
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bilkent University Institutional Repository
Information Sciences 177 (2007) 4148–4160

www.elsevier.com/locate/ins
Threshold cryptography based on Asmuth–Bloom
secret sharing q,qq

Kamer Kaya *, Ali Aydın Selçuk

Department of Computer Engineering, Bilkent University, Ankara, 06800, Turkey

Received 26 October 2006; received in revised form 31 January 2007; accepted 6 April 2007
Abstract

In this paper, we investigate how threshold cryptography can be conducted with the Asmuth–Bloom secret sharing
scheme and present three novel function sharing schemes for RSA, ElGamal and Paillier cryptosystems. To the best of
our knowledge, these are the first provably secure threshold cryptosystems realized using the Asmuth–Bloom secret shar-
ing. Proposed schemes are comparable in performance to earlier proposals in threshold cryptography.
� 2007 Elsevier Inc. All rights reserved.

Keywords: Threshold cryptography; Function sharing schemes; Asmuth–Bloom secret sharing; RSA; ElGamal; Paillier
1. Introduction

Threshold cryptography deals with the problem of sharing a highly sensitive secret among a group of n

users so that only when a sufficient number t of them come together the secret can be reconstructed. Well-
known secret sharing schemes (SSS) in the literature include Shamir [25] based on polynomial interpolation,
Blakley [5] based on hyperplane geometry, and Asmuth–Bloom [2] based on the Chinese Remainder Theorem.

A further requirement of a threshold cryptosystem can be that the subject function (e.g., a digital signature)
should be computable without the involved parties disclosing their secret shares. This is known as the function

sharing problem. A function sharing scheme (FSS) requires distributing the function’s computation according
to the underlying SSS such that each part of the computation can be carried out by a different user and then
the partial results can be combined to yield the function’s value without disclosing the individual secrets. Sev-
eral protocols for function sharing [6,8–11,16,24,26] have been proposed in the literature. Nearly all existing
solutions for function sharing have been based on the Shamir SSS [25].
0020-0255/$ - see front matter � 2007 Elsevier Inc. All rights reserved.

doi:10.1016/j.ins.2007.04.008

q This work is supported in part by the Turkish Scientific and Technological Research Agency (TÜB_ITAK), under grant number
EEEAG-105E065.
qq A preliminary version of this paper was presented in ISCIS’06, 21st International Symposium on Computer and Information Sciences.

* Corresponding author. Tel.: +90 312 290 1350; fax: +90 312 266 4047.
E-mail addresses: kamer@cs.bilkent.edu.tr (K. Kaya), selcuk@cs.bilkent.edu.tr (A.A. Selçuk).

https://core.ac.uk/display/52924237?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:kamer@cs.bilkent.edu.tr
mailto:selcuk@cs.bilkent.edu.tr

K. Kaya, A.A. Selçuk / Information Sciences 177 (2007) 4148–4160 4149
In this paper, we show how sharing of cryptographic functions can be securely achieved using the Asmuth–
Bloom secret sharing scheme. We give three novel FSSs, one for the RSA [23], one for the ElGamal decryption
[13] and the other for the Paillier decryption [21] functions. These public key cryptosystems have several inter-
esting properties useful in various applications [1,3,14,18,19]. The proposed schemes are provably secure and
to the best of our knowledge they are the first realization of function sharing based on the Asmuth–Bloom
SSS.

The organization of the paper is as follows: in Section 2, we give an overview of threshold cryptography and
review the existing secret and function sharing schemes in the literature. We discuss the Asmuth–Bloom SSS in
detail in Section 3 and our modifications on the basic scheme in Section 4. In Sections 5–7, we describe the
FSSs for RSA, ElGamal and Paillier cryptosystems respectively, and prove their security features. After ana-
lyzing the efficiency of the proposed schemes in Section 8, we conclude the paper in Section 9.

2. Background

Constructing threshold schemes for secret and function sharing is the main research area in threshold cryp-
tography. These problems have been studied for many years and several solutions have been proposed.

2.1. Secret sharing schemes

The problem of secret sharing and the first solutions to it were introduced independently by Shamir [25] and
Blakley [5] in 1979. A ðt; nÞ-secret sharing scheme is used to distribute a secret d among n people such that any
coalition of size t or more can construct d but smaller coalitions cannot. Furthermore, an SSS is said to be
perfect if coalitions smaller than t cannot obtain any information on d; i.e., the candidate space for d cannot
be reduced even by one candidate by using t � 1 or fewer shares.

The first scheme for sharing a secret was proposed by Shamir [25] based on polynomial interpolation. To
obtain a ðt; nÞ secret sharing, a random polynomial f ðxÞ ¼ at�1xt�1 þ at�2xt�2 þ � � � þ a0 is generated over Zp½x�
where p is a prime number and a0 ¼ d is the secret. The share of the ith party is yi ¼ f ðiÞ, 1 6 i 6 n. If t or
more parties come together, they can construct the polynomial by Lagrange interpolation and obtain the
secret, but any smaller coalitions cannot.

Another interesting SSS is the scheme proposed by Blakley [5]. In a t dimensional space, a system of t non-
parallel, non-degenerate hyperplanes intersect at a single point. In Blakley’s scheme, a point in the t dimen-
sional space (or, its first coordinate) is taken as the secret and each party is given a hyperplane passing through
that point. When t users come together, they can uniquely identify the secret point, but smaller coalitions
cannot.

A fundamentally different SSS is the scheme of Asmuth and Bloom [2], which shares a secret among the
parties using modular arithmetic and reconstructs it by the Chinese Remainder Theorem. We describe this
scheme in detail in Section 3.

2.2. Function sharing schemes

Threshold function sharing problem was first introduced by Desmedt and Frankel [9] in 1989. In a ðt; nÞ
function sharing scheme, a key-dependent function is distributed among n people such that any coalition of
size t or more can evaluate the function but smaller coalitions cannot. When a coalition S is to evaluate
the function, the ith user in S computes his own partial result by using his share yi and sends it to the com-
biner to evaluate the function. The combiner must be honest while combining the partial results but can be
curious and try to find the secret shares. This is not a problem since the user shares are not disclosed to
the combiner.

FSSs are typically used to distribute the private key operations in a public key cryptosystem (i.e., the
decryption and signature operations) among several parties. Sharing a private key operation in a threshold
fashion requires first choosing a suitable SSS to share the private key. Then the subject function must be
arranged according to this SSS such that combining the partial results from any t parties will yield the oper-
ation’s result correctly. This is usually a challenging task and requires some ingenious techniques.

4150 K. Kaya, A.A. Selçuk / Information Sciences 177 (2007) 4148–4160
Several solutions for sharing the RSA, ElGamal and Paillier private key operations have been proposed in
the literature [8–11,14,15,17,24,26]. Almost all of these schemes are based on the Shamir SSS, with the only
exception of one scheme in [9] based on Blakley. The additive nature of the Lagrange interpolation used in
the combiner phase of Shamir’s scheme makes it a suitable choice for function sharing, but it also provides
several challenges. One of the most significant challenges is the computation of inverses in Z/ðNÞ for sharing
the RSA function where /ðNÞ should not be known by the users. The first solution to this problem was pro-
posed by Desmedt [8], which solved the problem by making the dealer compute all potentially needed inverses
at the setup time and distribute them to users mixed with the shares. A more elegant solution was found a few
years later by De Santis et al. [24]. They carried the arithmetic into a cyclotomic extension of Z, which enabled
computing the inverses without knowing /ðNÞ. Finally, a very practical and ingenious solution was given by
Shoup [26] where he removed the need of taking inverses in Lagrange interpolation altogether.

Although using Shamir’s SSS for sharing the ElGamal signature and decryption functions has its own
unique problems, the modular inverse computation problem is relatively easier than that in RSA since all
of the operations are done in mod p where p is a public prime hence /ðpÞ ¼ p � 1 is also public. Practical FSSs
were proposed in [9,15] for ElGamal signature and decryption functions.

Shoup’s practical RSA scheme inspired similar works on different cryptosystems. Fouque et al. [14] pro-
posed a similar threshold solution for the Paillier cryptosystem and used it in e-voting and lottery schemes.
Later, Lysyanskaya and Peikert [17] improved this worked and obtained a threshold Paillier encryption
scheme secure under the adaptive security model.

To the best of our knowledge, so far no secure function sharing schemes based on the Asmuth–Bloom SSS
have been proposed in the literature. We show in this paper that the Asmuth–Bloom scheme in fact can also be
a suitable choice for function sharing, and the fundamental challenges of the other schemes discussed above do
not exist for the Asmuth–Bloom scheme.

3. Asmuth–Bloom secret sharing scheme

In the Asmuth–Bloom SSS, dealing and reconstructing the secret are done as follows:

• Dealer phase: To share a secret d among a group of n users, the dealer does the following:
(Æ) A set of pairwise relatively prime integers m0 < m1 < m2 < � � � < mn, where m0 > d is a prime, are cho-

sen such that
Yt

i¼1

mi > m0

Yt�1

i¼1

mn�iþ1: ð1Þ

(Æ) Let M denote
Qt

i¼1mi. The dealer computes

y ¼ d þ Am0
where A is a positive integer generated randomly subject to the condition that 0 6 y < M .

(Æ) The share of the ith user, 1 6 i 6 n, is

yi ¼ y mod mi:
• Combiner phase: Assume S is a coalition of t users to construct the secret. Let MS denote
Q

i2Smi.
(Æ) Given the system
y � yi mod mi

for i 2S, find y in ZMS
using the Chinese Remainder Theorem.

(Æ) Compute the secret as

d ¼ y mod m0:
According to the Chinese Remainder Theorem, y can be determined uniquely in ZMS
. Since y < M 6 MS,

the solution is also unique in ZM .

K. Kaya, A.A. Selçuk / Information Sciences 177 (2007) 4148–4160 4151
The Asmuth–Bloom SSS is close to perfect in the sense that t � 1 or fewer shares does not narrow down the
key space: assume a coalition S0 of size t � 1 has gathered and let y 0 be the unique solution for y in ZMS0 .
According to (1), M=MS0 > m0, hence y0 þ jMS0 is smaller than M for j < m0. Since gcdðm0;MS0 Þ ¼ 1, all
ðy0 þ jMS0 Þmod m0 are distinct for 0 6 j < m0, and there are m0 of them. That is, d can be any integer from
Zm0

. However, this scheme is not exactly perfect since when t � 1 shares are known, the key candidates are not
equally likely as described in Section 4. We refer the reader to a recent work by Quisquater et al. [22] for a
detailed security analysis of Asmuth–Bloom and some other Chinese Remainder Based SSSs.

4. Function sharing based on the Asmuth–Bloom scheme

Several changes were needed on the basic Asmuth–Bloom scheme to make it more suitable for function
sharing. In this section we describe these modifications.

In the original Asmuth–Bloom SSS, the authors proposed an iterative process to solve the system
y � yiðmod miÞ. Instead, we use a non-iterative and direct solution as described in [12], which turns out to
be more suitable for function sharing in the sense that it does not require interaction between parties and
has an additive structure which is convenient for exponentiations. Suppose S is a coalition of t users gathered
to construct the secret d.

(1) Let MSnfig denote
Q

j2S;j 6¼imj and M 0
S;i be the multiplicative inverse of MSnfig in Zmi , i.e.,
MSnfigM 0
S;i � 1 ðmod miÞ:

First, the ith user computes

ui ¼ yiM
0
S;iMSnfig mod MS:
(2) y is computed as
y ¼
X
i2S

ui mod MS:
(3) The secret d is computed as
d ¼ y mod m0:
We note that, in the Asmuth–Bloom SSS, m0 need not be a prime, and the scheme works correctly for a
composite m0 as long as m0 is relatively prime to mi, 1 6 i 6 n. Also note that m0 need not be known during
the secret construction process until the +3rd step above.

We also modified (1) as
Yt

i¼1

mi > m2
0

Yt�1

i¼1

mn�iþ1: ð2Þ
in order to use it securely in the proposed FSSs. As discussed in Section 3, Eq. (1) guarantees that d can still be
any integer from Zm0

when t � 1 or fewer shares are revealed. We also know that, for each value of d, there are
either bM=ðMS0m0Þc or bM=ðMS0m0Þc þ 1 possible values of y consistent with d, depending on the value of d.
Hence for two different integers in Zm0

, the probabilities of d equals these integers may not be equal. (E.g., for
M=MS0 � 3m0=2, half of the integers in Zm0

are twice more likely than the other half.) Eq. (2) solves this
problem by guaranteeing that M=ðMS0m0Þ > m0. Given that m0 � 1, all d values are approximately equally
likely.

In the FSSs described in this paper, mi, 1 6 i 6 n, are known by all users, but m0 is kept secret by the dealer.

5. Sharing of the RSA function

RSA [23] is the first and most commonly used public key cryptosystem today. Here we show how the RSA
signature and decryption functions can be shared by using the Asmuth–Bloom SSS. Below, we limit our

4152 K. Kaya, A.A. Selçuk / Information Sciences 177 (2007) 4148–4160
discussion to the RSA signature function since these two functions are identical and the same technique can be
applied for sharing the decryption function as well. The description of the RSA signature scheme is as follows:

• Setup: Let N ¼ pq be the product of two large prime numbers. Choose a random e 2 Z�/ðNÞ and find its
inverse d, i.e., ed � 1ðmod /ðNÞÞ. The public and private keys are ðN ; eÞ and d, respectively.

• Signing: Given a hashed message w 2 ZN , the signature s is computed as
s ¼ wd mod N :
• Verification: Given a signature s 2 ZN , the verification is done by checking
w¼? se mod N :
Threshold RSA signature scheme: The following is a procedure that shares the RSA signature function
among n users with the Asmuth–Bloom SSS such that when t users come together they can compute the
signature:

• Setup: In the RSA setup phase, choose the RSA primes p ¼ 2p0 þ 1 and q ¼ 2q0 þ 1 where p0 and q0 are also
large random primes. N ¼ pq is computed and the public key e and private key d are chosen from Z�/ðNÞ
where ed � 1ðmod/ðNÞÞ. Use Asmuth–Bloom SSS for sharing d with m0 ¼ /ðNÞ ¼ 4p0q0.

• Signing: Let w be the hashed message to be signed and suppose the range of the hash function is Z�N . Assume
a coalition S of size t wants to obtain the signature s ¼ wd mod N .
(Æ) Generating partial results: Each user i 2S computes
ui ¼ yiM
0
S;iMSnfig mod MS;

si ¼ wui modN :

(Æ) Combining partial results: The incomplete signature �s is obtained by combining the si values

�s ¼
Y
i2S

si mod N : ð3Þ

(Æ) Correction: Let j ¼ w�MS mod N be the corrector. The incomplete signature can be corrected by
trying

ð�sjjÞe ¼ �seðjeÞj�? w ðmod NÞ ð4Þ
for 0 6 j < t. Then the signature s is computed by

s ¼ �sjdmod N ;

where d denotes the value of j that satisfies (4).

• Verification is the same as the standard RSA verification.

We call the signature �s generated in (3) incomplete since we need to obtain y ¼
P

i2Sui mod MS as the expo-
nent of w. Once this is achieved, we have wy � wd ðmod NÞ as y ¼ d þ Am0 for some A where m0 ¼ /ðNÞ.

Note that the equality in (4) must hold for some j 6 t � 1 since the ui values were already reduced modulo
MS. So, combining t of them in (3) will give d þ am0 þ dMS in the exponent for some d 6 t � 1. Thus in (3),
we obtained
�s ¼ wdþdMS mod N ¼ swdMS mod N ¼ sj�d mod N
and for j ¼ d, Eq. (4) will hold. Also note that the mappings we mod N and wd mod N are bijections in ZN ,
hence there will be a unique value of s ¼ �sjj which satisfies (4).

K. Kaya, A.A. Selçuk / Information Sciences 177 (2007) 4148–4160 4153
5.1. Security analysis

Here we will prove that the proposed threshold RSA signature scheme is secure (i.e. existentially non-forge-
able against an adaptive chosen message attack), provided that the RSA problem is intractable (i.e. RSA func-
tion is a one-way trapdoor function [7]). Throughout the paper, we assume a static adversary model where the
adversary controls exactly t � 1 users and chooses them at the beginning of the attack. In this model, the
adversary obtains all secret information of the corrupted users and the public parameters of the cryptosystem.
She can control the actions of the corrupted users, ask for partial signatures of the messages of her choice, but
she cannot corrupt another user in the course of an attack, i.e., the adversary is static in that sense.

Theorem 1. Given that the standard RSA signature scheme is secure, the threshold RSA signature scheme is

secure under the static adversary model.

Proof 1. To reduce the problem of breaking the standard RSA signature scheme to breaking the proposed
threshold scheme, we will simulate the threshold protocol with no information on the secret where the output
of the simulator is indistinguishable from the adversary’s point of view. Afterwards, we will show that the
secrecy of the private key d is not disrupted by the values obtained by the adversary. Thus, if the threshold
RSA scheme is not secure, i.e., an adversary who controls t � 1 users can forge signatures in the threshold
scheme, one can use this simulator to forge a signature in the standard RSA scheme.

Let S0 denote the set of users controlled by the adversary. To simulate the adversary’s view, the simulator
first selects a random interval I ¼ ½a; bÞ from ZM , M ¼

Qt
i¼1mi. The start point a is randomly chosen from ZM

and the end point is computed as b ¼ aþ m0MS0 . Then, the shares of the corrupted users are computed as
yj ¼ a mod mj for j 2 S0. Note that, these t � 1 shares are indistinguishable from random ones due to (2) and
the improved perfectness condition. Although the simulator does not know the real value of d, it is guaranteed
that there exists a y 2 I which is congruent to yjðmod mjÞ and dðmod m0Þ for all possible d values.

Since we have a ðt; nÞ-threshold scheme, given a valid RSA signature ðs;wÞ, the partial signature si for a user
i 62 S0 can be obtained by
si ¼ sj�dS
Y
j2S0
ðwujÞ�1 mod N ;

P� � P� �

where S ¼ S0 [fig, j ¼ w�MS mod N and dS is equal to either j2S0

uj

MS
þ 1 or j2S0

uj

MS
. The value of dS is

important because it carries information on y. Let U ¼
P

j2S0uj and US ¼ U mod MS. One can find whether
y is greater than US or not by looking at dS:
y < US if dS ¼ bU=MSc þ 1;

y P US if dS ¼ bU=MSc;
Since the simulator does not know the real value of y, to determine the value of dS, the simulator acts accord-
ing to the interval randomly chosen at the beginning of the simulation.
dS ¼
bU=MSc þ 1 if a < US;

bU=MSc if a P US:

�
ð5Þ
It is obvious that, the value of dS is indistinguishable from the real case if US 62 I . Now, we will prove that the
dS values computed by the simulator does not disrupt the indistinguishability from the adversary’s point of
view. First of all, there are ðn� t þ 1Þ possible dS computed by using US since all the operations in the expo-
nent depend on the coalition S alone. If none of the US values lies in I, the dS values observed by the adver-
sary will be indistinguishable from a real execution of the protocol. Using this observation, we can prove that
no information about the private key is obtained by the adversary.

Observing the t � 1 randomly generated shares, there are m0 ¼ /ðNÞ candidates in I for y which satisfy
yj ¼ y mod mj for all j 2S0. These m0 candidates have all different remainders modulo m0 since
gcdðMS0 ;m0Þ ¼ 1. So, exactly one of the remainders is equal to the private key d. If US 62 I for all S,

4154 K. Kaya, A.A. Selçuk / Information Sciences 177 (2007) 4148–4160
given an si, the shared value y can be equal to any of these m0 candidates hence any two different values of the
secret key d will be indistinguishable from adversary’s point of view. In our case, this happens with all but
negligible probability. First, observe that US � 0 mod mi and there are m0MS0=mi multiples of mi in I. Thus,

the probability of US 62 I for a coalition S is equal to ð1� m0MS0=mi

MS0
Þ ¼ ð1� m0MS0

MS
Þ. According to (2), mi > m2

0

for all i hence the probability of US 62 I for all possible S is less than ð1� 1
m0
Þn�tþ1, which is almost surely +1

for m0 � n.
Consequently, the output of the simulator is indistinguishable from a real instance from the adversary’s

point of view, and hence the simulator can be used to forge a signature in the standard RSA scheme if the
threshold RSA scheme can be broken. h
6. Sharing of the ElGamal decryption function

The ElGamal cryptosystem [13] is another popular public key scheme proposed by T. ElGamal in 1989. It is
an inherently probabilistic and semantically secure encryption scheme. The description of the cryptosystem is
as follows:

• Setup: Let p be a large prime and g be a generator of Zp. Choose a random a 2 f1; . . . ; p � 1g and compute
b ¼ ga mod p. ðb; g; pÞ and a are the public and private keys, respectively.

• Encryption: Given a message w 2 Zp, the ciphertext c ¼ ðc1; c2Þ is computed as
c1 ¼ gr mod p

c2 ¼ brw mod p

where r is a random integer from Zp.
• Decryption: Given a ciphertext c, the message w is computed as
w ¼ ðca
1Þ
�1c2 mod p:
ElGamal encryption scheme, like RSA, has the following multiplicative homomorphic property:
EðwÞ 	 Eðw0Þ ¼ Eðww0Þ
for messages w and w0 where E stands for the encryption function and · is the component-wise multiplica-
tion. Since the standard RSA encryption is deterministic, it is not semantically secure. One can use random
padding to add semantic security as in [4]. However, this removes the homomorphic property. ElGamal
does not suffer from such a problem since it is inherently semantically secure. This property makes ElGamal
encryption suitable for use in threshold password authenticated key exchange protocols [1].

Threshold ElGamal encryption scheme: The following is a procedure that shares the ElGamal decryption
function among n users with the Asmuth–Bloom SSS such that when t users come together they can decrypt
the ciphertext:

• Setup: In the ElGamal setup phase, choose p ¼ 2qþ 1 where q is a large random prime and let g 2 Z�p with
order q. Choose a random a 2 f1; . . . ; p � 1g and compute b ¼ ga mod p. Let a and ðb; g; pÞ be the private
and the public keys, respectively. Use Asmuth–Bloom SSS for sharing the private key a with m0 ¼ 2q.

• Encryption is the same as the standard ElGamal encryption.
• Decryption: Let ðc1; c2Þ be the ciphertext to be decrypted where c1 ¼ gk mod p for some k 2 f1; . . . ; p � 1g

and c2 ¼ bkw where w is the message. The coalition S of t users wants to obtain the message w ¼ sc2 mod p
for the decryptor s ¼ ðca

1Þ
�1 mod p.

Æ Generating partial results: Each user i 2S computes
ui ¼ yiM
0
S;iMSnfig mod MS; ð6Þ

si ¼ c�ui
1 mod p;

bi ¼ gui mod p: ð7Þ

K. Kaya, A.A. Selçuk / Information Sciences 177 (2007) 4148–4160 4155
Æ Combining partial results: The incomplete decryptor �s is obtained by combining the si values

�s ¼
Y
i2S

si mod p:

Æ Correction: The bi values will be used to find the exponent which will be used to correct the incomplete
decryptor. Compute the incomplete public key �b as

�b ¼
Y
i2S

bi mod p: ð8Þ

Let js ¼ cMS

1 mod p and jb ¼ g�MS mod p be the correctors for s and b, respectively. The corrector expo-
nent d can be obtained by trying

�bjj
b�

?
b mod p ð9Þ

for 0 6 j < t.
Æ Extracting the message: Compute the message w as

s ¼ �sjd
s mod p;

w ¼ sc2 mod p;

where d denotes the value of j that satisfies (9).
As in the case of RSA, the decryptor �s is incomplete since we need to obtain y ¼
P

i2Sui mod MS as the
exponent of c�1

1 . Once this is achieved, ðc�1
1 Þ

y � ðc�1
1 Þ

a mod N since y ¼ aþ A/ðpÞ for some A.
When the equality in (9) holds we know that b ¼ ga mod p is the correct public key. This equality must hold

for one j value, denoted by d, in the given interval because since the ui values in (6) and (7) are first reduced
modulo MS. So, combining t of them will give aþ am0 þ dMS in the exponent in (8) for some d 6 t � 1. Thus
in (8), we obtained
�b ¼ gaþam0þdMS mod p � gaþdMS ¼ bgdMS ¼ bj�d
b mod p
and for j ¼ d equality must hold. Actually, in (8) and (9), our purpose is not computing the public key since it
is already known. We want to find the corrector exponent d to obtain s, which is also equal to the one we use
to obtain b. The equality can be verified as seen below:
s � c�a
1 ¼ b�r

¼ ðg�ðaþðd�dÞMSÞÞr

¼ c�ðaþam0þdMSÞ
1 ðcMS

1 Þ
d ¼ �sjd

s mod p:
6.1. Security analysis

Here, we will prove that the threshold ElGamal encryption scheme is semantically secure provided that the
standard ElGamal encryption scheme is semantically secure. We refer the reader to [14] for a formal definition
of the threshold semantic security.

Theorem 2. Given that the standard ElGamal encryption scheme is semantically secure, the threshold ElGamal
encryption scheme is semantically secure under the static adversary model.

Proof 2. The structure of the proof is similar to that we did for the threshold RSA signature scheme. Let S0

denote the set of users controlled by the adversary. To simulate the adversary’s view, the simulator first selects
a random interval I ¼ ½a; bÞ from ZM , M ¼

Qt
i¼1mi. The start point a is randomly chosen from ZM and the end

point is computed as b ¼ aþ m0MS0 . Then, the shares of the corrupted users are computed as yj ¼ a mod mj

for j 2 S0.

4156 K. Kaya, A.A. Selçuk / Information Sciences 177 (2007) 4148–4160
Since we have a ðt; nÞ-threshold scheme, when we determine the yj values for j 2S0, the shares of other
users are also determined. Although they cannot be computed easily, given a valid message-ciphertext pair
ðw; ðc1; c2ÞÞ the partial decryptor si and bi for a user i 62S0 can be obtained by
si ¼ ðwc�1
2 Þj�dS

s

Y
j2S0

cuj

1 mod p;

bi ¼ bj�dS
b

Y
j2S0
ðbujÞ�1 mod p;

P� � P� �

where S ¼S0 [fig, js ¼ cMS

1 mod p, jb ¼ g�MS mod p and dS is equal to either j2S0
uj

MS
þ 1 or j2S0

uj

MS
.

We use the same ideas to choose the value of dS as in the previous simulator so we skip the details and the
analysis for the secrecy of the private key in the proof.

Consequently, the output of the simulator is indistinguishable from the adversary’s point of view, and
hence we proved that the threshold ElGamal scheme must be semantically secure if the standard one is. h
7. Sharing of the Paillier decryption function

Paillier’s probabilistic cryptosystem [21] is a member of a different class of cryptosystems where the message
is used in the exponent of the encryption operation. The description of the cryptosystem is as follows:

• Setup: Let N ¼ pq be the product of two large primes and k ¼ lcmðp � 1; q� 1Þ. Choose a random g 2 ZN2

such that the order of g is a multiple of N. The public and private keys are ðN ; gÞ and k, respectively.
• Encryption: Given a message w 2 ZN , the ciphertext c is computed as
c ¼ gwrN mod N 2;

where r is a random number from ZN .
• Decryption: Given a ciphertext c 2 ZN2 , the message w is computed as
w ¼ Lðck mod N 2Þ
Lðgk mod N 2Þ

mod N ;

where LðxÞ ¼ x�1
N , for x � 1 mod N .

Paillier’s encryption scheme is probabilistic and has interesting homomorphic properties:
Eðw1ÞEðw2Þ ¼ Eðw1 þ w2Þ
EðwÞa ¼ EðawÞ
for messages, w;w1;w2 and a random integer a where E stands for the encryption function. These homomor-
phic properties make this encryption scheme suitable for different applications such as secure voting and lot-
tery protocols [3,14], DSA sharing protocols [18], and private information retrieval [19].

Threshold Paillier encryption scheme: The following is a procedure that shares the Paillier decryption func-
tion among n users with the Asmuth–Bloom SSS such that when t users come together they can decrypt the
ciphertext. The setup part below is inspired by [14]:

• Setup: In the Paillier setup phase, choose large primes p ¼ 2p0 þ 1 and q ¼ 2q0 þ 1 where p0 and q0 are also
large random primes and gcdðN ;/ðNÞÞ ¼ 1 for N ¼ pq. Let g ¼ ð1þ NÞabN mod N 2 for random a and b

from Z�N . Compute h ¼ abk mod N for a random b 2 Z�N where k ¼ lcmðp � 1; q� 1Þ is the Carmichael
number for N. Let ðN ; g; hÞ and k be the public and private keys, respectively. Use the Asmuth–Bloom
SSS to share bk with m0 ¼ Nk.

• Encryption is the same as the standard Paillier encryption.
• Decryption: Let c ¼ gwrN mod N 2 be the ciphertext to be decrypted for some random r 2 Z�N where w is the

message from ZN . Assume a coalition S of size t wants to obtain the message w ¼ Lðcbk mod N2Þ
h mod N . We

call s ¼ cbk mod N 2 as the decryptor.

K. Kaya, A.A. Selçuk / Information Sciences 177 (2007) 4148–4160 4157
Æ Generating partial results: Each user i 2S computes

ui ¼ yiM
0
S;iMSnfigmod MS;

si ¼ cui mod N 2;

hi ¼ gui mod N 2:

Æ Combining partial results: The incomplete decryptor s is obtained by combining the si values

�s ¼
Y
i2S

si mod N 2:

Æ Correction: The hi values will be used to find the exponent which corrects the incomplete decryptor.
Compute the incomplete �h as

�h ¼
Y
i2S

hi mod N 2: ð10Þ

Let js ¼ c�MS mod N 2 and jh ¼ g�MS mod N 2 be the correctors for s and h, respectively. The corrector
exponent d can be obtained by trying

h9Lð�hjj
h mod N 2Þ ð11Þ

for 0 6 j < t. Note that, for wrong corrector exponents L is undefined.
Æ Extracting the message: Compute the message w as

s ¼ �sjd
s mod N 2;

w ¼ LðsÞ
h

mod N ;

where d denotes the value for j that satisfies (11).
The decryptor �s is incomplete and to find the corrector exponent we used a similar approach. When the
equality in (11) holds we know that h ¼ abk mod N 2 is the correct value. Also, this equality must hold for
one j value, denoted by d, in the given interval. Actually, in (10) and (11), our purpose is not computing h since
it is already known. We want to find the corrector exponent d to obtain s, which is also equal to the one we
used to obtain h.

7.1. Security analysis

Here, we will prove that the threshold Paillier encryption scheme is semantically secure provided that the
standard Paillier encryption scheme is semantically secure.

Theorem 3. Given that the standard Paillier encryption scheme is semantically secure, the threshold Paillier
encryption scheme is semantically secure under the static adversary model.

Proof 3. The structure of the proof is similar to those we did for the previous threshold schemes. Let S0 denote
the set of users controlled by the adversary. To simulate the adversary’s view, the simulator first selects a random
interval I ¼ ½a; bÞ from ZM , M ¼

Qt
i¼1mi. The start point a is randomly chosen from ZM and the end point is com-

puted as b ¼ aþ m0MS0 . Then, the shares of the corrupted users are computed as yj ¼ a mod mj for j 2S0.
Since we have a ðt; nÞ-threshold scheme, when we determine the yj values for j 2 S0, the shares of other

users are also determined. Although they cannot be computed easily, given a valid message-ciphertext pair
ðw; cÞ the decryptor share si and hi for a user i 62 S0 can be obtained by
si ¼ ð1þ whNÞj�dS
s

Y
j2S0
ðcuj

1 Þ
�1 mod N 2;

hi ¼ ð1þ hNÞj�dS
h

Y
j2S0
ðhujÞ�1 mod N 2;

4158 K. Kaya, A.A. Selçuk / Information Sciences 177 (2007) 4148–4160
where S ¼S0 [fig, js ¼ c�MS mod N 2, jh ¼ g�MS mod N 2 and dS is equal to either

P
j2S0 uj

MS

� �
þ 1 orP

j2S0
uj

MS

� �
. We use the same ideas to choose the value of dS as in the previous simulator so we skip the details

and the analysis for the secrecy of the private key in the proof.

Consequently, the output of the simulator is indistinguishable from the adversary’s point of view, and
hence we proved that the threshold Paillier scheme must be semantically secure if the standard one is. h
8. Efficiency analysis of the proposed schemes

Although the proposed schemes are not more efficient than Shoup’s work [26], which is the fastest threshold
RSA signature scheme, they are comparable in performance. In this section, we give an efficiency analysis of
the proposed schemes. First, we compare the proposed threshold RSA scheme with the basic RSA scheme in
[26] in terms of share size and computation cost. For the computation cost, the dominating factor is the expo-
nentiation operations hence we are mainly interested in the exponentiations. Note that, the cost of an expo-
nentiation is proportional to the size of the exponent.

• Share size: In [26], the size of a share is approximately k bits for a k-bit modulus N. In our case, because of
(2) the size of a share is about 2k bits for the same N.

• Computing partial signatures: In [26], it takes an exponentiation with a ðk þ logðn!ÞÞ-bit exponent to com-
pute a partial signature. In the proposed scheme,
ui ¼ yiM
0
S;iMSnfig mod MS

is a 2kt-bit integer. To compute it efficiently we first compute M 0
S;i and r ¼ byiM

0
S;i=mic which are 2k-bit

integers. Now ui is equal to

ui ¼ MSnfigðyiM
0
S;i � rmiÞ

and computing the partial signature si ¼ wui mod N needs a modular exponentiation with 2kt-bit exponent.
Note that no extra storage is needed to store ui.

• Combining partial signatures: In [26], combining the partial results requires t exponentiations with approx-
imately logðn!Þ-bit exponents, hence the cost is t logðn!Þ. After that these t results are multiplied to obtain
the signature. In the proposed scheme, after obtaining the incomplete signature, an exponentiation with a
2kt-bit exponent is needed to compute the corrector. Note that while computing the partial signature the ith
player computes wMSnfig mod N as an intermediate value. The combiner can compute its inverse and raise it
to the mith power to compute the corrector which requires an exponentiation with 2k-bit exponent rather
than 2kt. After that, at most 2t more multiplications are required for computing the incomplete signature
and checking Eq. (4).

Table 1 compares the performance of the proposed scheme with that of [26]. Although not more efficient,
the proposed RSA signature scheme is comparable in performance to Shoup’s scheme given that t is a small
integer, which is the case in a typical application. Regarding the proposed threshold ElGamal and Pallier
schemes, their complexity differs from the threshold RSA scheme only by a constant factor and hence is sim-
ilar to that in Table 1.
Table 1
Comparison of the proposed threshold RSA signature scheme with Shoup’s scheme [26] in terms of the share sizes, and the cost of
computing and combining the partial signatures measured in terms of the total size of exponents

Criteria Shoup’s scheme Proposed scheme

Share sizes k 2k
Cost of computing partial signatures k þ logðn!Þ 2kt
Cost of combining partial signatures t logðn!Þ 2k

K. Kaya, A.A. Selçuk / Information Sciences 177 (2007) 4148–4160 4159
9. Conclusion

In this paper, sharing of the RSA signature and the ElGamal and Paillier decryption functions with the
Asmuth–Bloom SSS is investigated. Previous solutions for sharing these functions were traditionally based
on the Shamir’s and Blakley’s SSSs [6,8–10,14,16,17,24,26]. To the best of our knowledge, the schemes
described in this paper are the first secure FSSs that use the Asmuth–Bloom SSS.

As a future work, ways of improving the efficiency of the proposed schemes can be investigated. Especially,
finding a way to compute the signatures/messages without the correction phase would be a significant
improvement. Also, one can investigate how to integrate additional features like robustness [15] and proactiv-
ity [20] into the proposed schemes. The ideas presented in this paper can also be used to obtain further FSSs
for different public key cryptosystems.

Acknowledgments

We thank _Ismail Güloğlu for informative discussions and his comments on this paper, to Zahir Tezcan for
his comments on the ElGamal threshold scheme, and to Baha Güçlü Dündar and Said Kalkan for their com-
ments on the Paillier threshold scheme. We also thank anonymous Information Sciences referees for their valu-
able comments which significantly helped to improved the paper.

References

[1] M. Abdalla, O. Chevassut, P.-A. Fouque, D. Pointcheval, A simple threshold authenticated key exchange from short secrets, in: Proc.
of ASIACRYPT 2005, LNCS, vol. 3778, Springer-Verlag, 2005, pp. 566–584.

[2] C. Asmuth, J. Bloom, A modular approach to key safeguarding, IEEE Trans. Informat. Theory 29 (2) (1983) 208–210.
[3] O. Baudron, P.-A. Fouque, D. Pointcheval, G. Poupard, J. Stern, Practical multi-candidate election system, in: Proc. of PODC 2001,

20th ACM Symposium on Principles of Distributed Computing, 2001, pp. 274–283.
[4] M. Bellare, P. Rogaway, Optimal asymmetric encryption, in: Proc. of EUROCRYPT 1994, LNCS, vol. 950, Springer-Verlag, 1994,

pp. 92–111.
[5] G. Blakley, Safeguarding cryptographic keys, in: Proc. of AFIPS National Computer Conference, 1979.
[6] C.K. Chu, W.G. Tzeng, Optimal resilient threshold signatures, Informat. Sci. 177 (8) (2007) 1834–1851.
[7] R. Cramer, V. Shoup, Signature schemes based on the strong RSA assumption, ACM Trans. Informat. Syst. Security 3 (3) (2000)

161–185.
[8] Y. Desmedt, Some recent research aspects of threshold cryptography, in: Proc. of ISW ’97, 1st International Information Security

Workshop, LNCS, vol. 1196, Springer-Verlag, 1997, pp. 158–173.
[9] Y. Desmedt, Y. Frankel, Threshold cryptosystems, in: Proc. of CRYPTO’89, LNCS, vol. 435, Springer-Verlag, 1990, pp. 307–315.

[10] Y. Desmedt, Y. Frankel, Shared generation of authenticators and signatures, in: Proc. of CRYPTO’91, LNCS, vol. 576, Springer-
Verlag, 1992, pp. 457–469.

[11] Y. Desmedt, Y. Frankel, Homomorphic zero-knowledge threshold schemes over any finite abelian group, SIAM J. Discrete Math. 7
(4) (1994) 667–679.

[12] C. Ding, D. Pei, A. Salomaa, Chinese Remainder Theorem: Applications in Computing, Coding, Cryptography, World Scientific,
1996.

[13] T. ElGamal, A public key cryptosystem and a signature scheme based on discrete logarithms, IEEE Trans. Informat. Theory 31 (4)
(1985) 469–472.

[14] P.A. Fouque, G. Poupard, J. Stern, Sharing decryption in the context of voting or lotteries, in: Proc. of FC 2000, 4th International
Conference on Financial Cryptography, LNCS, vol. 1962, Springer-Verlag, 2001, pp. 90–104.

[15] R. Gennaro, S. Jarecki, H. Krawczyk, T. Rabin, Robust threshold DSS signatures, Informat. Comput. 164 (1) (2001) 54–84.
[16] H.F. Huang, C.C. Chang, A novel efficient (t, n) threshold proxy signature scheme, Informat. Sci. 176 (10) (2006) 1338–1349.
[17] A. Lysyanskaya, C. Peikert, Adaptive security in the threshold setting: from cryptosystems to signature schemes, in: Proc. of

ASIACRYPT 2001, LNCS, vol. 2248, Springer-Verlag, 2001, pp. 331–350.
[18] P. MacKenzie, M.K. Reiter, Two-party generation of DSA signatures, Int. J. Informat. Security 2 (3) (2004) 218–239.
[19] R. Ostrovsky, W. Skeith, Private searching on streaming data, in: Proc. of CRYPTO’05, LNCS, vol. 3621, Springer-Verlag, 2005, pp.

223–240.
[20] R. Ostrovsky, M. Yung, How to withstand mobile virus attacks, in: Proc. of 10th ACM Symposium on the Principles of Distributed

Computing, ACM, 1991, pp. 51–61.
[21] P. Paillier, Public key cryptosystems based on composite degree residuosity classes, in: Proc. of EUROCRYPT 1999, LNCS, vol.

1592, Springer-Verlag, 1999, pp. 223–238.
[22] M. Quisquater, B. Preneel, J. Vandewalle, On the security of the secret sharing scheme based on the chinese remainder theorem, in:

Proc. of PKC 2002, LNCS, vol. 2274, Springer-Verlag, 2002, pp. 199–210.

4160 K. Kaya, A.A. Selçuk / Information Sciences 177 (2007) 4148–4160
[23] R. Rivest, A. Shamir, L. Adleman, A method for obtaining digital signatures and public key cryptosystems, Commun. ACM 21 (2)
(1978) 120–126.

[24] A. De Santis, Y. Desmedt, Y. Frankel, M. Yung, How to share a function securely? in: Proc. of STOC94, 1994, pp. 522–533.
[25] A. Shamir, How to share a secret? Commun. ACM 22 (11) (1979) 612–613.
[26] V. Shoup, Practical threshold signatures, in: Proc. of EUROCRYPT 2000, LNCS, vol. 1807, Springer-Verlag, 2000, pp. 207–220.

	Threshold cryptography based on Asmuth-Bloom secret sharing
	Introduction
	Background
	Secret sharing schemes
	Function sharing schemes

	Asmuth-Bloom secret sharing scheme
	Function sharing based on the Asmuth-Bloom scheme
	Sharing of the RSA function
	Security analysis

	Sharing of the ElGamal decryption function
	Security analysis

	Sharing of the Paillier decryption function
	Security analysis

	Efficiency analysis of the proposed schemes
	Conclusion
	Acknowledgments
	References

