional query paradigm of traditional database sys-

tems only deals with exact queries on conventional

types of data but querying multimedia databases re-
quires additional techniques to support multimedia

data types, such as image, audio and video. Extensions

to the conventional query languages are required to
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deal with specific requirements of multimedia data. In

addition, different query optimization techniques are

also needed.

This paper is concerned with the spatio-temporal

queries in video databases. We can consider video data

as a set of frames, containing a set of objects in each
frame. Objects of each frame have some spatial rela-

tionships and they change their locations and their rel-

ative positions with respect to each other in time.

Because of this, spatial and temporal relationships in a

video should not be considered separately; instead,

spatio-temporal relationships need to be taken care of

together. Spatio-temporal relationships constitute the

content of video data and they are used to support
content-based retrieval of data in multimedia databases.

Content-based retrieval using spatio-temporal relation-

ships is one of the most important differences between

multimedia and traditional databases.

In our work, we focus on optimization of the queries

that involve spatio-temporal relationships in video data-

bases. The query optimization module of a database

system is one of the most important parts in determining
the performance of the system. The input to this module

is some internal representation of a query given by the

user. This representation is the query tree in our case.

The aim of query optimization is to select the most

efficient strategy to access the relevant data and answer

the query. Let S be the set of all possible strategies

(query trees) that can be used to answer a given query.

Each member s of S has a cost cðsÞ. The goal of an
optimization algorithm is to find a member of S that has

the minimum cost. In this paper, we propose an efficient

query optimization strategy for spatio-temporal queries

in video databases. Our work concentrates on reorder-

ing query trees of spatio-temporal queries in a video

database system to achieve the minimum cost. We

propose algorithms used for reordering query trees. The

basic idea with the optimization algorithms is to change
the processing order of subqueries contained in the

query tree in order to execute the parts that are more

selective (i.e., result in fewer frames and/or objects) first.

Two types of reorderings are applied on query trees to

achieve more efficient processing of queries: (1) internal

node reordering, which reconstructs the query tree by

reordering the children of internal nodes, and (2) leaf

node reordering, which restructures the query contents of
the leaf nodes of the query tree. The query optimization

algorithms have been implemented as a part of the query

processor of a video database management system,

BilVideo (D€onderler et al., 2000, 2002a,b) and tested

using sample videos.

The remainder of the paper is organized as follows. In

Section 2, related work on multimedia query optimiza-

tion is discussed. The video database system, into which
query optimization module is integrated, is described in

Section 3. In Section 4, our query optimization algo-
rithms are presented. Performance results are discussed

in Section 5. Conclusions and future research directions

are given in Section 6.
2. Related work

Basic principles of query optimization in database

systems are explained in (Jarke and Koch, 1984). In

their paper, a wide variety of approaches are proposed

that include logic-based and semantic transformations,

fast implementation of basic operations, and combina-

torial or heuristic algorithms for generating alternative

access plans and choosing among them. Nonstandard
query optimization issues are also discussed in the

paper. According to Jarke and Koch, the goals of query

transformation are standardization, simplification, and

amelioration. The transformation rules for the general

query expressions referenced in the paper are also valid

for our query expressions.

Chaudhuri (1998) focuses primarily on the optimi-

zation of SQL queries in relational database systems.
The paper discusses the System-R optimization frame-

work, search space that is considered by optimizers, cost

estimation and enumeration of the search space. The

basic cost estimation framework in System-R uses sta-

tistical summaries of data that have been stored. The

idea of collecting statistical summaries for cost estima-

tion is also used in our query optimization strategy.

Garofalakis (1998) studied query scheduling and
optimization in parallel and multimedia databases. He

developed a multi-dimensional framework and provably

near-optimal algorithms for scheduling both time-

shared and space-shared resources in hierarchical and

shared-nothing architectures. Garofalakis elaborates on

the areas of resource scheduling for composite multi-

media objects, on-line admission control for multimedia

databases, and scheduling support for periodic models
of user service. Our optimization method, on the other

hand, is based on finding an optimal query plan rather

than using resource scheduling on the architecture that

stores the database.

Atnafu et al. (2001) presented similarity-based oper-

ators and query optimization for multimedia database

systems. They focused on the management of content-

based image databases. Currently, available content-
based image retrieval systems commonly search for the

most similar images from a set of images for a given

single query image or a feature vector representation of

an image. Atnafu et al. introduced the most needed

similarity-based operations, studied their properties,

formalized the use of them, and used these as a basis for

a similarity-based query optimization for image data-

base systems. Their paper defines the similarity-based
selection and similarity-based join operations. Similar-

ity-based query optimization is based on the algebraic
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Fig. 1. BilVideo database system architecture.
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rules on these similarity-based operations. Our method

also uses the algebraic rules on relational operators to

reorder the query tree and find an optimal query exe-

cution plan. However, we work on video databases ra-

ther than image databases. Our query language queries

videos, segments of videos or values of variables for
given spatio-temporal relations on objects, using fact

bases created for each video in the database, which is

significantly different from the query language of a

content-based image retrieval system. Hence, we do not

use similarity-based operations.

The most relevant work to ours on query optimiza-

tion in multimedia databases is by Soffer and Samet

(1999), which presents optimization methods for pro-
cessing of pictorial queries specified by pictorial query

trees. The optimization strategy proposed in their work

for computing the result of the pictorial query tree uses

the method of changing the order of processing indi-

vidual query images in order to execute the parts that

are more selective. The selectivity of a pictorial query is

based on matching selectivity, contextual selectivity, and

spatial selectivity. Matching and contextual selectivity
are computed using the statistics stored as histograms in

the database that indicate the distribution of classifica-

tions and certainty levels in the images. These histo-

grams are constructed when populating the database.

Selectivity of an individual pictorial query (leaf) is

computed by combining these three selectivity factors.

The query language used in their system has different

characteristics from the query language we use. Their
query language includes only spatial relations in the

pictorial query tree and they reorder the tree according

to the statistics stored for these spatial relations. Our

query language has more complex features, enabling the

user to query spatio-temporal relations that will be de-

scribed in the next section. In the query optimization

module of our system, fact base statistics are used to

reorder spatial relations. In addition to this, reordering
of internal nodes that contain operators, is also pro-

vided.

Mahalingam and Candan (2001) propose techniques

for performing query optimization in different types of

databases, such as multimedia and Web databases,

which rely on top-k predicates. Top-k predicates are the

k predicates that return the most relevant portion of all

possible results. They propose an optimization model
that takes into account different binding patterns asso-

ciated with query predicates and considers the variations

in the query result size, depending on the execution

order. Their optimization model assigns a value (to be

minimized) to all partial or complete plans in the search

space. It also determines the output size of the data

stream for every operator and predicate in the plan.

Hence, the proposed optimization algorithm tries to find
the best plan considering the output size of the data

stream for operators and predicates, which is also used
in our optimization algorithm. The major difference of

their optimization algorithm from ours is that the

number of query results can also change depending on

the query execution order in their work, whereas it is

independent of the query execution order in our work.
3. BilVideo: A Video DBMS

In this section, a video database management system,

BilVideo (D€onderler et al., 2000, 2002a,b) to which the

work in this paper has been integrated, is described.

BilVideo is a video database management system that

supports spatio-temporal, semantic and low-level (color,
shape and texture) queries on video data. A spatio-

temporal query may contain any combination of spatial,

temporal, object-appearance, external-predicate, trajec-

tory-projection and similarity-based object trajectory

conditions. The system handles spatio-temporal queries

using a knowledge base, which consists of a fact base

and comprehensive set of rules implemented in Prolog,

while utilizing an object-relational database to respond
to semantic (keyword, event/activity, and category-

based), color, shape and texture video queries.

3.1. BilVideo System Architecture

Fig. 1 illustrates the overall architecture of BilVideo.

The system is built on a client–server architecture and

the users access the video database on the Internet
through its visual query interface developed as a Java

client Applet.

Query processor lies in the heart of the system. It is

responsible for answering user queries in a multi-user

environment. Query processor communicates with the

object-relational database Oracle 1 and the knowledge

base. Semantic data is stored in the Oracle database and

fact-based meta data is stored in the knowledge base.
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Video data and raw video data are stored separately.

Semantic properties of videos used for keyword, event/

activity and category-based queries on video data are

stored in the feature database. These features are gener-

ated and maintained by a video annotator tool. The

knowledge base is used to answer spatio-temporal que-
ries. The facts base is generated by the fact-extractor tool.

3.2. BilVideo query language

The query language of BilVideo has four basic

statements for retrieving information:

select video from all where condition;

select video from videolist where condi-

tion;

select segment from range where condi-

tion;

select variable from range where condi-

tion;

The target of a query is specified in the select

clause. A query may return videos (video), segments of

videos (segment), or values of variables (variable) with/

without segments of videos where the values are ob-

tained. Variables might be used for object identifiers and

trajectories. If the target of a query is video (video), the

users may also specify the maximum number of videos

to be returned as a result. The range of a query is

specified in the from clause. The rangemay be either the
entire video collection or a list of specific videos. Query

conditions are given in the where clause. In our query

language, condition is defined recursively and it may

contain any combination of spatio-temporal conditions.

As a consequence of this, the where clause can contain

spatial conditions, trajectory conditions and the sup-

ported operators.

Supported operators: Our query language supports a
set of logical and temporal operators to be used in query

conditions. Logical operators are and, or, and not while

temporal operators are before, during, meets, overlaps,

starts, finishes, and their inverse operators, ibefore,

iduring, imeets, ioverlaps, istarts, and ifinishes. In addi-

tion to these, the operators �¼ ’ and �!¼ ’ are used for

assignment and comparison. The query language also

has a trajectory-projection operator, project, which is
used to extract subtrajectories of video objects on a

given spatial condition.
Web Client
(Java Applet)

User Query

Query Result
Set

Query Reque
Handler
(C++)

Fig. 2. Web client–query p
Our query language supports spatio-temporal,

semantic and low-level queries. Different query types

that can be specified by the query language are object

queries, spatial queries, similarity-based object-trajec-

tory queries, temporal queries, aggregate queries, low-

level queries and semantic queries.

3.2.1. Examples

Query 1:

select X, Y

from video

where west(X,Y) and disjoint(X,Y)

This query searches for objects, X and Y in the video
where X is to the west of Y and X is disjoint from Y.

Query 2:

select segment, X, Y

from video

where (samelevel(X,Y) before dis-

joint(X,Y)) and

(infrontof(X,Y) and tr(X, [[west],

[1]]))

This query searches for objects, X and Y in the video

where X is on the same level as Y before X is disjoint

from Y, and X is in front of Y, and X has a trajectory to

the direction west with displacement 1. The query re-

turns objects X, Y and the identified segments from the

video.

3.3. Query processing

Fig. 2 illustrates how the query processor communi-

cates with Web clients and the underlying system com-

ponents to answer user queries. Web clients make a

connection request to the query request handler, which

creates a process for each request passing a new socket
for communication between the process and the Web

client. Then, user queries are sent to the processes cre-

ated by the query request handler. The queries are

transformed into SQL-like textual query language

expressions before being sent to the server if they are

specified visually. After receiving the query from the

client, each process calls the query processor with a

query string and waits for the query answer. When the
query processor returns, the process communicates

the answer to the Web client issuing the query and exits.
st
User Query
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Set

Query
Processor
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rocessor interaction.
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The query processor first groups spatio-temporal,

semantic, color, shape and texture query conditions into

proper types of subqueries. Spatio-temporal subqueries

are reconstructed as Prolog-type knowledge base que-

ries. Semantic, color, shape and texture subqueries are

sent as SQL queries to an object-relational database.
Query processor integrates the intermediate results and

returns them to the query request handler, which com-

municates the final results to Web clients. The details of

our query processing system can be found in (D€onderler
et al., 2002b).
4. Query optimization

The aim of the query optimization algorithms de-

signed and implemented for BilVideo is to process more

selective subqueries earlier than the others. The algo-

rithms restructure the initial query tree and construct an

optimal query tree for that purpose.

The query optimization process implemented during

query execution has two basic parts, which are internal

node reordering and leaf node reordering. In addition to

these parts, the statistics collected for the video are read

from a file before executing the leaf node reordering

algorithm (see Fig. 3). These statistics are used to

determine the selectivities of relations in the condition

part of the query. Selectivity of a relation is inversely

proportional to the number of facts stored for that

relation. Internal node reordering algorithm reorders
the children of internal nodes by placing the right child

of �AND’ nodes, which are more selective than the left

child, to the left of their parents. Leaf node reordering

algorithm deals only with the leaf nodes. Every leaf node

in the query tree has a content that stores the sub-

query to be executed. Leaf node reordering algorithm

restructures these contents. It uses the subquery trees

constructed for each of these contents in the construc-
tion of the initial query tree. This algorithm sorts the

relations in the contents of the leaf nodes that are con-

nected by �AND’ operators according to their selectivity.

More selective operations are executed earlier than the

others through the reorderings of the query tree.

4.1. Structure of the query tree

In our video database model, a query is represented

by a query tree. The condition in the where clause of

the query is kept in this query tree. The condition part

can contain spatial relationships. Other functions that
Fig. 3. Query optimization process.
can take place in the condition part are object trajectory

and project type query functions. Trajectory queries find

out the object(s) and/or frame interval(s) of the object(s)

having a similar trajectory in a video to a given trajec-

tory. Project queries are used to extract sub-trajectories

of video objects on a given spatial condition. The
boolean (logical) operators of the query language are

and, or, and not. The operators that can be included in a

query are categorized into three types:

1. AND: and

2. NOT–OR: not, or

3. TEMPORAL: before, during, meets, over-

laps, starts, finishes, and their inverse opera-
tors, ibefore, iduring, imeets, ioverlaps,

istarts, ifinishes.

The logical operators are categorized into two types

as �AND’ and �NOT–OR’ because not and or operators

do not reduce the output size of the operation but and

operator reduces the output size given any two sets as

operands.
There are two types of nodes in the query tree:

internal nodes that contain the operators defined above

and leaf nodes that contain spatio-temporal subqueries.

These subqueries have three types:

1. Plain Prolog Queries (PPQ): These are spatial subqu-

eries processed by Prolog. They consider the relative

positioning of the salient objects with respect to each
other. This relative positioning consists of directional,

topological and 3-D relations.

2. Trajectory Queries (TRQ): These are object-trajec-

tory subqueries. Trajectory of a salient object is de-

scribed as a path of vertices corresponding to the

locations of the object in different video keyframes.

An object-trajectory subquery includes an object

name which can be a constant or a variable, a direc-
tion list for the trajectory path and the list of dis-

placement values corresponding to each direction

given in the direction list. Object-trajectory queries

are similarity based; therefore, a similarity value can

also be specified.

3. Project Queries (PRQ): The subqueries which contain

the trajectory-projection operator, project are catego-

rized as a different type.

4.1.1. Examples

The query trees for the example queries Query 1 and

Query 2 given in Section 3.2.1 are shown in Fig. 4.
4.2. Internal node reordering algorithm

In the query tree, the internal nodes are reordered
first. Internal node reordering algorithm places the more
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Fig. 4. (a) Query tree for Query 1 and (b) Query tree for Query 2 given in Section 3.2.1.
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selective nodes as the left child of their parents, since the
left child of a parent is processed first. The proposed

algorithm iterates on the query tree and restructures the

tree to get the optimal internal-node-structured query

tree. The internal node reordering algorithm is given in

Fig. 5.

The internal node reordering algorithm iterates on

the query tree and reorders the children of �AND’ typed

nodes such that:

• �AND’, �TEMPORAL’, �PPQ’, �PRQ’, �TRQ’ type

child nodes must be on left if the other child is

�NOT–OR’ type. Since �NOT–OR’ type nodes com-

bine results from two different result sets or take

the difference of a defined universal set and a given

set, they are found to be the least selective compared

to the other nodes. They are less selective than �PPQ’,
�PRQ’, �TRQ’ type child nodes, because �NOT–OR’

type child nodes combine the results of their two sub-

trees having �PPQ’, �PRQ’, �TRQ’ type nodes as their

leaf nodes. They are also less selective than �AND’

and �TEMPORAL’ nodes. This is due to the fact that

given the same operands, �AND’ and �TEMPORAL’

type operators produce smaller result sets than those

of �NOT–OR’ type operators.
• �AND’ type child nodes must be on left if the other

child is �TEMPORAL’ type. We argued that �AND’

and �TEMPORAL’ type operators produce a smaller

result set given two operands. We process an �AND’

type node before a �TEMPORAL’ type node because

of the fact that �AND’ type nodes are processed faster

than the �TEMPORAL’ type nodes since they contain

logical operators and our query engine processes log-
ical operators faster than the temporal operators.

• �PPQ’ type child nodes with zero global variables

must be on left if the other child is �PRQ’ or �TRQ’

type. This is because of the fact that �PPQ’ type nodes

with zero global variables are processed faster and

they are more selective than �PRQ’ and �TRQ’ type

nodes. �PPQ’ type nodes with zero global variables re-

quire a simple search operation on the fact base, how-
ever �PRQ’ and �TRQ’ type nodes can require the

processing of a project operator or similarity calcula-

tion in addition to the same type of search operation

in the fact base. They can also have global variables

that can slow down their processing.
• �PRQ’, �TRQ’ type child nodes must be on left if the
other child is �PPQ’ type with global variables. This is

because of the fact that �PRQ’ and �TRQ’ type nodes

are found out to be more selective than �PPQ’ type

nodes with global variables. They are found out to

be more selective because our sample fact base con-

tains more spatial facts than the trajectory facts.

However, this is also the case in most fact bases in

real life because spatial facts capture the spatial rela-
tions of an object with other objects in all different

frames of a video. Therefore, we will usually have

more than one spatial relation for an object in the

video, while we can have at most one trajectory for

an object in the video.

• �PRQ’ type child nodes must be on left if the other

child is �TRQ’ type. This is because of the fact that

the subquery in the �PRQ’ node can have a variable
to be used by the subquery contained in the �TRQ’

node and in this case it is essential to place �PRQ’

type child nodes on left for the correctness of the out-

put of our query processor. We do not check if this is

the case or not and put every �PRQ’ type child node

on left if the other child is �TRQ’ type, because it does

not matter which of the nodes is processed first for

the performance, and such a check will induce an exe-
cution overhead.

• �TRQ’ type child nodes with zero global variables

must be on left if the other child is �TRQ’ type with

global variables. This is due to the fact that �TRQ’

type nodes with zero global variables are more selec-

tive than �TRQ’ type nodes with global variables.

This is because of the fact that we have to search

for a single trajectory fact in our fact base in the case
of zero global variables, but we have to search for a

set of trajectory facts in the case of non-zero global

variables.

The query tree is restructured using the rules de-

scribed above. The function gvcount in the algorithm

(Fig. 5) finds out the global variable count of a partic-

ular node.

4.2.1. Examples

Some query tree examples are given in this part. In

each example, the initial query tree and the query tree

after internal node reordering are shown.
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Query 1:

select segment, X, Y

from video

where ((west(X,Y) and disjoint(X,Y) and

X !¼ Y)

or Z¼project(X, [west(X,a)])) and

(west(X,Y) and X¼car1 and appear(Y)

and south(Y,X))
In the query tree of Query 1, the children of the root

�AND’ node are exchanged since the type of the left

child is �NOT–OR’ and the type of the right child is

�PPQ’ in the initial query tree (see Fig. 6). Our query

processor traverses the query tree in postorder, execut-

ing each subquery separately and performing interval

processing so as to obtain the final set of results. Hence,
the left child is processed first in both query trees. The
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Fig. 7. (a) Initial query tree for Query 2 and (b) Query tree for Query 2 after internal node reordering.
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Fig. 6. (a) Initial query tree for Query 1 and (b) Query tree for Query 1 after internal node reordering.
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variables X and Y are instantiated by the subquery of

the left child of the query tree shown in Fig. 6(b) and
then they are used by the subquery of the right child.

Query 2:

select segment, X, Y

from video

where ((west(X,Y) before disjoint(X,Y))

and

((appear(Y) before touch(X,Y)) and

(X !¼ car1 and Z¼project(X, [west(-

X,a)])))

In the query tree, the children of the root �AND’ node

are exchanged since the type of the left child is �TEM-

PORAL’ and the type of the right child is �AND’ in the

initial query tree (see Fig. 7). The children of the �AND’

node, which is a child of the root node, are also ex-
changed since the type of the left child is �TEMPORAL’

and the type of the right child is �AND’ in the initial

query tree.

4.3. Leaf node reordering algorithm

After the internal node reordering, the leaf nodes are

reordered for each deepest internal node. Fact base
statistics for each video are kept in a separate file. The

number of each spatio-temporal relation in the video is

stored in this file. Thus, the numbers of south, northwest,

southwest, equal, cover, inside, touch, disjoint, overlap,
infrontof, behind, strictlyinfrontof, strictlybehind, touch-

frombehind, touchedfrombehind and samelevel facts are
included in the file. These fact base statistics are used in

the leaf node reordering algorithm. In this algorithm,

the facts in the leaf nodes are sorted starting from the

fact with the least number in fact base statistics file to

the fact with the largest number. �PPQ’ and �PRQ’ type

leaf nodes are reordered according to these statistics.

These leaf nodes contain maximal subqueries that can

be directly sent to the inference engine. Consequently,
subquery trees for these maximal subqueries must be

constructed to reorder leaf nodes. This construction is

implemented within the query tree construction part. As

a result, subquery trees for each maximal subquery in

the �PPQ’ and �PRQ’ type leaf nodes are built and kept

in a list data structure. The leaf node reordering algo-

rithm is given in Fig. 8.

This algorithm iterates on the query tree. Steps of the
algorithm are as follows:

1. Find the �PPQ’ and �PRQ’ type leaf nodes.

2. Find the subquery trees of these nodes in the sub-

query list.

3. Reorder these subquery trees.

4. Get the content of the reordered subqueries.

5. Replace the contents of the leaf nodes with this con-
tent.

As it can be seen from the algorithm, only the con-

dition parts of the �PRQ’ type leaf nodes are replaced.



Fig. 8. Leaf node reordering algorithm.

Fig. 9. The function that finds subquery tree of a leaf node.
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The functions used in the algorithm are explained in the

sequel.

FindPPQinList function is used for locating the

subquery tree of a particular leaf node in the subquery

list (see Fig. 9).

The reorderAlg function iterates on the subquery

tree, which is located in the subquery tree list, and

restructures this tree (see Fig. 10). The algorithm first
locates the highest �AND’ type node in the subquery

tree. If this node has left and right children and the left

child is �NOT–OR’ type and the right one is �AND’ type,

it exchanges the left and right nodes. If the children are

�PPQ’ or �AND’ type and there is no �NOT–OR’ type

node below these children, this subtree is called maximal
AND subtree and it is reordered according to fact base

statistics. If the children are �PPQ’ or �AND’ type and

there is at least one �NOT–OR’ type node below these

children, the algorithm finds out whether the right child

is a maximal AND subtree or not. If it is a maximal AND

subtree, then it exchanges the right child with the left

child. If the algorithm locates a maximal AND subtree, it

does not recurse because it has already reordered all the
nodes in the subtree. Otherwise, it recurses.

IsThereNotOr function returns 0 if there is a

�NOT–OR’ type node in a tree and returns 1 if all the

nodes are �AND’ type (see Fig. 11).

OrderLeafNodes function orders a maximal AND

subtree. It first puts the leaf nodes into an array



Fig. 10. The function that reorders the located subquery tree.
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structure, then sorts the array according to the fact base

statistics and puts the leaf nodes back to the tree (see

Fig. 12).

GetLeafNodes function gets the leaf nodes of a tree

and puts the contents and global variable counts of the

nodes to an array structure to be used in the sorting

procedure (see Fig. 13).

SortLeafNodes function sorts the leaf nodes
according to the fact base statistics. It orders the rela-

tions in the increasing number of statistics (see Fig. 14).

The getnum function gets the statistics of a particular

relation from the statistics file of the video. After sorting
the relations according to the statistics, the function puts

the relations that query an inequality between any two

objects in the video to the end of the order.

PutLeafNodes function puts the elements of an

array structure to the leaf nodes of a tree. Hence, the

nodes of the unsorted tree are replaced with the sorted

nodes (see Fig. 15).

4.3.1. Examples

Some query examples for leaf node reordering algo-

rithm are given in this part. The initial queries and the

queries after leaf node reordering according to the fact



Fig. 11. The function that finds if there is a �NOT–OR’ type node in a tree.

Fig. 12. The function that orders leaf nodes.

Fig. 13. The function that gets leaf nodes.
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Fig. 14. The function that sorts the leaf nodes.

Fig. 15. The function that puts the elements to the leaf nodes.
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base statistics are shown. The relations in the query

examples are reordered according to (south facts<

samelevel facts<west facts< overlap facts< disjoint

facts< appear facts).

Query 1:

select segment, X, Y

from video

where ((appear(X) and samelevel(X,Y)) or

overlap(X,Y))

and ((appear(Y) or south(X,Y)) and
(appear(X) and west(X, Y) and dis-

joint(X,Y)))

Query 1 after leaf node reordering:

select segment, X, Y

from video

where ((west(X, Y) and disjoint(X,Y) and

appear(X))

and (appear(Y) or south(X,Y)))

and ((samelevel(X,Y) and appear(X)) or

overlap(X,Y))



AND
overlap(X,Y)

OR

appear(X) samelevel(X,Y)

AND

OR

 appear(X)

disjoint(X,Y)

AND

west(X,Y)

AND

AND
south(X,Y) appear(Y)

AND

AND

AND

AND

AND
overlap(X,Y)

OR

 west(X,Y) disjoint(X,Y)

appear(X)

OR

south(X,Y) appear(Y) samelevel(X,Y) appear(X)

(a) (b)

Fig. 16. (a) Initial subquery tree for Query 1 and (b) Subquery tree for Query 1 after leaf node reordering.
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The initial subquery tree forQuery 1 and the subquery

tree for Query 1 after leaf node reordering, which are

located in the subquery tree list, are shown in Fig. 16.

The leaf node reordering algorithm exchanges the left
and right children of the root node first, then it ex-

changes the left and right children of the new left child

which is an �AND’ node. After these steps, the algorithm

reorders the relations in the left child of this �AND’ node

according to the ordering rule west facts< disjoint

facts< appear facts. The algorithm processes the right

child of the root which is now an �OR’ node after the

above steps. It reorders the relations in the left child of
this �OR’ node according to the rule samelevel

facts< appear facts.

Query 2:

select segment, X, Y

from video

where disjoint(X,Y) and X !¼ Y and west-

(X,Y)

and X¼car1 and appear(Y) and south-

(Y,X)

Query 2 after leaf node reordering:

select segment, X, Y

from video

where X¼car1 and south(Y,X) and west-

(X,Y)
AND

ANDAND

AND

 disjoint(X,Y)

 west(X,Y) X=car1

X != Y

 appear(Y) south(Y,X)

AND X

(a)

Fig. 17. (a) Initial subquery tree for Query 2 and (b) Sub
and disjoint(X,Y) and appear(Y) and

X !¼ Y

The initial subquery tree forQuery 2 and the subquery
tree for Query 2 after leaf node reordering, which are

located in the subquery tree list, are shown in Fig. 17.

The relations in Query 2 are reordered as it can be

seen from the second query according to the ordering

south facts<west facts< disjoint facts< appear facts. The

equality relations are executed at the beginning of the

condition part and the inequality relations between

variable objects are executed at the end.

5. Performance results

In this section, the performance results obtained for

the proposed query optimization algorithms are pre-

sented. Our performance tests have been conducted on

an example video that was extracted from television
news. The sample video contains 16,351 frames and 98

salient objects. The tests have been carried out on Linux

environment using the query processor of BilVideo

implemented in C++.

5.1. Fact base statistics

The fact base of the example video is created using the
fact-extractor tool of BilVideo (D€onderler et al., 2002a).
AND

ANDAND

AND

 west(X,Y)

AND

 disjoint(X,Y)

=car1 south(Y,X)

X != Y appear(Y)

(b)

query tree for Query 2 after leaf node reordering.



Table 1

The statistics of the fact base

Type of relation Number

West 1055

East 1055

South 206

Northwest 0

Southwest 0

Disjoint 1682

Overlap 1235

Inside 0

Appear 10234

Touch 9

Fig. 18. Example facts from our fact base.
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In this process, the objects in the sample video are
defined first. Then, the spatio-temporal relationships

between these objects in each frame are calculated by

the fact-extractor tool and stored in a fact base.

Some example facts from the fact base are shown in Fig.

18.

The statistics of the video are given in Table 1. This

statistical information contains the number of facts in

the fact base for each type of relation. These statistics
are used in the optimization algorithm to reorder the

leaf nodes.
Touchfrombehind 37

Strictlyinfrontof 184

Infrontof 276

Samelevel 487
5.2. Performance results

Five query sets were used in the performance tests.

The first query set was used for testing the leaf node

reordering algorithm. The second set was used for test-
ing the internal node reordering and leaf node reorder-

ing algorithms together. The third and fourth sets were

constructed for testing the algorithms on different re-

orderings of the same query. Finally, the fifth set was

used for testing the same query on different sizes of fact

bases and result sets. The query sets can be found in

Appendix A. Optimization overhead given in the results

specifies the time that the optimization process takes and
performance gain is formulated as follows:
performance gain ¼ ðprocessing time without optimization�
processing time with
The first set of results are given in Table 2. These results

show that leaf node reordering algorithm enhances the

performance of the query processor. There are different

amounts of performance gain for each query in the set.

This is because the performance gain depends on the size

of the query (i.e. the number of nodes in the query tree

of the query), and the degree of difference between the

initial query tree and the optimal query tree. The sizes of
the first, ninth, eleventh and twelfth queries are small;

therefore, their performance gains are at most 0.21. If
processing time with optimizationÞ
out optimization

: ð1Þ



Table 2

Leaf node reorder algorithm test results (ms)

Query Time with-

out opt.

Time with

opt.

Optimiza-

tion over-

head

Perfor-

mance gain

1 310 263 1.0 0.15

2 1002 609 1.0 0.39

3 512 264 1.0 0.48

4 490 291 1.0 0.41

5 508 217 1.0 0.57

6 423 261 1.0 0.38

7 2027 259 1.0 0.87

8 752 708 2.0 0.06

9 303 258 1.0 0.15

10 2030 1603 3.0 0.21

11 225 214 1.0 0.05

12 270 215 1.0 0.20

Table 4

Convergence to the optimal query tree; first test results (ms)

Query Time with-

out opt.

Time with

opt.

Optimiza-

tion over-

Perfor-

mance gain
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the size of the query is small, the performance gain is

also small compared to the larger queries.

Leaf node reordering algorithm reduces the process-

ing cost because the relations in the leaf nodes are or-

dered starting from the relation with the smallest size of

output to the relations with larger sized outputs. Thus,

the unbound variables in the nodes are first bound with

smaller sets of values and relations with constant
parameters are executed earlier. This results in an in-

crease in performance. The second set of results are

given in Table 3.

These results show that the overall query optimiza-

tion algorithm improves the query processing perfor-

mance. The factors that affect the results obtained with

the leaf node reordering algorithm discussed above also

affect those with the whole optimization process.
The query optimization algorithms reduce the pro-

cessing cost because the subqueries with larger selectiv-

ities are processed before the subqueries with smaller

selectivities. For example, if the children of an �and’
node are �or’ and �and’ type internal nodes, the �and’
Table 3

Query optimization algorithm test results (ms)

Query Time with-

out opt.

Time with

opt.

Optimiza-

tion over-

head

Perfor-

mance gain

1 690 212 1.0 0.69

2 958 530 2.0 0.45

3 532 270 1.0 0.49

4 327 267 1.0 0.18

5 644 283 2.0 0.56

6 639 344 1.0 0.46

7 545 337 1.0 0.38

8 274 214 1.0 0.22

9 261 211 1.0 0.19

10 985 286 1.0 0.71

11 302 213 2.0 0.29

12 845 283 2.0 0.67
type child is processed before the other, which results in

a considerable gain in performance.

The performance gain depends on the size and com-

plexity of the query. Another factor affecting the per-

formance is the degree of difference between the initial

query tree and the optimal query tree. The third and
fourth performance tests were conducted using different

reorderings of the same query. The query tree converges

to the optimal query tree starting from the first query.

The third result set that uses a simple Prolog query is

given in Table 4. The fourth result set that uses a larger

query tree is given in Table 5.

These two result sets show that when the query tree

converges to the optimal query tree, the performance
gain of the optimization algorithm decreases. This also

justifies the correctness of the optimization algorithm.

The last performance test was conducted for investi-

gating the impact of the query result set size on the

performance gain. A query was selected and its result set

size was decreased by decreasing the fact base size at

each step. The results of this test are presented in Table

6. As it can be seen from the performance results, when
the size of query result set decreases, the performance

gain of the query does not change much, and it is within

the range of 0.64–0.71.

The performance test results prove that the query

optimization method implemented for BilVideo im-

proves the performance of the query processor. Since the

performance gain is observed to decrease when the

query tree converges to the optimal query tree, it can be
said that the reordering heuristics used by the algorithm

are correct. As a conclusion, it is shown that processing
head

1 1327 256 2.0 0.81

2 341 256 2.0 0.25

3 305 255 1.0 0.16

4 253 253 1.0 0.00

Table 5

Convergence to the optimal query tree; second test results (ms)

Query Time with-

out opt.

Time with

opt.

Optimiza-

tion over-

head

Perfor-

mance gain

1 1306 218 2.0 0.83

2 1213 220 1.0 0.82

3 663 218 2.0 0.67

4 647 219 3.0 0.66

5 563 220 2.0 0.61

6 345 222 2.0 0.36

7 324 219 2.0 0.32

8 219 219 2.0 0.00



Table 6

Query result set size parameter test results (ms)

Size of result

set

Time without

opt.

Time with opt. Performance

gain

133 2533 786 0.69

120 2259 713 0.68

105 2067 665 0.68

94 2013 632 0.69

85 1960 616 0.69

74 1673 538 0.68

65 1399 449 0.68

45 1275 379 0.70

34 1209 353 0.71

27 830 281 0.66

20 688 251 0.64

11 669 231 0.65

2 650 208 0.68
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more selective subqueries contained in the internal

nodes and leaf nodes of the query tree earlier than the
others is very useful in optimizing query processing

times for spatio-temporal queries in video database

systems.
5.3. Examples

Some queries selected from the set of queries used in

the performance tests are discussed in this part. The

initial query trees and the query trees after optimization

are shown for each query.

Query 1:

select segment, X, Y

from video
west(X,Y) and
disjoint (X,Y) and
X != car1

Z = project (X,
[west(X,car1)]

west(X,Y) T = project (X,
[west(X,car1)]

OR

AND

AND

(a)

Fig. 19. (a) Initial query tree for Query 1 and (b)

samelevel (X,Y) disjoint(X,Y) tr(X, [[west],[1]])

BEFORE

AND

AND

infrontof (X,Y) and
X != car1

(a)

Fig. 20. (a) Initial query tree for Query 2 and (b)
where (west(X,Y) and disjoint(X,Y) and

X !¼ car1

or Z ¼ project(X,[west(X, car1)]))

and (west(X,Y)

and T ¼ project(X,[west(X, car1)]))

The initial query tree of Query 1 (Fig. 19(a)) is pro-

cessed in 985 ms and the optimized query tree (Fig.

19(b)) is processed in 286 ms. Consequently, the per-

formance gain is 71%.

Query 2:

select segment, X, Y

from video

where (samelevel(X,Y) before disjoint

(X,Y)) and

(infrontof(X,Y) and X !¼ car1 and

tr(X, [[west], [1]]))

The initial query tree of Query 2 (Fig. 20(a)) is pro-

cessed in 845 ms and the optimized query tree (Fig.

20(b)) is processed in 283 ms. Thus, the performance
gain is 67%.
6. Conclusion and future work

Query processing is essential for retrieving data from

database management systems and has been explored

in the last 30 years in the context of relational and ob-
ject-oriented database management systems. Query

optimization constitutes an important part of query

processing, and it is a promising research area since the
T = project (X,
[west(X,car1)]

west(X,Y) west(X,Y) and
disjoint (X,Y) and
X != car1

Z = project (X,
[west(X,car1)]

AND

AND

OR

(b)

Query tree for Query 1 after optimization.

tr(X, [[west],[1]]) X != car1 and
infrontof (X,Y)

disjoint(X,Y)samelevel (X,Y)

AND

BEFOREAND

(b)

Query tree for Query 2 after optimization.
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amount of data that can be managed by database sys-

tems is growing rapidly and new data types are

becoming widely used. Besides, new types of database

management systems such as multimedia databases re-

quire new techniques for query processing and query

optimization.
In this paper, we have presented a query optimization

strategy for video database systems, which was imple-

mented on a particular system, BilVideo. The proposed

optimization method has two basic parts: internal node

reordering and leaf node reordering. The children of the

internal nodes of the query tree of a given query are

reordered using the internal node reordering algorithm

which places more selective children to the left of their
parents. The contents of the Prolog and Project type leaf

nodes are reordered using the leaf node reordering

algorithm, which makes use of statistical information to

sort the relations forming the contents of the leaf nodes.

Therefore, our optimization method reorders the query

tree along two dimensions that results in a considerable

improvement in performance. The performance tests

conducted on the query processor justify the efficiency
and correctness of the query optimization algorithms,

internal node reordering and leaf node reordering.

Currently, the proposed optimization algorithms are

used by a query processor that uses linear processing

methods. The algorithms can be adapted to a parallel

query processor as a future work, which can result in an

even better performance. Another future work can be the

use of genetic algorithms in query optimization of Bil-
Video as they are becoming widely used and accepted

method for new and difficult optimization problems.

This method must propose a fitness value function for

the query trees in the solution space and adapt cross-over

and mutation operations to produce efficient query trees.
Appendix A. Query sets used in performance experiments

A.1. Query set to test the leaf node reordering algorithm

1. select segment, X, Y

from 1

where disjoint(X,Y) and south(X,Y)

2. select segment, X, Y

from 1

where appear(X) and west(X,Y)

and disjoint(X,Y)

3. select segment, X, Y

from 1

where disjoint(X,Y) and west(X,Y)

and X¼car1

4. select segment, X, Y

from 1
where west(X,Y) and disjoint(X,Y)

and south(X,Y)

5. select segment, X, Y

from 1

where disjoint(X,Y) and X !¼ Y and

west(X,Y) and X¼car1 and appear(Y)

and south(Y,X)

6. select segment, X, Y

from 1

where disjoint(X,Y) and west(tank1,car1)

and X¼car1 and appear(Y) and south(Y,X)

7. select segment, X, Y

from 1

where appear(Y) and west(X,Y) and

south(Y,X)

and X¼tank1 and west(tank1,car1)

8. select segment, X, Y

from 1

where west(X,Y) and appear(X) and

overlap(X,Y)

9. select segment, X, Y

from 1

where west(A,B) and touch(X,Y)

10. select segment, X, Y

from 1

where (samelevel(X,Y) and appear(X) and

overlap(X,Y)) or (appear(X) and

west(X, Y) and disjoint(X,Y))

11. select segment

from all

where Z ¼ project(X, [disjoint(X, car1) and

west(X,tank1) and south(car1,tank1)])

12. select segment

from all

where Z ¼ project(X, [west(X, car1) and

disjoint(X,tank1) and south(X,car2)])
A.2. Query set to test the query optimization algorithm

1. select segment, X, Y

from 1

where (west(X,Y) and disjoint(X,Y) and

X !¼ Y or Z ¼ project(X,[west(X, a)])) and

(west(X,Y) and X¼car1 and appear(Y) and

south(Y,X))

2. select segment, X, Y

from 1

where (west(X,Y) and disjoint(X,Y) and

X !¼ car1 or Z ¼ project(X,[west(X,

car1)]))

and (west(X,Y) before south(Y,X))
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3. select segment, X, Y

from 1

where (west(X,Y) before disjoint(Y,X))

and (X !¼ car1 and Z ¼ project(X,[west(X,

car1)]))

4. select segment

from all

where tr(X, [[west], [1]]) and

Y ¼ project(X, [west(X, car1)])

5. select segment, X, Y

from 1

where west(X,Y) and disjoint(X, Y) and

X !¼ car1 and Z ¼ project(X,[west(X,

car1)])

6. select segment, X, Y

from 1

where west(X,Y) and disjoint(X, Y)

and X !¼ car1 and tr(X, [[west],[1]])

7. select segment, X, Y

from 1

where west(X,Y) and tr(X, [[west],[1]])

8. select segment

from all

where Y ¼ project(X, [west(X, car1)]) and

Z ¼ project(X, [south(X,car1) and

west(X,tank1)

and disjoint(X, car1)])

9. select segment

from all

where tr(X, [[west], [1]]) and

tr(car3, [[west,north], [10,10]])

10. select segment, X, Y

from 1

where (west(X,Y) and disjoint(X,Y) and X

!¼ car1 or

Z ¼ project(X,[west(X, car1)])) and

(west(X,Y) and

T ¼ project(X,[west(X, car1)]))

11. select segment, X, Y

from 1

where (west(X,Y) and touch(X, Y) and X !¼
car1 or

Z ¼ project(X,[west(X, tank1)])) and

(disjoint(X,Y)

and overlap(X,Y) and Y !¼ car2)

12. select segment, X, Y

from 1

where (samelevel(X,Y) before dis-

joint(X,Y)) and

(infrontof(X,Y) and X !¼ car1 and tr(X,

[[west], [1]]))
A.3. First query set used in convergence tests

1. select segment, X, Y

from 1

where appear(X) and disjoint(X,Y) and

south(X,Y)

2. select segment, X, Y

from 1

where disjoint(X,Y) and appear(X) and

south(X,Y)

3. select segment, X, Y

from 1

where disjoint(X,Y) and south(X,Y) and

appear(X)

4. select segment, X, Y

from 1

where south(X,Y) and disjoint(X,Y) and

appear(X)

A.4. Second query set used in convergence tests

1. select segment, X, Y

from 1

where (disjoint(X,Y) and west(X,Y) and X

!¼ Y or

Z ¼ project(X,[west(X,a)])) and (ap-

pear(Y) and

west(X,Y) and south(Y,X) and X¼car1)

2. select segment, X, Y

from 1

where (west(X,Y) and disjoint(X,Y) and X

!¼ Y or

Z ¼ project(X,[west(X,a)])) and (ap-

pear(Y) and

west(X,Y) and south(Y,X) and X¼car1)

3. select segment, X, Y

from 1

where (west(X,Y) and disjoint(X,Y) and X

!¼ Y or

Z ¼ project(X,[west(X,a)])) and (west(-

X,Y) and

appear(Y) and south(Y,X) and X¼car1)

4. select segment, X, Y

from 1

where (west(X,Y) and disjoint(X,Y) and X

!¼ Y or

Z ¼ project(X,[west(X,a)])) and (west(-

X,Y) and

south(Y,X) and appear(Y) and X¼car1)

5. select segment, X, Y

from 1
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where (west(X,Y) and disjoint(X,Y) and X

!¼ Y or

Z ¼ project(X,[west(X,a)])) and (X¼car1

and

south(Y,X) and west(X,Y) and appear(Y))

6. select segment, X, Y

from 1

where (west(X,Y) and appear(Y) and

south(Y,X) and

X¼car1) and (west(X,Y) and disjoint(X,Y)

and

X !¼ Y or Z ¼ project(X,[west(X,a)]))

7. select segment, X, Y

from 1

where (west(X,Y) and south(Y,X) and

X¼car1 and

appear(Y)) and (west(X,Y) and dis-

joint(X,Y) and

X !¼ Y or Z ¼ project(X,[west(X,a)]))

8. select segment, X, Y

from 1

where (X¼car1 and south(Y,X) and

west(X,Y) and

appear(Y)) and (west(X,Y) and

disjoint(X,Y) and

X !¼ Y or Z ¼ project(X,[west(X,a)]))
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