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Abstract In this paper, we consider the stabiliza-
tion of unstable periodic orbits for one-dimensional
and discrete time chaotic systems. Various control
schemes for this problem are available and we con-
sider a recent generalization of delayed control scheme.
We prove that if a certain condition, which depends
only on the period number, is satisfied then the stabi-
lization is always possible. We will also present some
simulation results.
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1 Introduction

Chaotic behavior is a very interesting and fascinating
phenomenon which is frequently observed in many
physical systems; see, e.g., [1]. Mathematical mod-
els of such systems possess many interesting features
whose investigations attracted the scientists from var-
ious disciplines; see, e.g., [2]. In particular, such sys-
tems generally possess many unstable periodic orbits
embedded in their strange attractors; see, e.g., [3]. Sta-
bilization of such unstable periodic orbits is an inter-
esting and challenging problem which received con-
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siderable attention after the seminal work presented
in [4]. Since then, various control schemes have been
proposed to solve this problem. One of such schemes
first proposed in [5], which is also called the Delayed
Feedback Control (DFC), has received attention due
to its many interesting features. However, it has been
shown that this scheme has some limitations; see, e.g.,
[6, 7]. To eliminate these limitations, various general-
izations of DFC have been proposed. One such gener-
alizations which has some improvements over the clas-
sical DFC, has recently been proposed in [8]; for more
information on the subject, see the references therein.

We note that there are various control schemes pro-
posed in the literature for the stabilization of unstable
periodic orbits of chaotic systems; see, e.g., [2], and
the references therein. Our main aim is not to propose
a novel scheme to solve this problem and compare it
with the existing schemes, but to further investigate
the stability properties of a particular scheme proposed
in [8]. In the latter reference, a nonlinear DFC scheme
was proposed and its stability was analyzed. In par-
ticular, it was shown in [8] that when a certain poly-
nomial is stable, then the proposed controller solves
the stabilization problem. We note that this polynomial
depends both on the chaotic system to be controlled
and the gain of the proposed controller. As a conse-
quence, when the chaotic system is given, whether a
stabilizing controller exits or not remains as an inter-
esting question. In this paper, we will give a condi-
tion which provides an answer to this question. More
precisely, we will give a simple condition which is re-
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lated to the given chaotic system such that when this
condition is satisfied, there always exists a stabilizing
controller. We will also give some bounds on the con-
troller gain. Quite interestingly, this condition mainly
depends on the period number of the chaotic system in
question. Moreover, we will also provide some rigor-
ous and novel stability results which were left either as
conjectures or mentioned in [8] as observations based
on extensive simulation results.

This paper is organized as follows. In the next sec-
tion, we briefly introduce the notation used throughout
the paper and summarize the basic results presented
in [8]. In the following section, we will present the
main results. Following some simulation results, we
will give some concluding remarks.

2 Problem statement

Let us consider the following discrete-time system:

x(i + 1) = f
(
x(i)

)
, (1)

where i = 1,2, . . . is the discrete time index, x ∈ R,
f : R → R is an appropriate function, which is as-
sumed to be differentiable wherever required. We as-
sume that the system given by (1) possesses a period
T orbit characterized by the set

ΣT = {
x∗

1 , x∗
2 , . . . , x∗

T

}
, (2)

i.e., for x(1) = x∗
1 , the iterates of (1) yield x(2) =

x∗
2 , . . . , x(T ) = x∗

T , x(k) = x(k − T ) for k > T .
For the notation, definition of various types of sta-

bility and stabilization results of ΣT , see [7–10].
To stabilize ΣT for (1), we apply the following con-

trol law:

x(i + 1) = f
(
x(i)

) + u(i), (3)

where u(·) is the control input. The control problem
we consider is to find an appropriate control law for
u(·) so that ΣT becomes asymptotically stable. To
solve this problem, various control schemes are pro-
posed in the literature; see Remark 1 given below. The
control law we consider is as given below

u(i) = K

K + 1

(
x(i − m + 1)

) − f
(
x(i)

)
, (4)

where K is a constant gain to be determined and m

is the period of the orbit. Here, we assume that at
the discrete time index i, the state values x(i) and
x(i − m + 1) are available from the measurements. If

we assume that these terms are the outputs of the sys-
tem given by (1), then (4) represents a nonlinear output
feedback law. Since the term x(i − m + 1) is m − 1
unit delayed form of x(i), the proposed control law
is related to delayed feedback control laws. Indeed,
if we use the linear term x(i) instead of the nonlin-
ear term f (x(i)) in (4), then the proposed control law
would be quite similar to the classical DFC scheme;
see Remark 2 given below. Due to the nonlinear term
f (x(i)), which is computable since x(i) is available
from measurements, the proposed control law is non-
linear, and hence can be considered as a generalized
version of DFC. Instead of the term K

K+1 in (4), we

could use K̂ = K
K+1 ; however, the form given by (4)

yields further interesting interpretations. For details,
the reader is referred to [8].

Now we will give several remarks related to the
control law given by (4).

Remark 1 Various control schemes are proposed in
the literature for the stabilization problem given above;
see, e.g., [5, 8, 11–13]. In fact, the literature is quite
rich on the subject and interested reader may resort to,
e.g., references cited above, [1, 2], and the references
therein. Our main concern in this paper is not to pro-
vide a comparison or overview of these schemes, but
to extend the results of a particular scheme proposed
in [8].

Remark 2 In the classical DFC scheme as proposed
in [5], the control law in (3) is given as u(i) = K(u(i−
T ) − u(i)), where K is the constant gain to be de-
termined. Obviously, classical DFC is a linear control
scheme. On the other hand, the control scheme given
in (4) is nonlinear, which may be considered as a draw-
back of the proposed scheme. First note that although
the linear control schemes are often preferred for their
simplicity, many schemes proposed in the literature for
the solution of a large amount of control problems re-
lated to complex systems are actually nonlinear; see,
e.g., [14]. In fact, such schemes were also applied to
the control of chaotic systems; see, e.g., [15], as well
as to the stabilization problem considered here; see,
e.g., [11, 12]. Secondly, note that although the con-
trol law given by (4) contains a term f (·), it is not
based on cancellation, as opposed to many differential-
geometric schemes proposed for nonlinear systems;
see, e.g., [14]. In fact, on the periodic orbit ΣT , the
control law given by (4) vanishes. It can also be shown
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that if u(i) → 0, then solutions of (3) converge to ΣT .
Hence, the proposed scheme enjoys the similar prop-
erties of the classical DFC; for details; see [8].

Remark 3 As noted in Remark 2, various nonlinear
control schemes were proposed in the literature for the
stabilization problem given above. Among these, the
schemes proposed in [11] and [12] are somewhat re-
lated to the control law given by (4). It can easily be
shown that for the case T = 1 (i.e., the stabilization of
a fixed point), these schemes and the one given by (4)
become equivalent. However, for higher order periods
(i.e., for T > 1), the control laws given in [11] and [12]
contain the map f T (i.e., T -iterate of f ), in their struc-
ture, whereas the control law given by (4) contains
only f for any period. As a result, these schemes en-
joy different stability properties for T > 1 case. The
method proposed in [11] is based on prediction, and
hence is called prediction-based control, and in the
latter a combination of prediction-based schemes and
classical DFC schemes is also proposed for the sta-
bilization of ΣT . We note that this combination also
contains T iterate maps, and hence is different from
the control scheme considered in this paper.

Let us assume T = m. For the system given by (1)
and its periodic orbit Σm given by (2), we define
aj = f ′(x∗

j ), j = 1,2, . . . ,m, and a = ∏m
j=1 aj . As-

sociated with the system given by (3)–(4), we define
the following polynomial:

pm(λ) =
(

λ − K

K + 1

)m

− a

(K + 1)m
λm−1. (5)

Main results of [8] can be summarized in the fol-
lowing theorem.

Theorem 1 Let Σm given by (2) be a period T = m

orbit of (1) and set aj = f ′(x∗
j ), j = 1,2, . . . ,m, a =

∏m
j=1 aj . Consider the control scheme given by (3)

and (4). Then:

i: Σm is exponentially stable if and only if pm(λ)

given by (5) is Schur stable, i.e., all of its roots are
strictly inside the unit disc in the complex plane.
This condition is only sufficient for asymptotic sta-
bility.

ii: If pm(λ) has at least one unstable root, i.e., out-
side the unit disc, then Σm is unstable as well.

iii: If pm(λ) is marginally stable, i.e., has at least one
root on the unit disc which is simple while the rest

of the roots are inside the unit disc, then the pro-
posed method to test the stability of Σm is incon-
clusive.

Proof See the proof of Theorem 2 in [8]. �

Based on Theorem 1, various observations/com-
ments have been given in [8], and we list the important
ones below:

Fact 1 For m = 1, stabilization is always possible pro-
vided that a �= 1. This shows that the main limitation
of DFC, namely the odd number limitation, does not
hold for the proposed scheme for m = 1.

Fact 2 For m ≥ 2, a necessary condition for stabiliza-
tion is a < 1. In other words, the odd number limita-
tion holds for the case m ≥ 2.

Fact 3 For m = 2 and a < 1, stabilization is always
possible. This can be considered as another improve-
ment over classical DFC.

Observation 1 For m ≥ 3 and a < 1, it was ob-
served in [8] that there exists a number amcr > 0 such
that when |a| < amcr , stabilization is possible. More-
over, by extensive numerical simulations some upper
bounds for amcr for various m were found. In this pa-
per, we will give an analytical expression for amcr and
prove the observation stated above.

Observation 2 It was stated in [8] that amcr → 1 as
m → ∞ as a conjecture. In this paper, we will show
that this observation does not hold and we find a∞ =
limm→∞ amcr .

Observation 3 For stabilization, a necessary condi-
tion is | K

K+1 | < 1, which implies K > −0.5. Let us
define the following critical gain:

Kcr = −0.5 + 0.5(−a)1/m. (6)

It was shown in [8] that for K ≤ Kcr , stabilization is
not possible and it was stated as a conjecture that if for
K = Kcr , pm(·) given by (5) is marginally stable, then
stabilization is possible. In this paper, we will show
that the latter observation holds.



1258 Ö. Morgül

3 Stabilization results

Let us consider the polynomial pm(·) given by (5).
First, we define the following polynomials:

q1(λ) =
(

λ − K

K + 1

)m

,

q2(λ) = − a

(K + 1)m
λm−1.

(7)

Theorem 2 Assume that |a| < 1 and m ≥ 1. Then
pm(·) given by (5) is Schur stable for any K ≥ 0. (Note
that Schur stability means that the roots of the polyno-
mial are strictly inside the unit disc.)

Proof Since |a| < 1, stability for K = 0 is obvious
from (5). Now assume K > 0. By using (5) and (7),
we obtain the following:
∣∣pm(λ) − q1(λ)

∣∣ = |a|
(K + 1)m

λm−1. (8)

After straightforward calculations, we obtain:

min|λ|=1

∣∣q1(λ)
∣∣ = 1

(K + 1)m
. (9)

From (7)–(9), it follows that for |a| < 1, we have
∣
∣pm(λ) − q1(λ)

∣
∣ <

∣
∣q1(λ)

∣
∣, |λ| = 1. (10)

Then by Rouché’s theorem (see e.g. [16]), it follows
that pm(·) and q1(·) have the same number of roots
inside the unit disc. Since the latter has all of its roots
inside the unit disc for any K > 0, it follows that so
does pm(·). �

Since the proposed scheme does not achieve sta-
bilization for a > 1 when m ≥ 2, and achieves stabi-
lization for |a| < 1, in the sequel we will consider the
case a < −1. In the latter case, stabilization is always
possible when m = 2, hence we will consider the case
m ≥ 3 as well. Also, note that for the case mentioned
above, we have Kcr > 0, see (6). Next, we consider
the case 0 < K < Kcr .

Theorem 3 Let m ≥ 3, a < −1 and consider pm(·)
given by (5). For 0 < K < Kcr , m − 1 roots of pm are
inside the unit disc and the remaining root is in the
interval (a,−1).

Proof By using (5) and (7), we obtain the following:

∣∣pm(λ) − q2(λ)
∣∣ =

∣∣∣∣λ − K

K + 1

∣∣∣∣

m

. (11)

It follows easily that maximum of (11) on the unit disc
occurs at λ = −1, e.g., we have

max
|λ|=1

∣∣∣∣λ − K

K + 1

∣∣∣∣

m

=
(

2K + 1

K + 1

)m

. (12)

Since K < Kcr , it follows from (6) that

(2K + 1)m < (2Kcr + 1)m = |a|. (13)

Hence, by using (11)–(13), we obtain
∣∣pm(λ) − q2(λ)

∣∣ <
∣∣q2(λ)

∣∣, |λ| = 1. (14)

Then by Rouché’s theorem (see e.g. [16]), it follows
that pm(·) and q2(·) have the same number of roots
inside the unit disc. Since the latter has m − 1 roots
inside the unit disc, it follows that so does pm(·). Now
consider the remaining root of pm(·). It follows easily
that

pm(a) = (−1)m
[|a|(K + 1) + 1]m − |a|m

(K + 1)m
, (15)

pm(−1) = (−1)m
(2K + 1)m − |a|

(K + 1)m
. (16)

From (15)–(16), it follows that pm(a)pm(−1) < 0,
hence pm(·) has a real root in the interval (a,−1). �

Now we consider the case K = Kcr . By direct
substitution λ = −1 and K = Kcr in (5), we obtain
pm(−1) = 0. Next, we investigate the remaining roots
of pm(·). By using (5) from pm(λ) = 0, we obtain
∣∣∣
∣λ − K

K + 1

∣∣∣
∣

m

= |a|
(K + 1)m

, |λ| = 1. (17)

It is easy to show that

1

K + 1
≤

∣∣
∣∣λ − K

K + 1

∣∣
∣∣ ≤ 2K + 1

K + 1
, |λ| = 1, (18)

here the upper and lower bounds occur at λ = −1 and
λ = 1, respectively. By using (6) and (18) in (17), it
follows that when K = Kcr , pm(·) can have roots on
the unit disc only at λ = −1 , while the remaining roots
are strictly inside the unit disc. Next, we give a condi-
tion for which this root is simple.

Theorem 4 Assume that K = Kcr , a < −1 and
m ≥ 3. Let us define

amcr =
(

m

m − 2

)m

. (19)

If

|a| < amcr , (20)

then pm(λ) has a single root at λ = −1, while the re-
maining roots are strictly inside the unit circle.
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Proof From the above discussions, it is clear that
when K = Kcr , pm(·) has at least one root at λ = −1,
while the remaining roots are strictly inside the unit
disc. Next, we will show that λ = −1 cannot be a mul-
tiple root if (20) is satisfied; hence, pm(·) is marginally
stable. We prove this result by using contradiction. As-
sume that λ = −1 is a multiple root. Then p′

m(−1) = 0
must hold. From (5), we obtain

p′
m(−1) = (−1)m−1m

(2Kcr + 1)m−1

(Kcr + 1)m−1

+ (−1)m−2(m − 1)
|a|

(Kcr + 1)m
. (21)

By using (6) in (21), it follows from p′
m(−1) = 0 that

m(Kcr + 1)|a| − |a|(m − 1)(2Kcr + 1) = 0. (22)

By rearranging (22) and using (6), after straightfor-
ward calculations, we obtain

|a| 1
m

(
1 − m

2

)
+ m

2
= 0, (23)

which implies

|a| =
(

m

m − 2

)m

. (24)

Hence, it follows that if |a| �= amcr , then we have
p′

m(−1) �= 0, hence pm(·) cannot have a multiple root
at λ = −1. If we rewrite pm(·) as pm(λ) = (λ +
1)g(λ), it easily follows that for the stability of g(·),
we must have |a| < acr . Then the result follows from
the discussions given above. �

Remark 4 It follows from (22) that if K = Kcr and
|a| = amcr , then pm(·) has a double root at λ = −1,
hence in this case pm(·) is unstable. On the other
hand, if K = Kcr and |a| < amcr holds, then pm(·) is
marginally stable.

Next, we consider the case K > Kcr .

Theorem 5 Assume that K > Kcr and m ≥ 3. If (20)
holds, then there exists a constant Km > Kcr such that
for Kcr < K < Km, pm(·) is Schur stable.

Proof First note that pm(·) has m roots, which de-
pend continuously on K for K ≥ 0. Let us denote
these roots as r1(K), . . . , rm(K). From Theorem 4, it
follows that, say rm(Kcr) = −1, and |rj (Kcr )| < 1,
j = 1, . . . ,m − 1. Hence, there exists a δ > 0 such

that |rj (Kcr )| < 1 − δ, j = 1, . . . ,m − 1. By conti-
nuity, given a sufficiently small δ1 > 0, there exists a
ε1 > 0 such that for Kcr < K < Kcr + ε1, we have
|rj (K)| < 1 − δ1, j = 1, . . . ,m − 1. Next, we show
that the remaining root rm(K) will also be inside the
unit disc. First note that if (20) holds then by using (6),
(19), and (20), after some straightforward calculations,
we obtain

−m|a|(Kcr + 1) + (m − 1)|a|(2Kcr + 1) < 0. (25)

Next, note that for K = Kcr , we have pm(−1) = 0 and
if (20) holds we have p′

m(−1) �= 0. By using (6), (21),
and K = Kcr , we obtain

Cp′
m(−1)

= (−1)m−1|a|[m(Kcr + 1) − (m − 1)(2Kcr + 1)
]
,

(26)

where C = (Kcr + 1)m(2Kcr + 1) > 0. It follows
from (25) and (26) that if m is even then p′

m(−1) < 0
and if m is odd then p′

m(−1) > 0. By continuity,
there exists a sufficiently small ε2 > 0 such that for
Kcr < K < Kcr + ε2, this property still holds. In the
latter case, it can easily be shown that pm(−1) > 0
if m is even and pm(−1) < 0 if m is odd. It follows
from these that if ε2 > 0 is sufficiently small, then for
Kcr < K < Kcr + ε2 the remaining root rm(K) sat-
isfies |rm(K)| < 1. Since rm(Kcr) = −1 and rm(K)

depends continuously on K , it follows that for suf-
ficiently small ε2 > 0, we have |rm(K)| < 1 − δ1

for Kcr < K < Kcr + ε2. Hence, if we choose ε =
min{ε1, ε2}, then for Kcr < K < Kcr + ε we will have
|rj (K)| < 1 − δ1, j = 1, . . . ,m. �

Several remarks are now in order.

Remark 5 The existence of amcr was mentioned and
some upper bounds were found through extensive sim-
ulations in [8]. For example, for m = 3 the upper
bound was found as 27 in [8] which is exactly the
same as given by (19). On the other hand, the upper
bounds for m = 4,5,6 were found as 15, 11.5, 9.8, re-
spectively, in [8], and it turns out that these estimates
are rather conservative, since by using (19) amcr can
be found for these values of m as 16, 12.86, 11.39,
respectively. Theorem 5 also justifies the numerical
simulation results given in [8], where a periodic or-
bit with m = 10 and a = −7.74, and another one with
m = 16 and a = −1.629 were stabilized with the pro-
posed scheme; indeed in these cases by using (19), we
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Fig. 1 Location of the
roots of pm(λ)

find a10cr = 9.81 and a16cr = 8.64. See also Observa-
tion 1.

Remark 6 It was conjectured in [8] that amcr →
a∞ = 1 as m → ∞. However, Theorem 5 shows that
this conjecture is false. In fact, from (19), it follows
that a∞ = e2. Moreover, we have amcr > e2 for any
m ≥ 3. See also Observation 2.

Remark 7 The upper bound given by (19)–(20) is in-
teresting in the sense that it neither depends on the pe-
riodic orbit itself nor to the particular chaotic system in
question; indeed it only depends on the period number
m. Note that for the classical DFC, a similar stability
condition would depend on periodic orbit, chaotic sys-
tem in question, and m; see, e.g., [7, 9, 10].

Remark 8 It was also conjectured in [8] that for K =
Kcr , a < −1 and |a| < amcr , if pm(·) is marginally
stable, then stabilization is possible. Theorem 5 proves
that this conjecture holds. See Observation 3.

4 Simulation results

For simulations, we will use the logistic map given as

x(i + 1) = rx(i)
(
1 − x(i)

)
, (27)

which is well known for its chaotic behavior and stud-
ied extensively in the literature. Stabilization of vari-
ous periodic orbits of (27) by using the control scheme
given in Sect. 2 were considered in [8]. Here, as an-
other example we consider (27) with r = 3.579. For
this case, (27) has a period 20 orbit Σ20 for which
a = −5.6363. Note that from (20) we find a20cr =
8.2253, hence stabilization is possible with the pro-
posed scheme. By using (6), the critical gain Kcr can
be found as Kcr = 0.0451. By using extensive compu-
tations, we find that stabilization is possible for Kcr <

K < Kmax where Kmax = 0.08276. Indeed, the loca-
tion of the roots of (5) for 0.04 ≤ K ≤ 0.07 is given in
Fig. 1. As seen from Fig. 1, for certain values of K , all
of the roots are strictly inside the unit disc. For further
simulation results, consider the system given by (27),
(3), and (4) with K = 0.05 and x(0) = 0.82. The plot
of x(i −1) versus x(i) for i ≥ 1000 is shown in Fig. 2.
As can be seen, the trajectory of x(·) converges to Σ20.
Finally, the control input u(i) as given by (4) is plotted
in Fig. 3. As can be seen, u(i) → 0.

5 Conclusion

In this paper, we considered a generalization of DFC
as given in [8]. We proved certain stability results
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Fig. 2 x(i − 1) vs. x(i) for
i ≥ 1000

Fig. 3 Control input u(i)

which were not proven but mentioned as conjec-
tures and/or observations in [8]. In particular, we have
shown that when the periodic orbit satisfies a condi-

tion, which mainly depends on the period number, then
the stabilization is always possible with the proposed
scheme.
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Various generalizations of the proposed scheme
may be possible. An interesting problem may be the
generalization to higher dimensional case. Finding an
upper bound as given in Theorem 5 might be an in-
teresting and open problem. Another possible general-
ization might be the combination of the double period
scheme as given in [13] with the proposed scheme.
However, these points require further research.
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