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Abstract

We investigate the spin-dependent effective electron–electron interactions in a uniform system of two-dimensional electrons to understand the
spontaneous magnetization expected to occur at very low density. For this purpose, we adopt the Kukkonen–Overhauser form for the effective
interactions which are built by accurately determined local-field factors describing the charge and spin fluctuations. The critical behavior of the
effective interaction for parallel spin electrons allows us to quantitatively locate the transition to the ferromagnetic state at rs ≈ 27. When the finite
width effects are approximately taken into account the transition occurs at rs ≈ 30 in agreement with recent quantum Monte Carlo calculations.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Electron–electron interactions are known to produce
the most pronounced effects in two-dimensional (2D)
electron systems as numerous experimental and theoretical
investigations reveal [1,2]. As the fabrication techniques
continue to improve, it has been possible to probe the low
density regime of 2D electrons where strong interaction effects
become more significant. In the last decade or so, a large
amount of effort concentrated on the low density and low
temperature ground state properties of 2D electron systems with
a view to understanding the metal–insulator transition and its
possible mechanisms [3]. The emergent picture indicates the
important role played by strong interaction effects.

In connection with the metal–insulator transition, the spin
susceptibility of 2D electrons has also caught attention because
of a possible magnetic phase transition in the same density
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regime. Whereas recent experiments are performed under an
in-plane magnetic field to spin polarize the electrons, a more
fundamental problem is to determine whether the system
spontaneously magnetizes at some critical density. At low
densities the electron–electron interactions dominate over the
kinetic energy and the 2D electron system becomes unstable to
spin polarization. A few experiments [4,5] have indicated the
observation of such a possibility.

Theoretically, the spontaneous magnetization of a 2D
electron liquid has been considered in a variety of many-body
approaches [6–8]. These calculations mostly depend on the
accurate evaluation of the ground-state energy for paramagnetic
and ferromagnetic phases. The most accurate results are
obtained from quantum Monte Carlo (QMC) simulations [9–
11] which predict a first order transition from a spin unpolarized
state to a fully spin polarized state around rs ≈ 25.5, where
the dimensionless parameter rs is the ratio of the interaction
energy to the kinetic energy. This transition is followed by a
liquid to Wigner solid transition [11,12] at rs ≈ 37. As an
alternative approach Davoudi et al. [13] considered the behavior
of spin-dependent effective electron–electron interactions to
study the magnetic phase transition. As the transition to the
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ferromagnetic state is approached the effective interactions
between like spins become negative at long wavelength and at
the critical density corresponding to rsc suddenly change sign.
The signature for such a behavior is ultimately related to the
long wavelength limit of the spin susceptibility which can be
regarded as an order parameter.

The purpose of this paper is to investigate quantita-
tively the transition density to a ferromagnetic state in
a paramagnetic 2D electron gas using accurately con-
structed effective electron–electron interactions. We adopt the
Kukkonen–Overhauser [14] form of the effective interactions
and use recently developed local-field factors [15] to cal-
culate their wave vector and density dependence. The spin-
symmetric and antisymmetric local-field factors have been
obtained from the accurate QMC simulations [16] via the
fluctuation–dissipation theorem. Our numerical calculations of
the long wavelength behavior of effective electron–electron in-
teractions for the parallel and anti-parallel spins allow us to
quantitatively predict the paramagnetic to ferromagnetic phase
transition to occur at rsc ≈ 27. Extending our calculations to a
finite quantum well we find that the same transition takes place
at rsc ≈ 30. These findings are in good agreement with other
theoretical approaches using ground state energy methods.

The rest of this paper is organized as follows. In the next
section we present the expressions for the spin-dependent
effective interactions for 2D electron systems. We describe
briefly the way we obtain the local-field factors describing
the charge and spin–density correlations which constitute the
crucial input for effective interactions. Our numerical results
are presented in Section 3, followed by a short summary.

2. Theory

We consider both 2D and Q2D electron liquids as models
for systems of electronic carriers with band mass m in a
semiconductor heterojunction with dielectric constant κ . We
include the effect of thickness of a GaAs heterojunction-
insulated gate field-effect transistor (HIGFET) with bare
electron–electron interaction vq = 2πe2 F(qd)/(κq) which is
the Coulomb potential renormalized by the form factor given
by

F(x) =

(
1 +

κins

κsc

)
8 + 9x + 3x2

16(1 + x)3 +

(
1 −

κins

κsc

)
1

2(1 + x)6 ,

(1)

where d = [h̄κsc/(48πme2n∗)]1/3 and n∗
= ndepl + 11n/32.

Here the depletion layer charge density ndepl being essentially
zero and κins = 10.9 and κsc = 12.9 and κ is their average. At
zero temperature there are only two relevant parameters for a
disorder-free, homogeneous 2D electron liquid in the absence
of quantizing magnetic fields, the usual Wigner–Seitz density
parameter rs = (πna2

B)−1/2, aB = h̄2 κ/(me2) being the Bohr
radius in the medium of interest and the second parameter is
the degree of spin polarization ζ = |n↑ − n↓|/n. Here nσ is the
average density of particles with spin σ =↑, ↓ and n = n↑+n↓

is the total average density. Evidently, when the form factor
F(x) = 1, we recover the strictly 2D electron liquid bare
potential.

In this paper we are concerned with the effective
electron–electron interactions in the paramagnetic phase, ζ =

0, of an electron system as functions of the coupling strength,
rs . The problem of calculating the effective electron–electron
interactions, or generally, between two quasiparticles in a
degenerate Fermi liquid has been addressed by several
authors [14,17,18]. The simple random phase approximation
(RPA) for the effective potentials leads to vq/ε(q, ω), where
ε(q, ω) is the RPA dielectric function. RPA has been very
successful in describing the dielectric properties of interacting
quantum liquids in the high density limit. As the density of the
system is lowered, the exchange and correlation effects become
very important. Kukkonen and Overhauser [14] derived an
expression which accounts for the charge and spin fluctuations
and particular attention was paid to the indistinguishability
of the electrons in the system. The spin-symmetric and spin-
antisymmetric local-field factors entering these expressions are
to be determined by independent methods. Later, Vignale and
Singwi [18], using diagrammatic techniques, derived a similar
expression given in terms of polarization fields.

Following the Kukkonen and Overhauser approach [14], the
effective electron–electron interaction between two electrons
with spin indices σ and σ ′ is written in momentum space as

Vσσ ′(q, ω) = vq + {vq[1 − Gs(q, ω)]}2χs(q, ω)

+ −→σ ·
−→
σ ′

{vqGa(q, ω)}2χa(q, ω). (2)

The first term is the bare interaction between two electrons.
The second and the third terms are interactions mediated
by charge and spin–density fluctuations, respectively. The
dielectric properties of electron liquids are described by the
density–density response function

χs(q, ω) =
χ0(q, ω)

1 − vq[1 − Gs(q, ω)]χ0(q, ω)
, (3)

and spin–spin response function

χa(q, ω) =
χ0(q, ω)

1 + vqGa(q, ω)χ0(q, ω)
, (4)

where χ0(q, ω) is the non-interacting response function,
i.e. the Lindhard function, which contains the non-interacting
occupation numbers [2]. The wave vector and frequency
dependent local-field factors Gs(q, ω) and Ga(q, ω) describe
the short-range electron correlations in the spin-symmetric
and spin-antisymmetric channels. To calculate the screening
contribution of effective electron–electron interactions, we only
need to focus on the static limit by considering ω = 0 in Eq. (2).

3. Numerical results

As is clear from Eq. (2) the local-field factors are
the fundamental quantities for an evaluation of effective
electron–electron interactions. In this section we introduce the
static values of these functions. Our strategy follows that of
our recent work [15] which uses accurate spin-symmetric and
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Fig. 1. (Color online) The spin-symmetric and spin-antisymmetric local-field
factors, Gs (k) and Ga(k) as functions of k/kF in the 2D electron liquid at
various values of rs .

spin-antisymmetric static structure factors to build the local-
field factors. For this purpose, we have calculated the spin-
symmetric and spin-antisymmetric pair distribution functions
from the quantum Monte Carlo (QMC) based analytical
expressions [16] and performed the Fourier transform

Ss,a(q) = 1 + n
∫

dr[gs,a(r) − 1] exp(−iq · r). (5)

The structure factors Ss,a(q) are assured to satisfy the plasmon
and f-sum rules. Finally, within the fluctuation–dissipation
theorem, which is given by

Ss,a(q) = −
1

nπ

∫
∞

0
dω =[χs,a(q, ω)], (6)

where χs,a(q, ω) depend on Gs,a(q), one may determine the
local-field factors once the static structure factors are given. It is
necessary to point out that the long-wavelength limit of Gs(q)

is not recovered and we thus correct our Gs(q) using the long-
wavelength form of the polarization potential calculation which
is constructed to satisfy this limit [15]. The main results of our
work are shown in Figs. 1–5.

We start by showing in Fig. 1 the spin-symmetric and
antisymmetric local-field factors at rs = 5, 15 and 30. One
of the important features of the present local-field factors is
their oscillatory behavior. The first peaks of Gs(k) and Ga(k)

around 3kF and 2kF , respectively, are corroborated by other
calculations [19,20].

In Fig. 2 we show the effective electron–electron interaction
V↑↓(k) for antiparallel-spins in both strictly 2D (thin lines) and
Q2D (thick lines) electron liquids in the paramagnetic state
at rs = 5, 10, 20 and 25. Here the effect of quantum well
thickness is included through the form factor and the local-
field factors are calculated for a strictly 2D electron liquid
through the fluctuation–dissipation theorem for both cases.
This is an approximation in the absence of QMC data for
Q2D systems. It is clear from this figure that including the
Fig. 2. (Color online) Effective electron–electron interaction potential in
momentum space for antiparallel-spin electrons in the 2D (thin lines) and Q2D
(thick lines) electron liquid at various values of rs .

Fig. 3. (Color online) Effective electron–electron interaction potential in
momentum space for parallel-spin electrons in the 2D (thin lines) and Q2D
(thick lines) electron liquid at various values of rs .

form factor reduces the value of the effective potential and
makes it shorter ranged, as V↑↓(k) decays at large k faster
than 1/k. In contrast to the calculations of Davoudi et al. [13]
which show a flat behavior for k ≤ 2kF , our antiparallel-spin
potential V↑↓(k) is a smooth function in the long-wavelength
region. A peak near k = 2kF develops with increasing rs
due to the structure of χ0(2kF , 0) corresponding to Friedel
oscillations in coordinate space. Furthermore, by increasing the
rs value, V↑↓(0) at contact increases and shows strong repulsive
interactions between two electrons with opposite spins.

Fig. 3 displays the effective electron–electron interaction
V↑↑(k) for parallel-spins in both strictly 2D (thin lines) and
Q2D (thick lines) electron liquids in the paramagnetic state at
rs = 5, 10, 20 and 25. Again, in contrast to the results of
Davoudi et al. [13], V↑↑(k) is a smooth function in the long-
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Fig. 4. (Color online) Long-wavelength behavior of effective electron–electron
interaction potential divided by r2

sc = (27)2 (for illustration purposes) in
momentum space for parallel-spin electrons in the 2D electron liquid near the
critical rs value.

Fig. 5. (Color online) Effective electron–electron interaction potential with
parallel-spins at contact as a function of rs in the 2D electron liquid with
rsc ≈ 27 and Q2D electron liquid with rsc ≈ 30.

wavelength region and a peak develops around k = 2kF with
increasing rs due to the structure of χ0(2kF , 0). Furthermore,
by increasing the rs value, V↑↑(0) at contact becomes more
negative and shows strong attractive interactions between two
electrons with parallel-spins. This is a signal for the magnetic
phase transition which we would like to focus on. This behavior
has been anticipated and reported by Davoudi et al. [13] by
constructing the local-field factors at large rs values up to rs =

20 qualitatively. Here we have the quantitative details of the
effective electron–electron interactions by having an accurate
evaluation of χs,a(q).

We present in Fig. 4 the effective electron–electron
interaction for parallel spins divided by r2

sc = (27)2 (for
illustration purposes) in the 2D electron liquid in the vicinity
of the magnetic phase transition, at rs = 26, 27, 28 and
30. It is evident from these results that the value of V↑↑(0)

displays a critical behavior at rsc. Being negative for rs <

rsc, the effective electron–electron interaction at k = 0 for
parallel-spins regains a positive value after the magnetic phase
transition takes place. In other words, the sign change of
V↑↑(0) indicates the magnetic phase transition. We have also
found that for rs > rsc, V↑↑(k) exhibits a singularity at
some finite k, indicating the breakdown of the paramagnetic
formulation of the Kukkonen–Overhauser effective interaction
in the ferromagnetic phase.

To calculate the magnetic phase transition more quantita-
tively, we have shown V↑↑(0) as a function of rs both for 2D
and Q2D electron liquids in Fig. 5. From the physical interpre-
tation discussed above this figure shows that there is a magnetic
phase transition for the 2D electron liquid at rsc = 27 which
is very close to the one predicted by QMC simulations [11]
at rs = 25.5 and another theoretical calculation based on the
Fermi-hypernetted chain approximation [21] at rs = 24. When
the finite width effects are included approximately, we find a
transition from paramagnetic to the fully spin-polarized fluid
for the Q2D electron liquid at rsc = 30 which is very close
to the QMC result of De Palo et al. [22], rs ' 27. Such
good agreement with other calculations on the one hand verifies
the importance of effective interactions in the strongly coupled
regime of 2D electron systems. Furthermore, it also implies that
the local-field factors we have developed are consistent with the
ground state energy values obtained in QMC simulations.

4. Summary

In summary, we have addressed the problem of the
paramagnetic to ferromagnetic phase transition in 2D electron
systems expected to occur at very low density. We have
constructed the spin dependent effective electron–electron
interactions using accurate local-field factors derived from
QMC simulations and the fluctuation–dissipation theorem. The
long wavelength limit of the effective interaction for parallel
spin electrons exhibits a critical behavior approaching the
magnetic phase transition. Our results for the critical densities
at which such a transition occurs for 2D and Q2D systems are in
good agreement with other theoretical calculations employing
ground state energy comparisons in different phases.
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