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An algorithm is proposed to include Pauli exclusion principle in Monte Carlo simulations. This
algorithm has significant advantages to implement in terms of simplicity, speed, and memory
storage; therefore it is ideal for the three-dimensional device simulators. The authors show that even
in moderately high applied fields, one can obtain the correct electronic distribution. They give the
correct definition for electronic temperature and show that in high applied fields, the quasi-Fermi
level and electronic temperature become valley dependent. The effect of including Pauli exclusion
principle on the band profile, electronic temperature, and quasi-Fermi level for the inhomogeneous
case of a single barrier heterostructure is illustrated. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2709999�

Many of today’s interesting microelectronic devices are
working in high doping concentrations up to 1020 cm−3. De-
generate semiconductors are important for thermoelectric
and thermionic energy conversion devices and they are also
used in the highly doped source/drain regions of advanced
transistors. At high carrier densities, the electron distribution
is highly affected by its fermionic nature. Therefore, Pauli
exclusion principle �PEP� needs to be included in the theo-
retical analysis of electron transport in degenerate
semiconductor-based structures.

If the electron wavelength is smaller than the character-
istic lengths present in the structure, the Boltzmann transport
equation �BTE� can be used as an appropriate governing
equation for the device. The factor �1− f� in BTE, which
indicates the probability of the final state to be unoccupied, is
present in the scattering term as a result of PEP.

�f�r,k,t�
�t

= − v · �f�r,k,t� − F/� · �kf�r,k,t�

+ �
k�

�W�k�,k�f�r,k�,t��1 − f�r,k,t��

− W�k,k��f�r,k,t��1 − f�r,k�,t��� .

Here, f is the nonequilibrium distribution function, F is the
applied electric force, v is the group velocity, and W the
scattering rate. The ensemble Monte Carlo �MC� simulation
is accepted as a powerful numerical technique to solve BTE
and is widely used to simulate transport in semiconductor
devices. There have been some attempts to include PEP in
MC simulations of degenerate semiconductors. All of these
attempts have been based on the rejection method. At each
scattering step, scattering to the final state is accepted with

the probability of 1-f . However, in a MC simulation f is not
a priori known.

In a single-electron MC simulation Bosi and Jacoboni1

suggested using f�k , t� obtained from the simulation itself up
to the time t at which the scattering is attempted. They evalu-
ate f�k , t� on a grid in k-space. Lugli and Ferry2 �LF� pro-
posed using the same method in ensemble MC simulation,
but substituting the averaging over time by ensemble average
at each time step. This algorithm is working well at high
fields but it is not suitable for low fields and highly degen-
erate cases. In low fields, it is reported that the algorithm
leads to some unphysical results such as the decrease of av-
erage electron energy with the increase of electric field and
values of electron distribution function exceeding 1.3 In or-
der to improve the LF method, Borowik and Thobel3 and
Borowik and Adamowicz4 suggested adding scattering-out
terms into the simulation by introducing virtual scatterings in
order to avoid f �1. With this method they were able to
rebuild the Fermi-Dirac distribution with a small deviation.
We believe that in principle LF method is free from these
artifacts at the cost of excessive k-space grid points, also
implying a large number of simulated particles. Besides, if
PEP is also checked after free flights, the distribution func-
tion should not exceed 1.5 Another inconvenience of the LF
method is that this algorithm is suitable for a homogeneous
steady state situation. In transient simulations and in inho-
mogeneous devices, tabulating the distribution function at
various locations and times can require an unmanageable
computation time and storage.

Fischetti and Laux6 proposed to overcome this difficulty
by approximating the local electron distribution by a quasi-
equilibrium Fermi-Dirac distribution with the following defi-
nition for local electronic temperature:a�Electronic mail: mona@soe.ucsc.edu
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3

2
kBTel�r� = �	E�r�
 nondegenerate

��r� degenerate,
� �1�

where ��r� is the local quasi-Fermi level and 	E�r�
 is the
local average kinetic energy of electrons. The above defini-
tion for electronic temperature is not correct at high concen-
trations when the Maxwell-Boltzmann distribution is not
valid. The correct definition of electronic temperature should
converge to the lattice temperature at zero electric field and
should exceed it under an applied field. Moreover, under the
applied bias, translational energy should be subtracted, be-
cause temperature is defined by fluctuations of electron ve-
locities around its mean drift value. These considerations
lead us to the following definitions for the distribution func-
tion and electronic temperature of each valley:

fv�E,�v,Tel
v �

=
1

exp��Ev��k − kd
v�r��� − �v�r��/kBTel

v �r�� + 1
, �2�

Tel
v �r� =

2

3kB
�	Ev�k − kd

v�r��
 − 	Ev�r�
0� + Tlattice. �3�

Here v is the valley index, and 	Ev�r�
0 is the local average
energy of electrons in equilibrium at zero electric field and is
calculated analytically at each time step �see Eq. �5��. kd

v�r�
is the local drift wave vector, which is the average wave
vector of all the particles at position r and in valley v. For
moderately high field electrons in different valleys are not in
equilibrium with each other, so separate Fermi spheres with
different chemical potentials and temperatures need to be
defined for each valley. Therefore, all quantities are valley
dependent. Also in inhomogeneous cases such as hetero-
structures, we need to discretize the x space and define the
Fermi level and the electronic temperature locally.

The implementation of the algorithm in the MC simula-
tion is straightforward. At each time step, the drift wave vec-
tor �kd�, average energy of electrons �	E�k−kd�
�, and local
charge �nc

v� are calculated. Then electronic temperature,
Fermi level, and 	Ev
0 for each valley can be calculated,
using Eqs. �3�–�5�, respectively.

nc
v = 

−�

�

f��,�v,Tel
v �gv���d� , �4�

	Ev�r�
0 = 
−�

�

�� − �c
v�f��,�v�r�,Tlattice�gv���d� , �5�

where gv��� is the density of states and �c
v is the bottom of

the conduction band in the valley �. These updated quantities
are used in Eq. �2� for scattering probabilities into final states
at the next iteration.

Figure 1 shows the distribution function at zero electric
field obtained from the present algorithm in comparison with
analytical Fermi-Dirac �FD� distribution. The deviation is
negligible in most of the energy range. However, using defi-
nitions of Ref. 6 �Eq. �1��, the obtained final distribution is
totally different from the FD distribution. It also shows the
results of implementing the algorithm with a low applied
field. As expected some of the electrons below Fermi level
are pushed to higher energy levels producing thereby
heating.

Figure 2 shows a comparison between our algorithm and
experimental results.7 The experiment has been done at 77 K
on Te-doped GaAs. In low temperatures, impurity scattering
is the dominant scattering mechanism. In this simulation, we
have included both ionized and neutral impurity scatterings.
Neutral impurities are considered as hard spheres with the
potential of 35 eV and radius of 2 Å. A binding energy of
0.03 eV is considered for tellurium in GaAs.8 Polar optical
and acoustic phonons are also included, both as inelastic pro-
cesses. Although there is some deviation compared to experi-
mental results, our results are closer to the experiment com-
pared to the previous work of Ref. 1.

In Fig. 3 we compare the distribution function obtained
from our suggested algorithm with that of the LF method.
Scattering rates and band structure are the same for both
cases and the only difference is the implementation of PEP.
The agreement between the present method and the LF
method suggests that the present algorithm works very well
even at moderately high fields of the order of several
10 kV/cm. Our modeling �nonparabolic multivalley band
structure� becomes questionable at such fields for GaAs, so
this should only be considered as a confirmation of the va-

FIG. 1. �Color online� Electron energy distribution function at equilibrium
for GaAs at room temperature and the doping of 1019 cm−3. Theoretical
Fermi-Dirac function is plotted for comparison. The rest are Monte Carlo
simulation results implementing �a� present algorithm, �b� algorithm of Ref.
6 �Eq. �1��, and �c� without Pauli exclusion principle. The last data are the
result of present algorithm for low applied electric field of 2 kV/cm.

FIG. 2. Relative change of the electronic distribution to the equilibrium �FD
distribution� at 77 K temperature and the doping density of 5�1017 cm−3.
Experimental results �solid curve� are after Ref. 8. MC data obtained from
our simulation for the same applied electric fields �200, 400, 600, and
900 V/cm from top to bottom� are shown by dotted lines. Previous MC
simulation results of Ref. 1 are shown by dots �at 900 V/cm�.
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lidity of our method and not a quantitative prediction of the
electronic distribution at high fields. The figure is plotted for
high doping of 1019 cm−3. In such a high doping, the LF
method gives reasonable results with at least 700 000 elec-
trons �this large number of electrons is essential for repro-
ducing the correct results especially at low fields�; however,
the present method is working well even with a sample of
10 000 electrons implying a reduction in CPU time and
memory by a factor of 70! Moreover, even with the same
number of electrons the LF method uses 4.7 times the
memory and it is 15% slower in comparison with the present
method. These simulations were done on a personal com-
puter with Pentium�R� 4 processor and 2.0 Gbytes of
memory. It is noticeable that the agreement with the LF
method, at high fields, is obtainable only if the quasi-Fermi
level is defined separately for each valley.

Finally, we applied this approach to the inhomogeneous
case of a single barrier heterostructure. In the absence of bias
�equilibrium case� the quasi-Fermi level is constant through-
out the whole device. Without considering PEP, however, the
distribution would not lead to a constant Fermi level. Figure
4 shows the electronic temperature and quasi-Fermi level
under a low applied bias, with and without applying PEP.
The simulation is at room temperature. Without PEP, elec-
trons are much colder than the lattice temperature especially
in the contact layers where Fermi level is within the conduc-
tion band. In this case electrons would go from the barrier to
the lower occupied states in the contacts and overpopulate
them. This would lead to an artificial band bending which is
shown in Fig. 4. By including degeneracy in the calculation,
distribution leads to a continuous Fermi level and the elec-
tronic temperature is close to the lattice temperature. Cooling
of electrons before the barrier and heating of them after the
barrier can be explained as Peltier cooling and heating, and
heating inside the barrier is a result of Joule heating. The
transition between nonlinear thermionic emission cooling

and linear transport is discussed in a recent publication.9 We
need to add that the irregularities at both ends of the sample
stem from the injection mechanism imposed at the bound-
aries. They would become irrelevant for wider contact
regions.

In summary, we proposed a theory which describes with
good accuracy transport in degenerate and inhomogeneous
semiconductors. It was shown that the algorithm requires
much less time and memory storage compared to LF and
similar methods. This allows the treatment of inhomoge-
neous systems, which is almost an impossible task with the
LF method; therefore it is ideal for the three-dimensional
device simulators. We have also given a definition for the
electronic temperature, which leads to the correct distribu-
tion function in good agreement with these methods. Com-
parisons with analytical results at zero bias and with other
algorithms and also experimental data under applied bias
were also presented. Furthermore, the effect of including
PEP in a heterostructure on the band profile, electronic tem-
perature, and the quasi-Fermi level was illustrated. The
theory correctly predicts a continuous electronic temperature
profile and quasi-Fermi level across the junctions.
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MURI.

1S. Bosi and C. Jacoboni, J. Phys. C 9, 315 �1976�.
2P. Lugli and D. K. Ferry, IEEE Trans. Electron Devices 32, 2431 �1985�.
3P. Borowik and J. L. Thobel, J. Appl. Phys. 84, 3706 �1998�.
4P. Borowik and L. Adamowicz, Physica B 365, 235 �2005�.
5P. Tadyszak, F. Danneville, A. Cappy, L. Reggiani, L. Varani, and L. Rota,
Appl. Phys. Lett. 69, 1450 �1996�.

6M. V. Fischetti and S. E. Laux, Phys. Rev. B 38, 9721 �1988�.
7W. Jantsch and H. Bruker, Phys. Rev. B 15, 4014 �1977�.
8S. M. Sze, Semiconductor Devices, Physics and Technology �Wiley, New
York, 1985�.

9M. Zebarjadi, A. Shakouri, and K. Esfarjani, Phys. Rev. B 74, 195331
�2006�.

FIG. 3. �Color online� Comparison between LF method and the present
method: distribution function for three different applied electric fields. Solid
lines are obtained from the present algorithm and dots are obtained from LF
method. For more clarity, the three graphs are shifted upwards by two units,
and different valley minima are shown with an arrow.

FIG. 4. �Color online� Band profile, quasi-Fermi level, and electronic tem-
perature for InGaAs/ InGaAsP/InGaAs heterostructure at room temperature
under a low applied bias �a� without and �b� with PEP. Note that in �b� they
are continuous across the junctions.
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