WARING'S PROBLEM FOR BEATTY SEQUENCES AND A LOCAL TO GLOBAL PRINCIPLE

WILLIAM D. BANKS Department of Mathematics University of Missouri Columbia, MO 65211 USA bankswd@missouri.edu

AHMET M. GÜLOĞLU Department of Mathematics Bilkent University 06800 Bilkent, Ankara, TURKEY guloglua@fen.bilkent.edu.tr

ROBERT C. VAUGHAN Department of Mathematics Pennsylvania State University University Park, PA 16802-6401 USA rvaughan@math.psu.edu

April 17, 2013

Abstract

In this paper, we investigate in various ways the representation of a large natural number N as a sum of s positive k-th powers of numbers from a fixed Beatty sequence. *Inter alia*, a very general form of the local to global principle is established in additive number theory. Although the proof is very short, it depends on a deep theorem of M. Kneser. There are numerous applications.

1 Introduction

The initial motivation for the work described in this memoir was the investigation of a variant of Waring's problem for Beatty sequences. In the process, however, a fundamental version of the local to global principle was established.

Given a set \mathcal{A} of positive integers, the *lower asymptotic density of* \mathcal{A} is the quantity

$$\underline{\mathbf{d}}(\mathcal{A}) = \liminf_{X \to \infty} \frac{\#\mathcal{A}(X)}{X},$$

where $\mathcal{A}(X) = \mathcal{A} \cap [1, X]$. For any natural number s, we denote the s-fold sumset of \mathcal{A} by

$$s\mathcal{A} = \underbrace{\mathcal{A} + \dots + \mathcal{A}}_{s \text{ copies}} = \left\{ a_1 + \dots + a_s : a_1, \dots, a_s \in \mathcal{A} \right\}$$

The following very general form of the local to global principle has many applications in additive number theory.

Theorem 1. Suppose that there are numbers s_1, s_2 such that

- (i) For all $s \ge s_1$ and $m, n \in \mathbb{N}$, the sumset $s\mathcal{A}$ has at least one element in the arithmetic progression $n \mod m$;
- (ii) The sumset $s_2\mathcal{A}$ has positive lower asymptotic density, i.e., $\underline{\mathbf{d}}(s_2\mathcal{A}) > 0$.

Then, there is a number s_0 with the property that for any $s \ge s_0$ the sumset sA contains all but finitely many natural numbers.

Although the proof of Theorem 1 is very short (see §2 below), it relies on a deep and remarkable theorem of M. Kneser; see Halberstam and Roth [4, Chapter I, Theorem 18].

Theorem 1 has several interesting consequences. The following result (proved in §3) provides an affirmative answer in many instances to the question as to whether a given set of primes \mathcal{P} is an asymptotic additive basis for \mathbb{N} .

Theorem 2. Let \mathcal{P} be a set of prime numbers with

$$\liminf_{X \to \infty} \frac{\#\mathcal{P}(X)}{X/\log X} > 0.$$

Suppose that there is a number s_1 such that for all $s \ge s_1$ and $m, n \in \mathbb{N}$, the congruence

$$p_1 + \dots + p_s \equiv n \pmod{m}$$

has a solution with $p_1, \ldots, p_s \in \mathcal{P}$. Then, there is a number s_0 with the property that for any $s \ge s_0$ the equation

$$p_1 + \dots + p_s = N$$

has a solution with $p_1, \ldots, p_s \in \mathcal{P}$ for all but finitely many natural numbers N.

In 1770, Waring [17] asserted without proof that every natural number is the sum of at most four squares, nine cubes, nineteen biquadrates, and so on. In 1909, Hilbert [5] proved the existence of an $s_0(k)$ such that for all $s \ge s_0(k)$ every natural number is the sum of at most $s_0(k)$ positive k-th powers. The following result (proved in §3), which we deduce from Theorem 1, can be used to obtain many variants of the Hilbert–Waring theorem.

Theorem 3. Let $k \in \mathbb{N}$, and let \mathcal{B} be a set of natural numbers with $\underline{\mathbf{d}}(\mathcal{B}) > 0$. Suppose that there is a number s_1 such that for all $s \ge s_1$ and $m, n \in \mathbb{N}$, the congruence

$$b_1^k + \dots + b_s^k \equiv n \pmod{m}$$

has a solution with $b_1, \ldots, b_s \in \mathcal{B}$. Then, there is a number s_0 with the property that for any $s \ge s_0$ the equation

$$b_1^k + \dots + b_s^k = N$$

has a solution with $b_1, \ldots, b_s \in \mathcal{B}$ for all but finitely many natural numbers N.

Our work in the present paper was originally motivated by a desire to establish a variant of the Hilbert–Waring theorem with numbers from a fixed Beatty sequence. More precisely, for fixed $\alpha, \beta \in \mathbb{R}$ with $\alpha > 1$, we studied the problem of representing every sufficiently large natural number N as a sum of s positive k-th powers chosen from the non-homogeneous Beatty sequence defined by

$$\mathcal{B}_{\alpha,\beta} = \{ n \in \mathbb{N} : n = \lfloor \alpha m + \beta \rfloor \text{ for some } m \in \mathbb{Z} \}.$$

Beatty sequences appear in a variety of apparently unrelated mathematical settings, and the arithmetic properties of these sequences have been extensively explored in the literature. In the case that α is irrational, the Beatty sequence $\mathcal{B}_{\alpha,\beta}$ is distributed evenly over the congruence classes of any fixed modulus. As the congruence

$$x_1^k + \dots + x_s^k \equiv n \pmod{m}$$

admits an integer solution for all $m, n \in \mathbb{N}$ provided that s is large enough (this follows from the Hilbert–Waring theorem but can be proved directly using Lemmas 2.13 and 2.15 of Vaughan [11] and the Chinese Remainder Theorem; see also Davenport [2, Chapter 5]), it follows that the congruence condition of Theorem 3 is easily satisfied. Since we also have $\underline{\mathbf{d}}(\mathcal{B}_{\alpha,\beta}) = \alpha^{-1} > 0$, Theorem 3 yields the following corollary.

Corollary 1. Fix $\alpha, \beta \in \mathbb{R}$ with $\alpha > 1$, and suppose that α is irrational. Then, there is a number s_0 with the property that for any $s \ge s_0$ the equation

$$b_1^k + \dots + b_s^k = N$$

has a solution with $b_1, \ldots, b_s \in \mathcal{B}_{\alpha,\beta}$ for all but finitely many natural numbers N.

Of course, the value of s_0 depends on α and *a priori* could be inordinately large for general α . However, by utilising the power of the Hardy–Littlewood method we obtain the asymptotic formula for the number of solutions and show the existence of some solutions for a reasonably small value of s_0 that depends only on k.

Theorem 4. Fix $\alpha, \beta \in \mathbb{R}$ with $\alpha > 1$, and suppose that α is irrational. Suppose further that $k \ge 2$ and that

$$s \ge \begin{cases} 2^k + 1 & \text{if } 2 \le k \le 5\\ 57 & \text{if } k = 6,\\ 2k^2 + 2k - 1 & \text{if } k \ge 7. \end{cases}$$

Then, the number R(N) of representations of N as a sum of s positive k-th powers of members of the Beatty sequence $\mathcal{B}_{\alpha,\beta}$ satisfies

$$R(N) \sim \alpha^{-s} \Gamma(1+1/k)^{s} \Gamma(s/k)^{-1} \mathfrak{S}(N) N^{s/k-1} \qquad (N \to \infty),$$

where $\mathfrak{S}(N)$ is the singular series in the classical Waring's problem.

By [11, Theorems 4.3 and 4.6] the singular series \mathfrak{S} satisfies $\mathfrak{S}(N) \simeq 1$ for the permissible values of s in the theorem.

The lower bound demands on s can be significantly reduced by asking only for the existence of solutions for all large N.

Theorem 5. Fix $\alpha, \beta \in \mathbb{R}$ with $\alpha > 1$, and suppose that α is irrational. Then, there is a function H(k) which satisfies

$$H(k) \sim k \log k \qquad (k \to \infty)$$

such that if $k \ge 2$ and $s \ge H(k)$, then every sufficiently large N can be represented as a sum of s positive k-th powers of members of the Beatty sequence $\mathcal{B}_{\alpha,\beta}$.

In the interests of clarity of exposition, we have made no effort to optimise the methods employed. Certainly many refinements are possible. For instance, in the range $5 \le k \le 20$ it would be possible to give explicit values for the function H(k) by extracting the relevant bounds for Lemma 2 below from Vaughan and Wooley [13, 14, 15, 16], and doubtless the exponent 4k of $S(\vartheta)$ can be replaced by 2 with some reasonable effort.

1.1 Notation

The notation ||x|| is used to denote the distance from the real number x to the nearest integer, that is,

$$||x|| = \min_{n \in \mathbb{Z}} |x - n| \qquad (x \in \mathbb{R}).$$

We denote by $\{x\}$ the fractional part of x. We put $\mathbf{e}(x) = e^{2\pi i x}$ for all $x \in \mathbb{R}$. Throughout the paper, we assume that k and n are natural numbers with $k \ge 2$.

For any finite set S, we denote by #S the number of elements in S.

In what follows, any implied constants in the symbols \ll and O may depend on the parameters $\alpha, \beta, k, s, \varepsilon, \eta$ but are absolute otherwise. We recall that for functions F and G with $G \ge 0$ the notations $F \ll G$ and F = O(G) are equivalent to the statement that the inequality $|F| \le cG$ holds for some constant c > 0. If $F \ge 0$ also, then $F \gg G$ is equivalent to $G \ll F$. We also write $F \asymp G$ to indicate that $F \ll G$ and $G \ll F$.

2 The proof of Theorem 1

Let $\delta_s = \underline{\mathbf{d}}(s\mathcal{A})$ for each s. Note that hypothesis (*ii*) implies that $\delta_s > 0$ for all $s \ge s_2$. We now suppose that $s = \max(s_1, s_2)$ and appeal to Kneser's theorem in the form given in [4, §1, Theorem 18]; we conclude that for each $t = 1, 2, \ldots$, either (case 1) $\delta_{ts} \ge t \, \delta_s$ or (case 2) there is a set of integers \mathcal{A}' which is worse than \mathcal{A}_{ts} and degenerate mod g'for some positive integer g' (here, worse means that $\mathcal{A}_{ts} \subset \mathcal{A}'$ and that the sets \mathcal{A}_{ts} and \mathcal{A}' coincide from some point onwards, and degenerate mod g' means that \mathcal{A}' is a union of residue classes to some modulus g'). Since $\delta_s > 0$ and $\delta_{ts} \le 1$ it follows that case 2 must occur if t is large enough. Let t be fixed with this property. As $ts \ge ts_1 \ge s_1$, from the definition of s_1 we see that for arbitrary h, m and n the residue class $h + mg' \mod ng'$ intersects \mathcal{A}_{ts} . By a judicious choice of m and n there will be a sufficiently large element of \mathcal{A}_{ts} in the residue class $h + mg' \mod ng'$, and this element will also lie in \mathcal{A}' . Clearly, this element also lies in the residue class $h \mod g'$. Since h is arbitrary and \mathcal{A}' is degenerate mod g', it follows that $\mathcal{A}' = \mathbb{Z}$. But \mathcal{A}_{ts} and \mathcal{A}' coincide from some point onwards, and therefore, \mathcal{A}_{ts} contains every sufficiently large positive integer.

3 The proofs of Theorems 2 and 3

For any set $S \subset \mathbb{N}$, let $R_s(n; S)$ be the number of s-tuples (a_1, \ldots, a_s) with entries in S for which $a_1 + \cdots + a_s = n$.

To prove Theorem 3 we specialise the set \mathcal{A} in Theorem 1 to be the set of k-th powers of elements of \mathcal{B} . Let \mathcal{A}^* denote the set of k-th powers of all natural numbers, and suppose that $s > 2^k$. Using Theorem 2.6 and (2.19) of [11] we have

$$R_s(n; \mathcal{A}) \leqslant R_s(n; \mathcal{A}^*) \ll n^{s/k-1}$$

Also, the hypothesis $\underline{\mathbf{d}}(\mathcal{B}) > 0$ implies that

$$#\mathcal{A}(N/s) = #\mathcal{B}((N/s)^{1/k}) \gg (N/s)^{1/k} \gg N^{1/k}$$

provided that $(N/s)^{1/k}$ is no smaller than the least element of \mathcal{B} . Thus, if we write $A_s(N) = \#(s\mathcal{A} \cap [1, N])$, then for such N we have

$$N^{s/k} \ll (\#\mathcal{A}(N/s))^s \leqslant \sum_{n=1}^N R_s(n;\mathcal{A}) \ll A_s(N)N^{s/k-1}.$$

We can conclude the proof by observing that the congruence condition in Theorem 1 is immediate from that in Theorem 3.

Theorem 2 can be established in the same way. It suffices to show that if \mathcal{P}^* is the set of *all* primes, then for some s we have

$$R_s(n; \mathcal{P}^*) \ll n^{s-1} (\log 2n)^{-s} \qquad (n \in \mathbb{N}).$$

When s = 3 this is immediate from Theorem 3 and (3.15) in Chapter 3 of [11], and it would also follow rather easily from a standard application of sieve theory, although none of the standard texts establish the required result explicitly. Alternatively, the standard sieve bound

$$R_2(n; \mathcal{P}^*) \ll \frac{n^2}{\varphi(n)(\log 2n)^2} \qquad (n \in \mathbb{N})$$

(which follows from Halberstam and Richert [3, Corollary 2.3.5], for example) and a simple application of Cauchy's inequality show that $\underline{\mathbf{d}}(2\mathcal{P}) > 0$.

4 The generating functions

The rest of this memoir is devoted to the study of the special case of sums of k-th powers of members of a Beatty sequence via the Hardy–Littlewood method. Let

$$\mathcal{B}(P) = \{ n \in \mathcal{B}_{\alpha,\beta} : n \leqslant P \} \quad \text{and} \quad \mathcal{A}(P,R) = \{ n \leqslant P : p \mid n \implies p \leqslant R \},\$$

and put

$$\begin{split} S(\vartheta) &= \sum_{n \in \mathcal{B}(P)} e(\vartheta n^k), \qquad T(\vartheta) = \sum_{n \leqslant P} e(\vartheta n^k), \\ U(\vartheta) &= \sum_{n \in \mathcal{A}(P,R) \cap \mathcal{B}(P)} e(\vartheta n^k), \qquad V(\vartheta) = \sum_{n \in \mathcal{A}(P,R)} e(\vartheta n^k), \end{split}$$

Lemma 1. Suppose that t satisfies

$$t \ge \begin{cases} 3 & \text{if } k = 2, \\ 2^{k-1} & \text{if } 3 \leqslant k \leqslant 5, \\ 56 & \text{if } k = 6, \\ 2k^2 + 2k - 2 & \text{if } k \geqslant 7. \end{cases}$$

If F is one of S, U or V, then

$$\int_0^1 |F(\vartheta)|^{2t} \, d\vartheta \leqslant \int_0^1 |T(\vartheta)|^{2t} \, d\vartheta \ll P^{2t-k}.$$

Proof. When k = 2 the bound on $\int_0^1 |T(\vartheta)|^{2t} d\vartheta$ follows from a standard application of the Hardy–Littlewood method, when k = 3 from Vaughan [8, Theorem 2], when k = 4 or 5 from Vaughan [9], when k = 6 from Boklan [1], and when $k \ge 7$ from Wooley [18, Corollary 4] and a routine application of the Hardy–Littlewood method. The proof is completed by interpreting each integral as the number of solutions of the diophantine equation

$$x_1^k + \dots + x_t^k = x_{t+1}^k + \dots + x_{2t}^k$$

with the x_j lying in $\mathcal{B}(P)$, $\mathbb{N} \cap [1, P]$, $\mathcal{A}(P, R) \cap \mathcal{B}(P)$ or $\mathcal{A}(P, R)$, respectively.

Lemma 2. There is a number $\eta > 0$ and a function $H_1(k)$ such that

$$H_1(k) \sim k \log k \qquad (k \to \infty)$$

with the property that whenever $2t \ge H_1(k)$ and $R = P^{\eta}$ we have

$$\int_0^1 |S(\vartheta)^{4k} U(\vartheta)^{2t}| \, d\vartheta \leqslant \int_0^1 |T(\vartheta)^{4k} V(\vartheta)^{2t}| \, d\vartheta \ll P^{2t+3k}.$$

Proof. In view of Lemma 1, it can be supposed that $k \ge k_0$ for a suitable k_0 . According to [11, Theorem 12.4] we have

$$\int_0^1 |V(\vartheta)|^{2s} \, d\vartheta \ll P^{\lambda_s + \varepsilon},$$

where

$$\lambda_s = 2s - k + k \exp(1 - 2s/k).$$

Let \mathfrak{m} denote the set of real numbers $\vartheta \in [0,1]$ such that if $|\vartheta - a/q| \leq q^{-1}P^{3/4-k}$ with (a,q) = 1, then $q > P^{3/4}$, and let $\mathfrak{M} = [0,1] \setminus \mathfrak{m}$. Then, by Vaughan [10, Theorem 1.8] we have

$$\sup_{\vartheta \in \mathfrak{m}} |V(\vartheta)| \ll P^{1-\sigma_k+\varepsilon}$$

where

$$\sigma_k = \max_{\substack{n \in \mathbb{N} \\ n \ge 2}} \frac{1}{4n} \left(1 - (k-2)(1-1/k)^{n-2} \right).$$

Note that

$$\sigma_k \sim \frac{1}{4k \log k} \qquad (k \to \infty).$$

We now put

$$s = \lfloor \frac{1}{2}k \log k + k \log \log k \rfloor + 1$$
 and $t = s + k$.

Then,

$$\int_{\mathfrak{m}} |V(\vartheta)|^{2t} \, d\vartheta \ll P^{2t-k+\mu_k+\varepsilon},$$

where

$$\mu_k = k \exp(1 - 2s/k) - 2k\sigma_k < e(\log k)^{-2} - 2k\sigma_k < 0$$

provided that $k > k_0$. Hence

$$\int_{\mathfrak{m}} |T(\vartheta)^{4k} V(\vartheta)^{2t}| \, d\vartheta \ll P^{2t+3k}.$$

By the methods of [11, Chapter 4] we also have

$$\int_{\mathfrak{M}} |T(\vartheta)^{4k} V(\vartheta)^{2t}| \, d\vartheta \ll P^{2t} \int_{\mathfrak{M}} |T(\vartheta)|^{4k} \, d\vartheta \ll P^{2t+3k}$$

and the lemma is proved.

In what follows, we denote

$$S(q,a) = \sum_{m=1}^{q} e(am^k/q) \quad \text{and} \quad I(\phi) = \int_0^P e(\phi x^k) \, dx.$$

Lemma 3. Suppose that α is irrational. Then, for every real number $P \ge 1$ there is a number Q = Q(P) such that

- (i) $Q \leqslant P^{1/2}$;
- (*ii*) $Q \to \infty$ as $P \to \infty$;
- (iii) Let \mathfrak{m} denote the set of real numbers ϑ with the property that q > Q whenever the inequality $|\vartheta a/q| \leq Qq^{-1}P^{-k}$ holds with (a,q) = 1. Then,

$$S(\vartheta) \ll PQ^{-1/k} \qquad (\vartheta \in \mathfrak{m});$$

(iv) If $q \leq Q$, $|\vartheta - a/q| \leq Qq^{-1}P^{-k}$, and (a,q) = 1, then

$$S(\vartheta) = \alpha^{-1}q^{-1}S(q,a)I(\vartheta - a/q) + O(PQ^{-1/k}).$$

Proof. Since $\alpha \notin \mathbb{Q}$, there is at most one pair of integers m, n such that $n = \alpha m + \beta$ and at most one pair such that $n = \alpha m + \beta - 1$. For any other value of n we have

$$n = \lfloor \alpha m + \beta \rfloor$$
 for some $m \iff 1 - \alpha^{-1} < \{\alpha^{-1}(n - \beta)\} < 1$.

_	_	

Let $\Psi(x) = x - \lfloor x \rfloor - \frac{1}{2}$ for all $x \in \mathbb{R}$; then Ψ is periodic with period one, and for $x \in [0, 1)$ we have

$$\alpha^{-1} + \Psi(x) - \Psi(x + \alpha^{-1}) = \begin{cases} 1 & \text{if } 1 - \alpha^{-1} < x < 1, \\ 0 & \text{if } 0 < x < 1 - \alpha^{-1}, \\ \frac{1}{2} & \text{if } x = 0 \text{ or } x = 1 - \alpha^{-1}. \end{cases}$$

Consequently,

$$S(\vartheta) = \alpha^{-1}T(\vartheta) + \sum_{n \leq P} \left(\Psi(\alpha^{-1}(n-\beta)) - \Psi(\alpha^{-1}(n-\beta+1)) \right) e(\vartheta n^k) + O(1).$$

Now let

$$T(\vartheta,\phi) = \sum_{n \leqslant P} e(\vartheta n^k + \phi n)$$
(4.1)

and

$$W(\phi) = \sum_{n \le P} \min \left\{ 1, H^{-1} \| \alpha^{-1} n - \phi \|^{-1} \right\},\$$

where H is a positive parameter to be determined below. By Montgomery and Vaughan [6, Lemma D.1] we have

$$S(\vartheta) = \alpha^{-1}T(\vartheta) - \sum_{0 < |h| \leq H} \frac{e(\alpha^{-1}(1-\beta)h) - e(-\alpha^{-1}\beta h)}{2\pi i h} T(\vartheta, \alpha^{-1}h) + O\left(1 + W(\alpha^{-1}\beta) + W(\alpha^{-1}(\beta-1))\right).$$

Choose r = r(P) maximal and b so that

$$(b,r) = 1, \qquad |\alpha^{-1} - b/r| \le r^{-2} \qquad \text{and} \qquad r^2 |\alpha^{-1} - b/r|^{-1} \le P^{1/4}.$$
 (4.2)

This is always possible if P is large enough. Indeed, by Dirichlet's theorem on diophantine approximation, or by the theory of continued fractions, there are infinitely many coprime pairs b, r that satisfy the first inequality, and at least one of the pairs will satisfy the second inequality if P is sufficiently large. Moreover, the two inequalities together imply that $r \leq P^{1/16}$, so the maximal r exists. Note that r = r(P) tends to infinity as $P \to \infty$ since α is irrational. Let $\xi = \alpha^{-1}r^2 - br$, choose c so that $|\phi r - c| \leq \frac{1}{2}$, put $\eta = \phi r - c$, and for every $n \leq P$ write n = ur + v with $-r/2 < v \leq r/2$ and $0 \leq u \leq 1 + P/r$. For any given u, let w be an integer closest to $u\xi$, and put $\kappa = u\xi - w$. Then,

$$W(\phi) = \sum_{u,v} \min\left\{1, H^{-1} \|\alpha^{-1}(ur+v) - \phi\|^{-1}\right\}.$$

Moreover,

$$\alpha^{-1}(ur + v) - \phi = ub + \frac{vb + w - c}{r} + \frac{\kappa}{r} + \frac{v\xi}{r^2} - \frac{\eta}{r},$$

and for any given u we have

$$\left\|\alpha^{-1}(ur+v) - \phi\right\| \ge \left\|\frac{vb+w-c}{r}\right\| - \frac{3}{2r}.$$

Hence the contribution to W from any fixed u is

$$\ll 1 + H^{-1}r\log r,$$

and so summing over all u we derive the bound

$$W(\phi) \ll Pr^{-1} + PH^{-1}\log r.$$

The choice $H = r^{1/3}$ gives

$$S(\vartheta) = \alpha^{-1}T(\vartheta) - \sum_{0 < |h| \le r^{1/3}} \frac{e(\alpha^{-1}(1-\beta)h) - e(-\alpha^{-1}\beta h)}{2\pi i h} T(\vartheta, \alpha^{-1}h) + O(Pr^{-1/4}).$$
(4.3)

The error term here is acceptable provided that $Q \leq r^{1/4}$.

Next, we show that the sum over h is also $\ll PQ^{-1}$ provided that Q = Q(P) grows sufficiently slowly. Choose a, q with (a, q) = 1 such that $|\vartheta - a/q| \leq q^{-1}P^{\frac{1}{2}-k}$ and $q \leq P^{k-\frac{1}{2}}$. Then, by [11, Lemma 2.4], when $q > P^{1/2}$ there is a $\delta = \delta(k) > 0$ such that

$$T(\vartheta, \phi) \ll P^{1-\delta} \qquad (\phi \in \mathbb{R}).$$

Since $T(\vartheta) = T(\vartheta, 0)$ and $r \leq P^{1/16}$, we derive the bound

$$S(\vartheta) \ll P^{1-\delta} \log P + Pr^{-1/4} \ll PQ^{-1}$$

provided that $Q \leq \min \{P^{\delta} / \log P, r^{1/4}\}$, and we are done in this case.

Now suppose that $q \leq P^{1/2}$. We have

$$T(\vartheta, \alpha^{-1}h) = \sum_{m=1}^{q} e(am^k/q) \sum_{\substack{n \leqslant P\\n \equiv m \pmod{q}}} e((\vartheta - a/q)n^k + \alpha^{-1}hn)$$
$$= q^{-1} \sum_{\substack{hq\\ \alpha} - \frac{q}{2} < \ell \leqslant \frac{hq}{\alpha} + \frac{q}{2}} S(q, a, \ell) \sum_{n \leqslant P} e((\vartheta - a/q)n^k + (\alpha^{-1}h - \ell/q)n),$$

where

$$S(q, a, \ell) = \sum_{m=1}^{q} e(am^k/q + \ell m/q).$$

Let g be the polynomial

$$g(x) = (\vartheta - a/q)x^k + (\alpha^{-1}h - \ell/q)x$$

For $0 \leq x \leq P$ and $\frac{hq}{\alpha} - \frac{q}{2} < \ell \leq \frac{hq}{\alpha} + \frac{q}{2}$ it is easy to verify that

$$|g'(x)| \leq kq^{-1}P^{-1/2} + \frac{1}{2} < \frac{3}{4}$$

if P is large enough. Hence, by Titchmarsh [7, Lemma 4.8] we see that

$$\sum_{n \leqslant P} e((\vartheta - a/q)n^k + (\alpha^{-1}h - \ell/q)n) = \int_0^P e(g(x))dx + O(1).$$
(4.4)

In the case that $|\alpha^{-1}h - \ell/q| \ge 1/(2q)$, we have

$$|g'(x)| \ge |\alpha^{-1}h - \ell/q| - kq^{-1}P^{-1/2} \gg |\alpha^{-1}h - \ell/q|,$$

and therefore by [7, Lemma 4.2] the integral in (4.4) is

$$\ll |\alpha^{-1}h - \ell/q|^{-1}$$

Also, we have trivially $|S(q, a, \ell)| \leq q$. Thus, the total contribution to $T(\vartheta, \alpha^{-1}h)$ from the numbers ℓ with $|\alpha^{-1}h - \ell/q| \geq 1/(2q)$ is

$$\ll \sum_{\substack{\ell \\ |\alpha^{-1}h - \ell/q| \ge 1/(2q)}} |\alpha^{-1}h - \ell/q|^{-1} \ll q \log q,$$

and summing over h with $0 < |h| \leq r^{1/3}$ the overall contribution to the sum in (4.3) is

$$\ll q \log q \cdot \log r \ll P^{3/4},$$

which is acceptable.

Next, let ℓ be a number for which $|\alpha^{-1}h - \ell/q| < 1/(2q)$; note that there is at most one such ℓ for each h. Since (a,q) = 1, by [11, Theorem 7.1] we have that $S(q,a,\ell) \ll q^{1-1/k+\varepsilon}$. Hence the total contribution to the sum in (4.3) from such an ℓ is $\ll q^{-1/k+\varepsilon}P \log r$. When $q > r^{1/3}$ this is sufficient provided that $Q \leq r^{1/4}$. Now suppose that $q \leq r^{1/3}$. Since α is irrational and r is large, we have $b \neq 0$ by (4.2), and we claim that $hb/r \neq \ell/q$. Indeed, suppose on the contrary that $hbq = r\ell$. Then $b \mid \ell$, and we can write $\ell = mb$, and hq = rm. Since $h \neq 0$, it follows that $m \neq 0$. But this is impossible since $|h|q \leq r^{2/3}$, and the claim is proved. Therefore, using (4.2) again, we have

$$|\alpha^{-1}h - \ell/q| = \left| hb/r - \ell/q + h(\alpha^{-1} - b/r) \right| \ge \left| hb/r - \ell/q \right| - |h|r^{-2} \ge (rq)^{-1} - r^{-5/3} \gg (rq)^{-1}.$$

Arguing as before, we see that $|g'(x)| \gg (rq)^{-1}$, the integral in (4.4) is $\ll rq$, and therefore $T(\vartheta, \alpha^{-1}h) \ll q^{1-1/k+\varepsilon}r$ for each h associated with such an ℓ ; hence the total contribution to the sum in (4.3) is

$$\ll q^{1-1/k+\varepsilon} r \log r \ll r^{4/3} \leqslant P^{1/12}.$$

It remains only to deal with the single term

$$\alpha^{-1}T(\vartheta).$$

By [11, Theorem 4.1] we have

$$\alpha^{-1}T(\vartheta) = \alpha^{-1}q^{-1}S(q,a)I(\vartheta - a/q) + O(q),$$

and since $q \leq P^{1/2}$ the error term here is acceptable. By [11, Lemma 2.8],

$$I(\vartheta - a/q) \ll \min(P, |\vartheta - a/q|^{-1/k})$$

and by [11, Theorem 4.2] we have

$$S(q,a) \ll q^{1-1/k}.$$

Hence, if q > Q or $|\vartheta - a/q| > Q/(qP^k)$ we see that

$$\alpha^{-1}T(\vartheta) \ll PQ^{-1/k}.$$

The only remaining ϑ to be considered are those for which there exist coprime integers a, q with $q \leq Q$ and $|\vartheta - a/q| \leq Qq^{-1}P^{-k}$. Thus, we have shown that for all ϑ in \mathfrak{m} the desired bound holds. For the remaining ϑ , we have established that (iv) holds as required. \Box

For $\varphi \in \mathbb{R}$ and a parameter A > 1 at our disposal which will eventually be chosen as a function of ε (only), define

$$f_{-}(\varphi) = \max\left\{0, (A+1)(1-2\alpha \|1-\frac{1}{2\alpha}-\varphi\|)\right\} - \max\left\{0, A-2\alpha (A+1)\|1-\frac{1}{2\alpha}-\varphi\|\right\},\\ f_{+}(\varphi) = \max\left\{0, A+1-2\alpha A \|1-\frac{1}{2\alpha}-\varphi\|\right\} - \max\left\{0, A(1-2\alpha \|1-\frac{1}{2\alpha}-\varphi\|)\right\}.$$

Let

$$S_{\pm}(\vartheta) = \sum_{n \leqslant P} f_{\pm}((n-\beta)/\alpha)e(\vartheta n^2).$$
(4.5)

The functions f_{\pm} respectively minorize and majorize the characteristic function of the set $[1 - 1/\alpha, 1] \mod 1$. Thus, following the discussion in the first paragraph of the proof of Lemma 3, with the choice $P = N^{1/2}$ we have

$$\int_{0}^{1} S_{-}(\vartheta)^{s} e(-\vartheta N) d\vartheta \leqslant R(N) \leqslant \int_{0}^{1} S_{+}(\vartheta)^{s} e(-\vartheta N) d\vartheta$$
(4.6)

in the case that k = 2. The functions f_{\pm} have Fourier expansions

$$f_{\pm}(\varphi) = \sum_{h=-\infty}^{\infty} c_{\pm}(h)e(h\varphi)$$
(4.7)

whose coefficients are given by

$$c_{-}(0) = \alpha^{-1} \left(1 - \frac{1}{2(A+1)} \right), \qquad c_{+}(0) = \alpha^{-1} \left(1 + \frac{1}{2A} \right), \tag{4.8}$$

and for any $h \neq 0$,

$$c_{-}(h) = \frac{e(\frac{1}{2}\alpha^{-1}h)(A+1)\alpha}{\pi^{2}h^{2}} \left(\cos\frac{\pi\alpha^{-1}hA}{A+1} - \cos\pi\alpha^{-1}h\right),$$

$$c_{+}(h) = \frac{e(\frac{1}{2}\alpha^{-1}h)A\alpha}{\pi^{2}h^{2}} \left(\cos\pi\alpha^{-1}h - \cos\frac{\pi\alpha^{-1}h(A+1)}{A}\right).$$

Note that

$$c_{\pm}(h) \ll h^{-2} A \alpha \qquad (h \neq 0).$$
 (4.9)

Lemma 4. Suppose that (a,q) = 1 and $|\vartheta q - a| \leq P^{-1}$. Then

$$S_{\pm}(\vartheta) \ll A\alpha \left(\frac{P}{(q+P^2|\vartheta q-a|)^{1/2}} + q^{1/2}\right).$$

Proof. By (4.1), (4.5) and (4.7),

$$S_{\pm}(\vartheta) = \sum_{h=-\infty}^{\infty} c_{\pm}(h) e(-h\beta/\alpha) T(\vartheta, h/\alpha).$$

The conclusion then follows from (4.9) and Vaughan [12, Theorem 5].

Lemma 5. Suppose that α is irrational. Then, for every real number $P \ge 1$ there is a number Q = Q(P) such that

- (*i*) $Q \leq P^{1/2};$
- (*ii*) $Q \to \infty$ as $P \to \infty$;

(iii) For any coprime integers a, q with $q \leqslant Q$ and $|\vartheta - a/q| \leqslant Qq^{-1}P^{-2}$ we have

$$S_{\pm}(\vartheta) = c_{\pm}(0)q^{-1}S(q,a)I(\vartheta - a/q) + O(PQ^{-1/2}).$$

Proof. This can be established in the same way as Lemma 3.

5 The proofs of Theorems 4 and 5

When k > 2, Theorem 4 follows from Lemmas 1 and 3 by a routine application of the Hardy–Littlewood method.

When k = 2, let Q be as in Lemma 5. Now define

$$\mathfrak{M}(q,a) = \{\vartheta : |\vartheta - a/q| \leqslant Qq^{-1}P^{-2}\}$$

and let \mathfrak{M} denote the union of the $\mathfrak{M}(q, a)$ with $1 \leq a \leq q \leq Q$ and (a, q) = 1. Put $\mathfrak{m} = [QP^{-2}, 1 + QP^{-2}] \setminus \mathfrak{M}$, so that $\mathfrak{m} \subset [QP^{-2}, 1 - QP^{-2})$. Now for any $\vartheta \in \mathfrak{m}$ we choose coprime integers a, q with $1 \leq a \leq q \leq P$ and $|\vartheta - a/q| \leq q^{-1}P^{-1}$. Note that, by the definition of \mathfrak{m} , we have $|\vartheta - a/q| > q^{-1}P^{-1}$ when $q \leq Q$. By Lemma 4, whenever $s \geq 5$ we have

$$\begin{split} \int_{\mathfrak{m}} |S_{\pm}(\vartheta)|^{s} d\vartheta \ll & \sum_{q \leqslant Q} q \int_{Qq^{-1}P^{-2}}^{1/(qP)} (A\alpha)^{s} \left(q^{-s/2} \varphi^{-s/2} + q^{s/2} \right) d\varphi \\ &+ \sum_{Q < q \leqslant P} q \int_{0}^{1/(qP)} (A\alpha)^{s} \left(P^{s} (q + P^{2}q\varphi)^{-s/2} + q^{s/2} \right) d\varphi \\ \ll (A\alpha)^{s} \sum_{q \leqslant Q} \left(P^{s-2}Q^{1-s/2} + P^{-1}q^{s/2} \right) + (A\alpha)^{s} \sum_{Q < q \leqslant P} \left(q^{1-s/2}P^{s-2} + P^{-1}q^{s/2} \right) \\ \ll (A\alpha)^{s} \left(Q^{-1/2}P^{s-2} + P^{s/2} \right) \ll \alpha^{-s}P^{s-2}Q^{-1/4}. \end{split}$$

Choosing $P = N^{1/2}$, a routine application of Lemma 5 shows that

$$\int_{\mathfrak{M}} S_{\pm}(\vartheta)^{s} e(-N\vartheta) d\vartheta = c_{\pm}(0) \Gamma(3/2)^{s} \Gamma(s/2)^{-1} \mathfrak{S}(N) N^{s/2-1} + O(N^{s/2-1}Q^{-1/4}).$$

Now suppose that $A = 1/\varepsilon$, where ε is positive but small. Then, by (4.6) and (4.8) it follows that

$$R(N) = \alpha^{-s} \Gamma(3/2)^{s} \Gamma(s/2)^{-1} \mathfrak{S}(N) N^{s/2-1} + O(\varepsilon N^{s/2-1}) \qquad (N > N_0(\varepsilon)),$$

and this completes the proof of Theorem 4.

To prove Theorem 5 we take $P = N^{1/k}$, R and t as in Lemma 2 and consider the number R(N) of representations of N in the form

$$N = x_1^k + \dots + x_{4k+1}^k + y_1^k + \dots + y_{2t}^k$$

with $x_1, \ldots, x_{4k+1} \in \mathcal{B}(P)$ and $y_1, \ldots, y_{2t} \in \mathcal{A}(P, R) \cap \mathcal{B}(P)$. Clearly,

$$R(N) = \int_0^1 S(\vartheta)^{4k+1} U(\vartheta)^{2t} e(-N\vartheta) \, d\vartheta.$$

Let $\mathfrak{M}(q, a)$ denote the set of ϑ with $|\vartheta - a/q| \leq Qq^{-1}P^{-k}$, let \mathfrak{M} be the union of all such intervals with $1 \leq a \leq q \leq Q$ and (a, q) = 1, and put $\mathfrak{m} = (QP^{-k}, 1 + QP^{-k}] \setminus \mathfrak{M}$. By Lemmas 2 and 3 we have

$$\int_{\mathfrak{m}} |S(\vartheta)^{4k+1} U(\vartheta)^{2t}| \, d\vartheta \ll P^{3k+2t+1} Q^{-1/k}.$$

Let

$$Z(\vartheta) = \begin{cases} \alpha^{-1}q^{-1}S(q,a)I(\vartheta - a/q) & \text{if } \vartheta \in \mathfrak{M}(q,a), \\ 0 & \text{if } \vartheta \in \mathfrak{m}. \end{cases}$$

Then, by (iv) of Lemma 3 and a routine argument we have

$$\int_{\mathfrak{M}} S(\vartheta)^{4k+1} U(\vartheta)^{2t} e(-N\vartheta) \, d\vartheta = \int_{QP^{-k}}^{1+QP^{-k}} Z(\vartheta)^{4k+1} U(\vartheta)^{2t} e(-N\vartheta) \, d\vartheta + O(P^{3k+2t+1}Q^{-1/k}).$$

By the methods of [11, Chapter 4] we have

$$\int_{QP^{-k}}^{1+QP^{-k}} Z(\vartheta)^{4k+1} e(-m\vartheta) \, d\vartheta = \alpha^{-4k-1} \frac{\Gamma(1+1/k)^{4k+1}}{\Gamma(4+1/k)} m^{3+1/k} \mathfrak{S}(m) + O(P^{3k+1}Q^{-1/k})$$

uniformly for $1 \leq m \leq N$, and

$$\int_{QP^{-k}}^{1+QP^{-k}} Z(\vartheta)^{4k+1} e(-m\vartheta) \, d\vartheta \ll P^{3k+1}Q^{-1/k}$$

uniformly for $m \leq 0$. Here \mathfrak{S} is the usual singular series associated with Waring's problem; note that $\mathfrak{S}(m) \simeq 1$. Therefore,

$$\begin{split} \int_{QP^{-k}}^{1+QP^{-k}} Z(\vartheta)^{4k+1} U(\vartheta)^{2t} e(-N\vartheta) \, d\vartheta \\ &= \sum_{y_1,\dots,y_{2t}} \alpha^{-4k-1} \frac{\Gamma(1+1/k)^{4k+1}}{\Gamma(4+1/k)} (N-y_1^k-\dots-y_{2t}^k)^{3+1/k} \mathfrak{S}(N-y_1^k-\dots-y_{2t}^k) \\ &+ O(P^{3k+2t+1}Q^{-1/k}), \end{split}$$

where the sum is taken over those $y_1, \ldots, y_{2t} \in \mathcal{B}(P)$ with $(N - y_1^k - \cdots - y_{2t}^k)^{3+1/k} > 0$. By restricting to those y_1, \ldots, y_{2t} that do not exceed P/(4t), one sees that

$$R(N) \gg N^{3+1/k+2t/k}$$

if N is sufficiently large, and this completes the proof of Theorem 5.

References

- K. D. Boklan, 'The asymptotic formula in Waring's problem', Mathematika 41 (1994), no. 2, 329–347.
- [2] H. Davenport, Analytic methods for Diophantine equations and Diophantine inequalities. Second edition. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 2005.
- [3] H. Halberstam and H.-E. Richert, *Sieve methods*. London Mathematical Society Monographs, No. 4. Academic Press, London-New York, 1974.
- [4] H. Halberstam and K. F. Roth, Sequences. Second edition. Springer-Verlag, New York-Berlin, 1983.
- [5] D. Hilbert, 'Beweis für die Darstellbarkeit der ganzen Zahlen durch eine feste Anzahl n^{ter} Potenzen (Waringsches Problem)', Math. Ann. 67 (1909), no. 3, 281–300.
- [6] H. L. Montgomery and R. C. Vaughan, Multiplicative number theory. I. Classical theory. Cambridge Studies in Advanced Mathematics, 97. Cambridge University Press, Cambridge, 2007.
- [7] E. C. Titchmarsh, *The theory of the Riemann zeta-function*. Second edition. The Clarendon Press, Oxford University Press, New York, 1986.
- [8] R. C. Vaughan, 'On Waring's problem for cubes', J. Reine Angew. Math. 365 (1986), 122–170.
- [9] R. C. Vaughan, 'On Waring's problem for smaller exponents II', Mathematika 33 (1986), no. 1, 6–22.
- [10] R. C. Vaughan, 'A new iterative method in Waring's problem', Acta Math. 162 (1989), no. 1-2, 1–71.
- [11] R. C. Vaughan, The Hardy-Littlewood method. Second edition. Cambridge Tracts in Mathematics, 125. Cambridge University Press, Cambridge, 1997.
- [12] R. C. Vaughan, 'On generating functions in additive number theory, I', Analytic Number Theory, Essays in Honour of Klaus Roth, 436–448, Cambridge Univ. Press, Cambridge, 2009.
- [13] R. C. Vaughan and T. D. Wooley, 'Further improvements in Waring's problem, III: Eighth powers', *Philos. Trans. Roy. Soc. London Ser. A* 345 (1993), no. 1676, 385–396.
- [14] R. C. Vaughan and T. D. Wooley, 'Further improvements in Waring's problem, II: Sixth powers', Duke Math. J. 76 (1994), no. 3, 683–710.

- [15] R. C. Vaughan and T. D. Wooley, 'Further improvements in Waring's problem', Acta Math. 174 (1995), no. 2, 147–240.
- [16] R. C. Vaughan and T. D. Wooley, 'Further improvements in Waring's problem, IV: Higher powers', Acta Arith. 94 (2000), no. 3, 203–285.
- [17] E. Waring, *Meditationes algebraicæ*. Cambridge, England, 1770.
- [18] T. D. Wooley, 'Vinogradov's mean value theorem via efficient congruencing', Ann. Math., to appear.