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We consider indecomposable representations of the Klein four group over a field of
characteristic 2 and of a cyclic group of order pm with p, m coprime over a field of
characteristic p. For each representation, we explicitly describe a separating set in the
corresponding ring of invariants. Our construction is recursive and the separating sets
we obtain consist of almost entirely orbit sums and products.
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1. Introduction

Let V be a finite-dimensional representation of a group G over an algebraically
closed field F . In the sequel, we will also call V a G-module. There is an induced
action on the symmetric algebra F [V ] := S(V ∗) given by σ(f) = f ◦ σ−1 for σ ∈ G

and f ∈ F [V ] (we use σ−1 instead of σ to obtain a left action). We let F [V ]G denote
the subalgebra of invariant polynomials in F [V ]. A subset A ⊆ F [V ]G is said to
be separating for V if for any pair of vectors u, w ∈ V , we have: If f(u) = f(w)
for all f ∈ A, then f(u) = f(w) for all f ∈ F [V ]G. Goals in invariant theory
include finding generators and studying properties of invariant rings. In the study of
separating invariants the goal is rather to find and describe a subalgebra of the ring
of invariants which separates the group orbits. Although separating invariants have
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been an object of study since the early times of invariant theory, they have regained
particular attention following the influential textbook of Derksen and Kemper [5].
The invariant ring is often too complicated and it is difficult to describe explicit
generators and relations. Meanwhile, there have been several papers within the
last decade that demonstrate that one can construct separating subalgebras with
nice properties that make them more accessible. For instance, Noether’s (relative)
bound holds for separating invariants independently of the characteristic of the field
[5, Corollary 3.9.14]. For more results on separating algebras we direct the reader
to [6–16].

If the order of the group is divisible by the characteristic of the field, then
the degrees of the generators can become arbitrarily big. Therefore, computing the
invariant ring in this case is particularly difficult. Even in the simplest situation
of a cyclic group of prime order acting through Jordan blocks, explicit generating
sets are known only for a handful of cases. This rather short list of cases con-
sists of indecomposable representations up to dimension nine and decomposable
ones whose indecomposable summands have dimension at most four. See [17] for
a classical work and [18] for the most recent advances in this matter which also
gives a good taste of the difficulty of the problem. On the other hand, separating
invariants for these representations have a surprisingly simple theory. In [15, 16], it
is observed that a separating set for an indecomposable representation of a cyclic
p-group over a field of characteristic p can be obtained by adding some explicitly
defined invariant polynomials to a separating set for a certain quotient represen-
tation. The main ingredient of the proofs of these results is the efficient use of
the surjection of a representation to a quotient representation to establish a link
between the respective separating sets that generating sets do not have. In this
paper, we build on this technique to construct separating invariants for the inde-
composable representations of the Klein four group over a field of characteristic 2
and of a cyclic group of order pm with p, m coprime over a field of characteristic p.
Despite being the immediate follow ups of the cyclic p-groups, their invariant rings
have not been computed yet. Therefore, these groups (and representations) appear
to be the natural cases to consider. As in the case for cyclic p-groups, we describe
a finite separating set recursively. We remark that in [5, Theorem 3.9.13], see also
[12, Corollary 19], a way is given for calculating separating invariants explicitly
for any finite group. This is done by presenting a large polynomial whose coeffi-
cients form a separating set. On the other hand, the separating sets we compute
consist of invariant polynomials that are almost exclusively orbit sums and prod-
ucts. These are “basic” invariants which are easier to obtain. Additionally, our
approach respects the inductive structure of the considered modules. Also, the size
of the set we give for the cyclic group of order pm depends only on the dimension
of the representation while the size in [5, Theorem 3.9.13] depends on the group
order as well. Hence, for large p and m our separating set is much smaller for this
group.
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The strategy of our construction is based on the following theorem.

Theorem 1.1. Let V and W be G-modules, φ : V →W a G-equivariant surjection,

and φ∗ : F [W ] ↪→ F [V ] the corresponding inclusion. Let S ⊆ F [W ]G be a separating
set for W . Assume that T ⊆ F [V ]G is a set of invariant polynomials with the
following property: if v1, v2 ∈ V are in different G-orbits and if φ(v1) = φ(v2), then
there is a polynomial f ∈ T such that f(v1) �= f(v2). Then φ∗(S)∪ T is a separating
set for V .

Proof. Pick two vectors v1, v2 ∈ V in different G-orbits. If φ(v1) and φ(v2) are
in different G-orbits, then there exists a polynomial f ∈ S that separates these
vectors, so φ∗(f) separates v1, v2. So, we may assume that φ(v1) and φ(v2) are in
the same G-orbit. Furthermore, by replacing v2 with a suitable vector in its orbit
we may take φ(v1) = φ(v2). Hence, by construction, T contains an invariant that
separates v1 and v2 as desired.

Before we finish this section we recall the definitions of a transfer and a norm.
For a subgroup H ⊆ G and f ∈ F [V ]H , the relative transfer TrG

H(f) is defined to be∑
σ∈G/H σ(f). We also denote TrG

{ι}(f) = TrG(f), where ι is the identity element
of G. Also for f ∈ F [V ], the norm NH(f) is defined to be the product

∏
σ∈H σ(f).

2. The Klein Four Group

For the rest of this section, G denotes the Klein four group {ι, σ1, σ2, σ3} (σ2
1 = σ2

2 =
σ2

3 = ι and σ1σ3 = σ2). Over an algebraically closed field F of characteristic 2, the
complete list of indecomposable G-modules is given in Benson [2, Theorem 4.3.3].
For each module in the list, we will explicitly construct a finite separating set. The
modules in this list come in five “types”. We use the same enumeration as in [2].
The first type (i) is just the regular representation FG of G. A minimal generating
set consisting of six orbit sums of degree at most four is given in [4, Sec. 4.7], and
the invariant ring can also easily be computed with Magma. In the following, we
will thus concentrate on the remaining four types, where each type consists of an
infinite series of indecomposable representations. Let In denote the identity matrix
of Fn×n, and Jλ denote an upper triangular Jordan block of size n with eigenvalue
λ ∈ F . Let Hi = {ι, σi} for i = 1, 2, 3 be the three subgroups of order 2.

2.1. Types (ii) and (iii)

The even-dimensional indecomposable representations fall into two types. For λ ∈
F , we let V2n,λ denote the 2n-dimensional module afforded by the representation
given by σ1 �→ (In In

0 In
) and σ3 �→ (In Jλ

0 In
). The representations V2n,λ comprise those

of type (ii). Meanwhile type (iii) representations are given by σ1 �→ (In J0
0 In

) and

σ3 �→ (In In

0 In
) for n ≥ 1. We denote these modules by W2n. Notice that the matrix
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group associated with W2n is the same as the matrix group associated with V2n,0.
Therefore, their invariant rings are equal, and a separating set for V2n,0 is also a
separating set for W2n. We write F [V2n,λ] = F [x1, . . . , x2n]. We then have

σ1xi = xi + xn+i for 1 ≤ i ≤ n,

σ3xi = xi + λxn+i + xn+i+1 for 1 ≤ i ≤ n − 1,

σ3xn = xn + λx2n,

xn+i ∈ F [V2n,λ]G for 1 ≤ i ≤ n.

We start by computing several transfers and norms modulo some subspaces of
F [V2n,λ]. Define R := F [x2, . . . , x2n] and S := F [x1, . . . , xn−1, xn+1, . . . , x2n]. Note
that S is a G-subalgebra of F [V2n,λ]. We will need the first assertion of the following
lemma for type (v) as well, so we mark this result with a star. Note that the given
congruence particularly holds modulo R, as R contains R ∩ S.

Lemma 2.1. We have

(a*) TrG(x1xixj) ≡ x1(xn+ixn+j+1 +xn+i+1xn+j) mod R∩S for 2 ≤ i, j ≤ n−1.
(b) TrG(x1xn−1xn) ≡ x1x

2
2n mod R.

Proof. (a*) Since we work modulo the subvectorspace R ∩ S we only consider the
terms containing x1 or xn. So

TrG(x1xixj) ≡ x1xixj + x1(xi + xn+i)(xj + xn+j)

+ x1(xi + λxn+i + xn+i+1)(xj + λxn+j + xn+j+1)

+ x1(xi + (λ + 1)xn+i + xn+i+1)(xj + (λ + 1)xn+j + xn+j+1)

≡ x1xn+ixn+j+1 + x1xn+i+1xn+j mod R ∩ S.

(b) This part follows along the same lines as the first part.

The invariant in (b) of the following lemma will also be needed for type (v).

Lemma 2.2. For n ≥ 3, we have

(a) TrG(x1x
3
2) ≡ λ(λ + 1)x1x

3
n+2 mod (R + xn+3F [V2n,λ]).

(b*) The polynomial NH2(x1xn+2 + x2xn+1) is in F [V2n,λ]G. Moreover, we have

NH2(x1xn+2 + x2xn+1) ≡ x2
1x

2
n+2 + x1xn+2(x2

n+2 + xn+1xn+3) mod R ∩ S.

Proof. (a) We only consider the terms containing x1 and not xn+3, so

TrG(x1x
3
2) ≡ x1x

3
2 + x1(x2 + xn+2)3 + x1(x2 + λxn+2)3

+ x1(x2 + (λ + 1)xn+2)3

≡ λ(λ + 1)x1x
3
n+2 mod (R + xn+3F [V2n,λ]).
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(b) Note that x1xn+2 + x2xn+1 is H1-invariant, so the H2-orbit product of this
polynomial is G-invariant. Second, we have

σ2(x1xn+2 + x2xn+1) = (x1 + (λ + 1)xn+1 + xn+2)xn+2

+ (x2 + (λ + 1)xn+2 + xn+3)xn+1.

Considering the monomials that are divisible by x1 in the orbit product, a routine
computation yields the desired equivalence.

Let (a1, . . . , an, an+1, . . . , a2n)∈F 2n. We have a G-equivariant surjection V2n,λ→
V2n−2,λ given by

φ : (a1, . . . , an, an+1, . . . , a2n) → (a2, . . . , an, an+2, . . . , a2n) ∈ F 2n−2.

Therefore, F [V2n−2,λ] =F [x2, . . . , xn, xn+2, . . . , x2n] is a G-subalgebra of F [V2n,λ] =
F [x1, . . . , xn, xn+1, . . . , x2n].

Proposition 2.1. Let n ≥ 3 and S ⊆ F [V2n−2,λ]G be a separating set for V2n−2,λ.
Then φ∗(S) together with the set T consisting of

xn+1, NG(x1), fλ :=

{
TrG(x1x

3
2) for λ �= 0, 1

NH2(x1xn+2 + x2xn+1) for λ ∈ {0, 1},
TrG(x1xixi+1) for 2 ≤ i ≤ n − 1

is a separating set for V2n,λ. Moreover, a separating set for V2n,0 is a separating set
for W2n.

Proof. Let v1 = (a1, . . . , an, an+1, . . . , a2n) and v2 = (b1, . . . , bn, bn+1, . . . , b2n) be
two vectors in V2n with φ(v1) = φ(v2), so ai = bi for i ∈ {1, . . . , 2n}\{1, n + 1}.
To apply Theorem 1.1, we show that if all elements of T take the same values
on v1 and v2, then v1 and v2 are in the same orbit. Since xn+1 ∈ T , we have
an+1 = bn+1, hence we have v2 = (b1, a2, . . . , an, an+1, . . . , a2n). If a1 = b1 we are
done, therefore we consider the case a1 �= b1. Then Lemma 2.1(b) implies a2n = 0.
Since TrG(x1xixi+1) ≡ x1(xn+ixn+i+2 + x2

n+i+1) mod R for 2 ≤ i ≤ n − 2, we
successively get a2n−1 = a2n−2 = · · · = an+3 = 0. If λ �= 0, 1 we also have an+2 = 0
by Lemma 2.2(a). If λ ∈ {0, 1} and an+2 �= 0, NH2(x1xn+2 + x2xn+1) taking the
same value on v1, v2 implies a1 = b1 + an+2, hence v1 = σ3v2 for λ = 0 and
v1 = σ2v2 for λ = 1 respectively, and we are done. So now assume an+2 = 0. Then
NG(x1)(v1) = NG(x1)(v2) implies a1 + b1 ∈ {an+1, λan+1, (λ + 1)an+1}, hence
v1 = σiv2 for some i ∈ {1, 2, 3}.

The final statement follows because the matrix group associated to V2n,0 is the
same as the group associated to W2n, so their invariant rings are equal.
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We start the induction for λ �= 0, 1 — the case λ ∈ {0, 1} is left to the reader
(or to Magma).

Lemma 2.3. A separating set for λ �= 0, 1 and n = 2 is given by the invariants

g1 := x1x4 +
1

λ(λ + 1)
x2

2 + x2

(
x3 +

1
λ(λ + 1)

x4

)
,

NG(x1), NG(x2), x3, x4.

Note that since G is not a reflection group, we need at least five separating
invariants by [8, Theorem 1.1].

Proof of Lemma 2.3. We show that two points v1, v2 which cannot be sepa-
rated by the invariants above are in the same orbit. The invariants x3, x4 imply
that the two points have the form v1 = (a1, a2, a3, a4) and v2 = (b1, b2, a3, a4).
As NG(x2)(v1) = NG(x2)(v2), we have a2 + b2 ∈ {0, a4, λa4, (λ + 1)a4}, so after
replacing v2 by an element in its orbit we can assume a2 = b2. If a4 �= 0, then
g1(v1) = g1(v2) implies a1 = b1 and we are done. Therefore, we consider the case
a4 = 0. Then NG(x1)(v1) = NG(x1)(v2) implies a1 + b1 ∈ {0, a3, λa3, (λ + 1)a3}, so
v1, v2 are in the same orbit.

2.2. Type (iv)

This type is afforded by the representation given by

σ1 �→

 In

01×(n−1)

In−1

0 In−1


 and σ2 �→


 In

In−1

01×(n−1)

0 In−1




for a positive integer n, where 0k×l denotes a k × l matrix whose entries are all
zero. We let W2n−1 denote this representation. Notice that W2n−1 is isomorphic to
the submodule of V2n,1 spanned by e1, . . . , en, en+2, . . . , e2n, where e1, . . . , e2n are
the standard basis vectors of F 2n. Dual to this inclusion, there is a restriction map
F [V2n,1]G → F [W2n−1]G, f �→ f |W2n−1 which sends separating sets to separating
sets by [5, Theorem 2.3.16]. Therefore, in view of Proposition 2.1, we have the
following.

Proposition 2.2. Assume the notation of Proposition 2.1. Let n ≥ 3 and S ⊆
F [V2n−2,1]G be a separating set for V2n−2,1. Let T denote the set of polynomials
consisting of φ∗(S), NG(x1), f1 and TrG(x1xixi+1) for 2 ≤ i ≤ n − 1. Then the
polynomials in T restricted to W2n−1 form a separating set for W2n−1.

2.3. Type (v)

We consider the type (ii) module V2n,1. Then 〈en〉 is a G-submodule, and we define
V2n−1 := V2n,1/〈en〉 with basis ẽi := ei + 〈en〉, i ∈ {1, . . . , 2n}\{n}. The modules
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V2n−1 comprise the type (v) representations and they are afforded by

σ1 �→
(

In−1 In−1 0(n−1)×1

0 In

)
and σ2 �→

(
In−1 0(n−1)×1 In−1

0 In

)
.

We have a G-algebra inclusion F [V2n−1] = F [x1, . . . , xn−1, xn+1, . . . , x2n] ⊂
F [V2n,1].

The action on the variables is given by

σ1(xi) =

{
xi + xn+i for 1 ≤ i ≤ n − 1,

xi for n + 1 ≤ i ≤ 2n,

and

σ2(xi) =

{
xi + xn+i+1 for 1 ≤ i ≤ n − 1,

xi for n + 1 ≤ i ≤ 2n.

Let (a1, . . . , an−1, an+1, . . . , a2n) ∈ F 2n−1 ∼= V2n−1. We have a G-equivariant sur-
jection V2n−1 → V2n−3 given by

φ : (a1, . . . , an−1, an+1, . . . , a2n) → (a2, . . . , an−1, an+2, . . . , a2n) ∈ F 2n−3.

Therefore, F [V2n−3] = F [x2, . . . , xn−1, xn+2, . . . , x2n] is a G-subalgebra of F [V2n−1]
= F [x1, . . . , xn−1, xn+1, . . . , x2n]. Also, let R := F [x2, . . . , xn−1, xn+1, . . . , x2n]. We
will make computations modulo R, considered as a subvectorspace of F [V2n−1], and
we can reuse the equations of Lemmas 2.1(a*) and 2.2(b*).

Lemma 2.4. Let v1, v2 ∈ V2n−1 be two vectors in different orbits that agree
everywhere except the first coordinate. Say, v1 = (a1, . . . , an−1, an+1, . . . , a2n),
v2 = (b1, a2, . . . , an−1, an+1, . . . , a2n). Assume further that one of the following
holds:

(a) an+2 �= 0 and ai = 0 for n + 3 ≤ i ≤ 2n,

(b) ai = a2n �= 0 for n + 2 ≤ i ≤ 2n − 1.

Then the invariant

NH2(x1xn+2 + x2xn+1) ≡ x2
1x

2
n+2 + x1xn+2(x2

n+2 + xn+1xn+3) mod R

separates v1 and v2.

Proof. Note that NH2(x1xn+2 + x2xn+1) was also used in the separating set for
the even-dimensional representations, see Lemma 2.2(b*). We let f denote this
polynomial. We have to show that if f does not separate v1, v2, then these two
points are in the same orbit. By assumption, a1 �= b1. First, assume (a) holds. Then
f(v1) = f(v2) implies (a1 + b1)2a2

n+2 = (a1 + b1)a3
n+2, hence a1 = b1 + an+2. Since

ai = 0 for i ≥ n + 3 this implies that v1 = σ2v2 and we are done. Next assume (b)
holds. Then f(v1) = f(v2) implies (a1 + b1)2a2

n+2 = (a1 + b1)a2
n+2(an+1 + an+2),

hence a1 = b1 + an+1 + an+2. Since ai = a2n for n + 2 ≤ i ≤ 2n − 1, this implies
that v1 = σ3v2.
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Lemma 2.5. For 2 ≤ i ≤ n − 1, we have

TrG(x1x
3
i ) ≡ x1xn+ixn+i+1(xn+i + xn+i+1) mod R.

Proof.
TrG(x1x

3
i ) ≡ x1x

3
i + x1(xi + xn+i)3 + x1(xi + xn+i+1)3

+ x1(xi + xn+i + xn+i+1)3

≡ x1xn+ixn+i+1(xn+i + xn+i+1) mod R.

Proposition 2.3. Let n ≥ 3 and S ⊆ F [V2n−3]G be a separating set for V2n−3.
Then φ∗(S) together with the set T consisting of

xn+1, NG(x1), NH2(x1xn+2 + x2xn+1), TrG(x1x2xn−1),

TrG(x1xixi+1) for 2 ≤ i ≤ n − 2, TrG(x1x
3
i ) for 2 ≤ i ≤ n − 1

is a separating set for V2n−1.

Proof. Let

v1 = (a1, . . . , an−1, an+1, . . . , a2n) and v2 = (b1, . . . , bn−1, bn+1, . . . , b2n)

be two vectors in V2n−1 with φ(v1) = φ(v2), so ai = bi for all i �= 1, n+ 1. To apply
Theorem 1.1, we show that if all elements of T take the same values on v1 and v2,
then these two points are in the same orbit. Since xn+1 ∈ T , we have an+1 = bn+1,
hence we have v2 = (b1, a2, . . . , an−1, an+1, . . . , a2n). If a1 = b1 we are done, so we
consider the case a1 �= b1.

We first assume an+i �= 0 for all 2 ≤ i ≤ n. Lemma 2.5 implies an+2 = an+3 =
· · · = a2n �= 0, and from Lemma 2.4(b) it follows v1 and v2 are in the same orbit,
and we are done. Therefore, we now assume there is a 2 ≤ i ≤ n with an+i = 0, and
let i be maximal with this property. Consider the invariants fj := TrG(x1xjxj+1) ≡
x1(xn+jxn+j+2 + x2

n+j+1) mod R of T for 2 ≤ j ≤ n − 2 (see Lemma 2.1(a*)).
For 2 ≤ j ≤ n − 2, if an+j = 0, then fj(v1) = fj(v2) implies an+j+1 = 0.

Therefore, i ≥ n − 1.
If i = n − 1, then a2n �= 0, and fj(v1) = fj(v2) for j = n − 3, n − 4, . . . , 2

implies an+j = 0 for 3 ≤ j ≤ n−1. As TrG(x1x2xn−1) ≡ x1(xn+2x2n +xn+3x2n−1)
mod R takes the same value on v1, v2, we also have an+2 = 0. Now, NG(x1)(v1) =
NG(x1)(v2) implies a1 = b1 + an+1, thus v1 = σ1v2, and we are done.

If i = n, i.e. a2n = 0, then since fj(v1) = fj(v2) for j = n − 2, n − 3, . . . , 2, we
get an+j = 0 for 3 ≤ j ≤ 2n. In case an+2 �= 0, we are done by Lemma 2.4(a).
If an+2 = 0, then NG(x1)(v1) = NG(x1)(v2) implies as before a1 = b1 + an+1 and
v1 = σ1v2.

Remark 2.1. A separating set for V3 is formed by NG(x1), x3, x4. In fact, these
polynomials form a homogeneous system of parameters for F [V3]G. Since the
product of their degrees is equal to four, it follows from [5, Theorem 3.7.5] that
F [V3]G = F [NG(x1), x3, x4].
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3. Cyclic Groups

Let F be a field of positive characteristic p and G = Zprm be the cyclic group of
order prm, where r, m are non-negative integers with (m, p) = 1. Let H and M be
the subgroups of G of order pr and m, respectively. Let Vn be an indecomposable
G-module of dimension n.

Lemma 3.1. There exists a basis e1, e2, . . . , en of Vn such that σ−1(ei) = ei + ei+1

for 1 ≤ i ≤ n − 1 and σ−1(en) = en for a generator σ of H, and α(ei) = λei for
1 ≤ i ≤ n for a mth root of unity λ ∈ F and α a generator of M .

Proof. It is well known that n ≤ pr and there is basis such that a generator ρ of G

acts by a Jordan matrix Jµ = µIn + N with µ a mth root of unity [1, p. 24]. Then
ρpr

is a generator of M acting by (µIn + N)pr

= µpr

In, and ρm is a generator of
H acting by (µIn + N)m = In + mµm−1N +

(
m
2

)
µm−2N2 + · · · . This matrix has

Jordan normal form J1 = In + N , and the matrix representing ρpr

is fixed under
change of basis, which proves the lemma.

Since we want our representation to be faithful, we will assume that λ is a
primitive mth root of unity from now on. We also restrict to the case r = 1. Let
x1, x2, . . . , xn be the corresponding basis elements in V ∗

n . We have σ(xi) = xi+xi−1

for 2 ≤ i ≤ n, σ(x1) = x1 and α(xi) = λ−1xi for 1 ≤ i ≤ n. Since α acts by
multiplication by a primitive mth root of unity, there exists a non-negative integer
k such that xnxp−1

i+1 xk
i ∈ F [Vn]M for 1 ≤ i ≤ n − 2. We assume that k is the

smallest such integer. Notice that k is the least integer satisfying k ≡ −p mod m.
Let Ii denote the ideal in F [Vn] generated by x1, x2, . . . , xi. Set fi = xnxp−1

i+1 xk
i for

1 ≤ i ≤ n − 2.

Lemma 3.2. Let a be a positive integer. Then
∑

0≤l≤p−1 la ≡ −1 mod p if p − 1
divides a and

∑
0≤l≤p−1 la ≡ 0 mod p, otherwise.

Proof. See [3, 9.4] for a proof for this statement.

Now set R := F [x1, x2, . . . , xn−1].

Lemma 3.3. Let 1 ≤ i ≤ n − 2. We have

TrG
M (fi) ≡ −xnxp+k−1

i mod (Ii−1 + R).

Proof. We only consider the terms containing xn but not x1, . . . , xi−1, thus we
have

σl(fi) =
(

xn + lxn−1 +
(

l

2

)
xn−2 + · · ·

)
(xi+1 + lxi + · · ·)p−1(xi + lxi−1 + · · ·)k

≡ xn(xi+1 + lxi)p−1xk
i mod (Ii−1 + R).

Thus it suffices to show that
∑

0≤l≤p−1(xi+1 + lxi)p−1 = −xp−1
i . Let a and b

be non-negative integers such that a + b = p − 1. Then the coefficient of xa
i+1x

b
i in
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(xi+1+lxi)p−1 is
(
p−1

b

)
lb and so the coefficient of xa

i+1x
b
i in

∑
0≤l≤p−1(xi+1+lxi)p−1

is
∑

0≤l≤p−1

(
p−1

b

)
lb. Hence, the result follows from the previous lemma.

Let (c1, c2, . . . , cn) be a vector in Vn. There is a G-equivariant surjection
φ : Vn → Vn−1 given by (c1, c2, . . . , cn) → (c1, c2, . . . , cn−1). Hence, F [Vn−1] =
F [x1, . . . , xn−1] is a G-subalgebra of F [Vn]. Let l be the smallest non-negative inte-
ger such that NH(xn)(NH(xn−1))l ∈ F [Vn]G. In fact, α acts on the monomials in
the polynomial NH(xn)(NH(xn−1))l by multiplication with λ−(l+1)p. So the action
of α on NH(xn)(NH(xn−1))l is trivial, if p(l + 1) ≡ 0 mod m. Since (p, m) = 1, we
have l = m − 1.

Proposition 3.1. Let S ⊆ F [Vn−1]G be a separating set for Vn−1. Then φ∗(S)
together with the set T consisting of

NH(xn)(NH(xn−1))m−1, NG(xn), TrG
M (fi) for 1 ≤ i ≤ n − 2

is a separating set for Vn.

Proof. Let v1 = (c1, c2, . . . , cn) and v2 = (d1, d2, . . . , dn) be two vectors in Vn

with φ(v1) = φ(v2), so ci = di for 1 ≤ i ≤ n − 1. To apply Theorem 1.1, we
show that if all elements of T take the same values on v1 and v2, then v1 and v2

are in the same orbit. If cn = dn we are done, so we consider the case cn �= dn.
Lemma 3.3 shows that TrG

M (fi) taking the same value on v1 and v2 for 1 ≤ i ≤ n−2
implies c1 = c2 = · · · = cn−2 = 0. We consider two cases. First, assume that
cn−1 = 0. Then NG(xn)(v1) = NG(xn)(v2), i.e. cpm

n = dpm
n , implies that cn = λadn

for some integer a and hence v1 and v2 are in the same orbit. If cn−1 �= 0, we
have (NH(xn−1))m−1(v1) = (NH(xn−1))m−1(v2) �= 0, and therefore NH(xn)(v1) =
NH(xn)(v2). It follows cp

n − cncp−1
n−1 = dp

n − dncp−1
n−1, which implies cn = dn + jcn−1

for some 0 ≤ j ≤ p − 1, so v1 and v2 are in the same orbit.
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Tbag/112T113 and Tüba-Gebip/2010.
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