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We investigate adaptive mixture methods that linearly combine outputs of m constituent filters running
in parallel to model a desired signal. We use Bregman divergences and obtain certain multiplicative
updates to train the linear combination weights under an affine constraint or without any constraints.
We use unnormalized relative entropy and relative entropy to define two different Bregman divergences
that produce an unnormalized exponentiated gradient update and a normalized exponentiated gradient
update on the mixture weights, respectively. We then carry out the mean and the mean-square transient
analysis of these adaptive algorithms when they are used to combine outputs of m constituent filters.
We illustrate the accuracy of our results and demonstrate the effectiveness of these updates for sparse
mixture systems.
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1. Introduction

In this paper, we study adaptive mixture methods based on
Bregman divergences [1,2] that combine outputs of m constituent
filters running in parallel on the same task. The overall system has
two stages [3–8]. The first stage contains adaptive filters running
in parallel to model a desired signal. The outputs of these adap-
tive filters are then linearly combined to produce the final output
of the overall system in the second stage. We use Bregman diver-
gences and obtain certain multiplicative updates [9,2,10] to train
these linear combination weights under an affine constraint [11]
or without any constraints [12]. We use unnormalized [2] and
normalized relative entropy [9] to define two different Bregman
divergences that produce the unnormalized exponentiated gradi-
ent update (EGU) and the exponentiated gradient update (EG) on
the mixture weights [9], respectively. We then perform the mean
and the mean-square transient analysis of these adaptive mix-
tures when they are used to combine outputs of m constituent
filters. We emphasize that to the best of our knowledge, this is
the first mean and mean-square transient analysis of the EGU al-
gorithm and the EG algorithm in the mixture framework (which
naturally covers the classical framework also [13,14]). We illustrate
the accuracy of our results through simulations in different config-
urations and demonstrate advantages of the introduced algorithms
for sparse mixture systems.
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Adaptive mixture methods are utilized in a wide range of signal
processing applications in order to improve the steady-state and/or
convergence performance over the constituent filters as well as to
deal with the limitations of different type of adaptive filters, or
to fight against the lack of information that would be necessary
to optimally adjust their parameters [11,12,15]. An adaptive con-
vexly constrained mixture of two filters is studied in [15], where
the convex combination is shown to be “universal” such that the
combination performs at least as well as its best constituent fil-
ter in the steady state [15]. The transient analysis of this adaptive
convex combination is studied in [16], where the time evolution of
the mean and variance of the mixture weights is provided. In simi-
lar lines, an affinely constrained mixture of adaptive filters using a
stochastic gradient update is introduced in [11]. The steady-state
mean-square error (MSE) of this affinely constrained mixture is
shown to outperform the steady-state MSE of the best constituent
filter in the mixture under certain conditions [11]. The transient
analysis of this affinely constrained mixture for m constituent fil-
ters is carried out in [17]. The general linear mixture framework
as well as the steady-state performances of different mixture con-
figurations are studied in [12].

In this paper, we use Bregman divergences to derive multiplica-
tive updates on the mixture weights. We use the unnormalized
relative entropy and the relative entropy as distance measures and
obtain the EGU algorithm and the EG algorithm to update the
combination weights under an affine constraint or without any
constraints. We then carry out the mean and the mean-square
transient analysis of these adaptive mixtures when they are used
to combine m constituent filters. We point out that the EG algo-
rithm is widely used in sequential learning theory [18] and min-
imizes an approximate final estimation error while penalizing the
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Fig. 1. A linear mixture of outputs of m adaptive filters.
distance between the new and the old filter weights. In network
and acoustic echo cancellation applications, the EG algorithm is
shown to converge faster than the LMS algorithm [14,19] when the
system impulse response is sparse [13]. Similarly, in our simula-
tions, we observe that using the EG algorithm to train the mixture
weights yields increased convergence speed compared to using the
LMS algorithm to train the mixture weights [11,12] when the com-
bination favors only a few of the constituent filters in the steady
state, i.e., when the final steady-state combination vector is sparse.
We also observe that the EGU algorithm and the LMS algorithm
show similar performance when they are used to train the mix-
ture weights even if the final steady-state mixture is sparse. In this
sense, we emphasize that we do not force the system to be sparse
in order to make sure that the EG algorithm performs better than
the LMS algorithm. However, if the final steady-state vector is
sparse, than the EG could increase the convergence speed.

To summarize, the main contributions of this paper are as fol-
lows:

• We use Bregman divergences to derive multiplicative updates
on affinely constrained and unconstrained mixture weights
adaptively combining outputs of m constituent filters.

• We use the unnormalized relative entropy and the relative
entropy to define two different Bregman divergences that pro-
duce the EGU algorithm and the EG algorithm to update the
affinely constrained and unconstrained mixture weights.

• We perform the mean and the mean-square transient analysis
of the affinely constrained and unconstrained mixtures using
the EGU algorithm and the EG algorithm.

The organization of the paper is as follows. In Section 2, we first
describe the mixture framework. In Section 3, we study the affinely
constrained and unconstrained mixture methods updated with the
EGU algorithm and the EG algorithm. In Section 4, we first perform
the transient analysis of the affinely constrained mixtures and then
continue with the transient analysis of the unconstrained mixtures.
Finally, in Section 5, we perform simulations to show the accuracy
of our results and to compare performances of the different adap-
tive mixture methods. The paper concludes with certain remarks
in Section 6.
2. System description

2.1. Notation

In this paper, all vectors are column vectors and represented
by boldface lowercase letters. Matrices are represented by bold-
face capital letters. For presentation purposes, we work only with
real data. Given a vector w , w(i) denotes the ith individual entry
of w , w T is the transpose of w , ‖w‖1 �

∑
i |w(i)| is the l1 norm;

‖w‖� √
w T w is the l2 norm. For a matrix W , tr(W ) is the trace.

For a vector w , diag(w) represents a diagonal matrix formed using
the entries of w . For a matrix W , diag(W ) represents a column
vector that contains the diagonal entries of W . For two vectors v1
and v2, we define the concatenation [v1; v2]� [v T

1 v T
2 ]T . For a ran-

dom variable v , v̄ is the expected value. For a random vector v
(or a random matrix V ), v̄ (or V̄ ) represents the expected value of
each entry. Vectors (or matrices) 1 and 0, with an abuse of nota-
tion, denote vectors (or matrices) of all ones or zeros, respectively,
where the size of the vector (or the matrix) is understood from the
context.

2.2. System description

The framework that we study has two stages. In the first stage,
we have m adaptive filters producing outputs ŷi(t), i = 1, . . . ,m,
running in parallel to model a desired signal y(t) as seen in
Fig. 1. Here, a(t) is generated from a zero mean stochastic pro-
cess and y(t) is generated from a zero-mean stationary stochastic
process. The second stage is the mixture stage, where the out-
puts of the first stage filters are combined to improve the steady-
state and/or the transient performance over the constituent fil-
ters. We linearly combine the outputs of the first stage filters
to produce the final output as ŷ(t) = w T (t)x(t), where x(t) �
[ ŷ1(t), . . . , ŷm(t)]T and train the mixture weights using multiplica-
tive updates (or exponentiated gradient updates) [2]. We point out
that in order to satisfy the constraints and derive the multiplicative
updates [9,20], we use reparametrization of the mixture weights as
w(t) = f (λ(t)) and perform the update on λ(t) as

λ(t + 1) = arg min
λ

{
d
(
λ,λ(t)

) + μ l
(

y(t), f T (λ)x(t)
)}

, (1)

where μ is the learning rate of the update, d(·,·) is an appro-
priate distance measure and l(·,·) is the instantaneous loss. We
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emphasize that in (1), the updated vector λ is forced to be close
to the present vector λ(t) by d(λ(t + 1),λ(t)), while trying to ac-
curately model the current data by l(y(t), f T (λ)x(t)). However,
instead of directly minimizing (1), a linearized version of (1)

λ(t + 1) = arg min
λ

{
d
(
λ,λ(t)

) + l
(

y(t), f T (
λ(t)

)
x(t)

)
+ μ∇λl

(
y(t), f T (λ)x(t)

)T ∣∣
λ=λ(t)

(
λ − λ(t)

)}
(2)

is minimized to get the desired update. As an example, if we use
the l2-norm as the distance measure, i.e., d(λ,λ(t)) = ‖λ − λ(t)‖2,
and the square error as the instantaneous loss, i.e., l(y(t),
f T (λ)x(t)) = [y(t) − f T (λ)x(t)]2 with f (λ) = λ, then we get the
stochastic gradient update on w(t), i.e.,

w(t + 1) = w(t) + μe(t)x(t),

in (2).
In the next section, we use the unnormalized relative entropy

d1
(
λ,λ(t)

) =
{

m∑
i=1

[
λ(i) ln

(
λ(i)

λ(i)(t)

)
+ λ(i)(t) − λ(i)

]}
(3)

for positively constrained λ and λ(t), λ ∈ R
m+ , λ(t) ∈ R

m+ , and the
relative entropy

d2
(
λ,λ(t)

) =
{

m∑
i=1

[
λ(i) ln

(
λ(i)

λ(i)(t)

)]}
, (4)

where λ is constrained to be in an extended simplex such that
λ(i) � 0,

∑m
k=1 λ(i) = u for some u � 1 as the distance measures,

with appropriately selected f (·) to derive updates on mixture
weights under different constraints. We first investigate affinely
constrained mixture of m adaptive filters, and then continue with
the unconstrained mixture using (3) and (4) as the distance mea-
sures.

3. Adaptive mixture algorithms

In this section, we investigate affinely constrained and uncon-
strained mixtures updated with the EGU algorithm and the EG
algorithm.

3.1. Affinely constrained mixture

When an affine constraint is imposed on the mixture such that
w T (t)1 = 1, we get

ŷ(t) = w(t)T x(t),

e(t) = y(t) − ŷ(t),

w(i)(t) = λ(i)(t), i = 1, . . . ,m − 1,

w(m)(t) = 1 −
m−1∑
i=1

λ(i)(t),

where the (m−1)-dimensional vector λ(t) � [λ(1)(t), . . . , λ(m−1)(t)]T

is the unconstrained weight vector, i.e., λ(t) ∈ R
m−1. Using λ(t)

as the unconstrained weight vector, the error can be written as
e(t) = [y(t) − ŷm(t)] − λT (t)δ(t), where δ(t) � [ ŷ1(t) − ŷm(t), . . . ,
ŷm−1(t) − ŷm(t)]T . To be able to derive a multiplicative update
on λ(t), we use

λ(t) = λ1(t) − λ2(t),
where λ1(t) and λ2(t) are constrained to be nonnegative, i.e.,
λi(t) ∈ R

m−1+ , i = 1,2. After we collect nonnegative weights in
λa(t) = [λ1(t);λ2(t)], we define a function of loss e(t) as

la
(
λa(t)

)
� e2(t)

and update positively constrained λa(t) as follows.

3.1.1. Unnormalized relative entropy
Using the unconstrained relative entropy as the distance mea-

sure, we get

λa(t + 1) = arg min
λ

{2(m−1)∑
i=1

[
λ(i) ln

(
λ(i)

λ
(i)
a (t)

)
+ λ

(i)
a (t) − λ(i)

]

+ μ
[
la

(
λa(t)

) + ∇λla(λ)T
∣∣
λ=λa(t)

(
λ − λa(t)

)]}
.

After some algebra this yields

λ
(i)
a (t + 1) = λ

(i)
a (t)exp

{
μe(t)

(
ŷi(t) − ŷm(t)

)}
,

i = 1, . . . ,m − 1,

λ
(i)
a (t + 1) = λ

(i)
a (t)exp

{−μe(t)
(

ŷi−m+1(t) − ŷm(t)
)}

,

i = m, . . . ,2(m − 1),

providing the multiplicative updates on λ1(t) and λ2(t).

3.1.2. Relative entropy
Using the relative entropy as the distance measure, we get

λa(t + 1) = arg min
λ

{2(m−1)∑
i=1

[
λ(i) ln

(
λ(i)

λ
(i)
a (t)

)
+ γ

(
u − 1T λ

)]

+ μ
[
la

(
λa(t)

) + ∇λla(λ)T
∣∣
λ=λa(t)

(
λ − λa(t)

)]}
,

where γ is the Lagrange multiplier. This yields

λ
(i)
a (t + 1) = u

(
λ

(i)
a (t)exp

{
μe(t)

(
ŷi(t) − ŷm(t)

)})
×

(
m−1∑
k=1

[
λ

(k)
a (t)exp

{
μe(t)

(
ŷk(t) − ŷm(t)

)}

+ λ
(k+m−1)
a (t)exp

{−μe(t)
(

ŷk(t) − ŷm(t)
)}])−1

,

i = 1, . . . ,m − 1,

λ
(i)
a (t + 1) = u

(
λ

(i)
a (t)exp

{−μe(t)
(

ŷi−m+1(t) − ŷm(t)
)})

×
(

m−1∑
k=1

[
λ

(k)
a (t)exp

{
μe(t)

(
ŷk(t) − ŷm(t)

)}

+ λ
(k+m−1)
a (t)exp

{−μe(t)
(

ŷk(t) − ŷm(t)
)}])−1

,

i = m, . . . ,2(m − 1),

providing the multiplicative updates on λa(t).

3.2. Unconstrained mixture

Without any constraints on the combination weights, the mix-
ture stage can be written as
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ŷ(t) = w T (t)x(t),

e(t) = y(t) − ŷ(t),

where w(t) ∈ R
m . To be able to derive a multiplicative update,

we use a change of variables,

w(t) = w1(t) − w2(t),

where w1(t) and w2(t) are constrained to be nonnegative, i.e.,
w i(t) ∈ R

m+ , i = 1,2. We then collect the nonnegative weights
wa(t) = [w1(t); w2(t)] and define a function of the loss e(t) as

lu
(

wa(t)
)
� e2(t).

3.2.1. Unnormalized relative entropy
Defining cost function similar to (4) and minimizing it with re-

spect to w yields

w(i)
a (t + 1) = w(i)

a (t)exp
{
μe(t) ŷi(t)

}
, i = 1, . . . ,m,

w(i)
a (t + 1) = w(i)

a (t)exp
{−μe(t) ŷi−m(t)

}
, i = m + 1, . . . ,2m,

providing the multiplicative update on wa(t).

3.2.2. Relative entropy
Using the relative entropy under the simplex constraint on w ,

we get the updates

w(i)
a (t + 1) = u

w(i)
a (t)exp{μe(t) ŷi(t)}∑m

k=1[w(k)
a (t)exp{μe(t) ŷk(t)} + w(k+m)

a (t)exp{−μe(t) ŷk(t)}]
,

i = 1, . . . ,m,

w(i)
a (t + 1) = u

w(i)
a (t)exp{−μe(t) ŷi−m(t)}∑m

k=1[w(k)
a (t)exp{μe(t) ŷk(t)} + w(k+m)

a (t)exp{−μe(t) ŷk(t)}]
,

i = m + 1, . . . ,2m.

In the next section, we study the transient analysis of these four
adaptive mixture algorithms.

4. Transient analysis

In this section, we study the mean and the mean-square tran-
sient analysis of the adaptive mixture methods. We start with the
affinely constrained combination.

4.1. Affinely constrained mixture

We first perform the transient analysis of the mixture weights
updated with the EGU algorithm. Then, we continue with the tran-
sient analysis of the mixture weights updated with the EG algo-
rithm.

4.1.1. Unconstrained relative entropy
For the affinely constrained mixture updated with the EGU al-

gorithm, using Taylor Series, we have the multiplicative update as

λ
(i)
1 (t + 1) = λ

(i)
1 (t)exp

{
μe(t)

(
ŷi(t) − ŷm(t)

)}
= λ

(i)
1 (t)

∞∑
k=0

(μe(t)( ŷi(t) − ŷm(t)))k

k! , (5)

λ
(i)
2 (t + 1) = λ

(i)
2 (t)exp

{−μe(t)
(

ŷi(t) − ŷm(t)
)}

= λ
(i)
2 (t)

∞∑
k=0

(−μe(t)( ŷi(t) − ŷm(t)))k

k! , (6)

for i = 1, . . . ,m − 1. If e(t) and ŷi(t) − ŷm(t) for each i = 1, . . . ,

m − 1 are bounded, then we can write (5) and (6) as
λ
(i)
1 (t + 1) ≈ λ

(i)
1 (t)

(
1 + μe(t)

(
ŷi(t) − ŷm(t)

) + O
(
μ2)), (7)

λ
(i)
2 (t + 1) ≈ λ

(i)
2 (t)

(
1 − μe(t)

(
ŷi(t) − ŷm(t)

) + O
(
μ2)), (8)

for i = 1, . . . ,m − 1. Since μ is usually relatively small [2], we ap-
proximate (7) and (8) as

λ
(i)
1 (t + 1) ≈ λ

(i)
1 (t)

(
1 + μe(t)

(
ŷi(t) − ŷm(t)

))
, (9)

λ
(i)
2 (t + 1) ≈ λ

(i)
2 (t)

(
1 − μe(t)

(
ŷi(t) − ŷm(t)

))
. (10)

In our simulations, we illustrate the accuracy of the approxi-
mations (9) and (10) under the mixture framework. Using (9)
and (10), we can obtain updates on λ1(t) and λ2(t) as

λ1(t + 1) = (
I + μe(t)diag

(
δ(t)

))
λ1(t), (11)

λ2(t + 1) = (
I − μe(t)diag

(
δ(t)

))
λ2(t). (12)

Collecting the weights in λa(t) = [λ1(t);λ2(t)], using the up-
dates (11) and (12), we can write update on λa(t) as

λa(t + 1) = (
I + μe(t)diag

(
u(t)

))
λa(t), (13)

where u(t) is defined as u(t) � [δ(t);−δ(t)].
For the desired signal y(t), we can write y(t) − ŷm(t) =

λT
0 (t)δ(t) + e0(t), where λ0(t) is the optimum MSE solution at

time t such that λ0(t) � R−1(t)p(t), R(t) � E[δ(t)δT (t)], p(t) �
E{δ(t)[y(t) − ŷm(t)]} and e0(t) is zero mean and uncorrelated
with δ(t). We next show that the mixture weights converge to the
optimum solution in the steady state such that limt→∞ E[λ(t)] =
limt→∞ λ0(t) for properly selected μ.

Subtracting (12) from (11), we obtain

λ(t + 1) = λ(t) + μe(t)diag
(
δ(t)

)(
λ1(t) + λ2(t)

)
= λ(t) − μe(t)diag

(
δ(t)

)
λ(t)

+ 2μe(t)diag
(
δ(t)

)
λ1(t). (14)

Defining ε(t) � λ0(t) − λ(t) and using e(t) = δT (t)ε(t) + e0(t)
in (14) yield

λ(t + 1) = λ(t) − μdiag
(
δ(t)

)
λ(t)δT (t)ε(t)

− μdiag
(
δ(t)

)
λ(t)e0(t)

+ 2μdiag
(
δ(t)

)
λ1(t)δ

T (t)ε(t)

+ 2μdiag
(
δ(t)

)
λ1(t)e0(t). (15)

In (15), subtracting both sides from λ0(t + 1), we have

ε(t + 1) = ε(t) + μdiag
(
δ(t)

)
λ(t)δT (t)ε(t)

+ μdiag
(
δ(t)

)
λ(t)e0(t)

− 2μdiag
(
δ(t)

)
λ1(t)δ

T (t)ε(t)

− 2μdiag
(
δ(t)

)
λ1(t)e0(t)

+ [
λ0(t + 1) − λ0(t)

]
. (16)

Taking expectation of both sides of (16) and using

E
[
μdiag

(
δ(t)

)
λ(t)e0(t)

] = E
[
μdiag

(
δ(t)

)
λ(t)

]
E
[
e0(t)

] = 0,

E
[
2μdiag

(
δ(t)

)
λ1(t)e0(t)

] = E
[
2μdiag

(
δ(t)

)
λ1(t)

]
E
[
e0(t)

] = 0,

and assuming that the correlation between ε(t) and λ1(t), λ2(t) is
small enough to be safely omitted [17] yields

E
[
ε(t + 1)

] = E
[

I − μdiag
(
λ1(t) + λ2(t)

)
δ(t)δT (t)

]
E
[
ε(t)

]
+ E

[
λ0(t + 1) − λ0(t)

]
. (17)
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Table 1
Time evolution of the mean and the variance of the affinely constrained mixture weights updated with the EGU algorithm.

qa(t + 1) = qa(t) + μdiag(γ (t))qa(t) − μdiag( Q a(t)Γ (t)),

Q a(t + 1) = (I + μdiag(γ (t)) − μdiag(Γ (t)qa(t))) Q a(t) − μE[diag2(u(t))]( Q a(t) − qa(t)qT
a (t))1qT

a (t) − μdiag(qa(t))Γ (t)( Q a(t) − qa(t)qT
a (t))

+ Q a(t)(μdiag(γ (t)) − μdiag(Γ (t)qa(t))) − μqa(t)1T ( Q a(t) − qa(t)qT
a (t))E[diag2(u(t))] − μ( Q a(t) − qa(t)qT

a (t))Γ (t)diag(qa(t)).
Assuming convergence of R(t) and p(t) (which is true for a wide
range of adaptive methods in the first stage [16,14,21]), we obtain
limt→∞ E[λ0(t +1)−λ0(t)] = 0. If μ is chosen such that the eigen-
values of E[I −μdiag(λ1(t)+λ2(t))δ(t)δ

T (t)] have strictly less than
unit magnitude for every t , then limt→∞ E[λ(t)] = limt→∞ λ0(t).

For the transient analysis of the MSE, we have

E
[
e2(t)

] = E
{[

y(t) − ŷm(t)
]2}

− 2λ̄
T
a (t)E

{[
y(t) − ŷm(t)

][
δ(t);−δ(t)

]}
+ E

{
λT

a (t)
[
δ(t);−δ(t)

][
δ(t);−δ(t)

]T
λa(t)

}
= E

{[
y(t) − ŷm(t)

]2} − 2λ̄
T
a (t)E

{[
y(t) − ŷm(t)

]
u(t)

}
+ tr

(
E
[
λa(t)λ

T
a (t)

]
E
{

u(t)u(t)T })
= E

{[
y(t) − ŷm(t)

]2} − 2λ̄
T
a (t)γ (t)

+ tr
(

E
[
λa(t)λ

T
a (t)

]
Γ (t)

)
, (18)

where we define γ (t) � E{u(t)[y(t) − ŷm(t)]} and Γ (t) � E[u(t)×
uT (t)].

For the recursion of λ̄a(t) = E[λa(t)], using (13), we get

λ̄a(t + 1) = λ̄a(t) + μdiag
(
γ (t)

)
λ̄a(t)

− μdiag
(

E
[
λa(t)λ

T
a (t)

]
Γ (t)

)
. (19)

Using (13) and e(t) = [y(t) − ŷm(t)] − λT (t)δ(t), assuming λa(t) is
Gaussian and assuming λ

(i)
a (t) and λ

( j)
a (t) are uncorrelated when

i 
= j (as in Chapter 9.4.2 of [14], and [17]), defining the diagonal

matrix D(t) = E[λa(t)λT
a (t)] − λ̄a(t)λ̄

T
a (t) and since μ is small, ig-

noring the terms that are proportional to μ2, we get a recursion
for E[λa(t)λT

a (t)] as

E
[
λa(t + 1)λT

a (t + 1)
]

= E
[
λa(t)λ

T
a (t)

] + μdiag
(
γ (t)

)
E
[
λa(t)λ

T
a (t)

]
− μdiag

(
Γ (t)λ̄a(t)

)
E
[
λa(t)λ

T
a (t)

]
− μE

[
diag2(u(t)

)]
D(t)1λ̄

T
a (t)

− μdiag
(
λ̄a(t)

)
Γ (t)D(t) + μE

[
λa(t)λ

T
a (t)

]
diag

(
γ (t)

)
− μE

[
λa(t)λ

T
a (t)

]
diag

(
Γ (t)λ̄a(t)

)
− μλ̄a(t)1T D(t)E

[
diag2(u(t)

)]
− μD(t)Γ (t)diag

(
λ̄a(t)

)
. (20)

Defining qa(t) � λ̄a(t) and Q a(t) � E[λa(t)λT
a (t)], we express (19)

and (20) as a coupled recursions in Table 1.
In Table 1, we provide the mean and the variance recursions

for Q a(t) and qa(t). To implement these recursions, one needs to
only provide Γ (t) and γ (t). Note that Γ (t) and γ (t) are derived
for a wide range of adaptive filters [16,14]. If we use the mean
and the variance recursions in (18), then we obtain the time evo-
lution of the final MSE. This completes the transient analysis of the
affinely constrained mixture weights updated with the EGU algo-
rithm.
4.1.2. Relative entropy
For the affinely constrained combination updated with the EG

algorithm, we have the multiplicative updates as

λ
(i)
1 (t + 1) = u

(
λ

(i)
1 (t)exp

{
μe(t)

(
ŷi(t) − ŷm(t)

)})
×

(
m−1∑
k=1

[
λ

(k)
1 (t)exp

{
μe(t)

(
ŷk(t) − ŷm(t)

)}

+ λ
(k)
2 (t)exp

{−μe(t)
(

ŷk(t) − ŷm(t)
)}])−1

,

λ
(i)
2 (t + 1) = u

(
λ

(i)
2 (t)exp

{−μe(t)
(

ŷi(t) − ŷm(t)
)})

×
(

m−1∑
k=1

[
λ

(k)
1 (t)exp

{
μe(t)

(
ŷk(t) − ŷm(t)

)}

+ λ
(k)
2 (t)exp

{−μe(t)
(

ŷk(t) − ŷm(t)
)}])−1

,

for i = 1, . . . ,m − 1. Using the same approximations as in (7)–(10),
we obtain

λ
(i)
1 (t + 1) ≈ u

(
λ

(i)
1 (t)

(
1 + μe(t)

(
ŷi(t) − ŷm(t)

)))
×

(
m−1∑
k=1

[
λ

(k)
1 (t)

(
1 + μe(t)

(
ŷk(t) − ŷm(t)

))

+ λ
(k)
2 (t)

(
1 − μe(t)

(
ŷk(t) − ŷm(t)

))])−1

, (21)

λ
(i)
2 (t + 1) ≈ u

(
λ

(i)
2 (t)

(
1 − μe(t)

(
ŷi(t) − ŷm(t)

)))
×

(
m−1∑
k=1

[
λ

(k)
1 (t)

(
1 + μe(t)

(
ŷk(t) − ŷm(t)

))

+ λ
(k)
2 (t)

(
1 − μe(t)

(
ŷk(t) − ŷm(t)

))])−1

. (22)

In our simulations, we illustrate the accuracy of the approxima-
tions (21) and (22) under the mixture framework. Using (21)
and (22), we obtain updates on λ1(t) and λ2(t) as

λ1(t + 1) = u
(I + μe(t)diag(δ(t)))λ1(t)

[1T + μe(t)uT (t)]λa(t)
, (23)

λ2(t + 1) = u
(I − μe(t)diag(δ(t)))λ2(t)

[1T + μe(t)uT (t)]λa(t)
. (24)

Using updates (23) and (24), we can write update on λa(t)

λa(t + 1) = u
[I + μe(t)diag(u(t))]λa(t)

[1T + μe(t)uT (t)]λa(t)
. (25)

For the recursion of λ̄a(t), using (25), we get

E
[
λa(t + 1)

]
= E

{
u

[I + μe(t)diag(u(t))]λa(t)
T T

}

[1 + μe(t)u (t)]λa(t)
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≈ u
E{[I + μe(t)diag(u(t))]λa(t)}

E{[1T + μe(t)uT (t)]λa(t)} (26)

= u
E[λa(t)] + μdiag(γ (t))E[λa(t)] − μdiag(E[λa(t)λT

a (t)]Γ (t))

[1T + μγ T (t)]E[λa(t)] − μ tr(E[λa(t)λT
a (t)]Γ (t))

, (27)

where in (26) we approximate expectation of the quotient with
the quotient of the expectations. In our simulations, we also illus-
trate the accuracy of this approximation in the mixture framework.
From (25), using the same approximation in (27), assuming λa(t)
is Gaussian, assuming λ

(i)
a (t) and λ

( j)
a (t) are uncorrelated when

i 
= j, and since μ is small, ignoring the terms that are propor-
tional to μ2, we get a recursion for E[λa(t)λT

a (t)] as

E
[
λa(t + 1)λT

a (t + 1)
] = u2 A(t)

b(t)
, (28)

where A(t) is equal to the right-hand side of (20) and

b(t) = 1T E
[
λa(t)λ

T
a (t)

]
1 + μpT (t)E

[
λa(t)λ

T
a (t)

]
1

− μλ̄
T
a (t)R(t)E

[
λa(t)λ

T
a (t)

]
1 − μ1T D(t)R(t)λ̄a(t)

− μ1T D(t)E
[
diag2(u(t)

)]
1T λ̄a(t)1

+ μ1T E
[
λa(t)λ

T
a (t)

]
p(t) − μ1T E

[
λa(t)λ

T
a (t)

]
R(t)λ̄a(t)

− μλ̄
T
a (t)R(t)D(t)1 − μ1T λ̄

T
a (t)1E

[
diag2(u(t)

)]
D(t).

(29)

If we use the mean (27) and the variance (28), (29) recursions
in (18), then we obtain the time evolution of the final MSE. This
completes the transient analysis of the affinely constrained mixture
weights updated with the EG algorithm.

4.2. Unconstrained mixture

We use the unconstrained relative entropy and the relative
entropy as distance measures to update unconstrained mixture
weights. We first perform transient analysis of the mixture weights
updated using the EGU algorithm. Then, we continue with the
transient analysis of the mixture weights updated using the EG
algorithm. Note that since the unconstrained case is close to the
affinely constrained case, we only provide the necessary modifica-
tions to get the mean and the variance recursions for the transient
analysis.

4.2.1. Unconstrained relative entropy
For the unconstrained combination updated with EGU, we have

the multiplicative updates as

w(i)
1 (t + 1) = w(i)

1 (t)exp
{
μe(t) ŷi(t)

}
,

w(i)
2 (t + 1) = w(i)

2 (t)exp
{−μe(t) ŷi(t)

}
,

for i = 1, . . . ,m. Using the same approximations as in (7)–(10),
we can obtain updates on w1(t) and w2(t) as

w1(t + 1) ≈ (
I + μe(t)diag

(
x(t)

))
w1(t), (30)

w2(t + 1) ≈ (
I − μe(t)diag

(
x(t)

))
w2(t). (31)

Collecting the weights in wa(t) = [w1(t); w2(t)], using the up-
dates (30) and (31), we can write update on wa(t) as

wa(t + 1) = (
I + μe(t)diag

(
u(t)

))
wa(t), (32)

where u(t) is defined as u(t) � [x(t);−x(t)].
For the desired signal y(t), we can write y(t) = w T

0 (t)×
x(t) + e0(t), where w0(t) is the optimum MSE solution at time t
such that w0(t) � R−1(t)p(t), R(t) � E[x(t)xT (t)], p(t) �
E{x(t)y(t)} and e0(t) is zero-mean disturbance uncorrelated to x(t).
To show that the mixture weights converge to the optimum solu-
tion in the steady state such that limt→∞ E[w(t)] = limt→∞ w0(t),
we follow similar lines as in Section 4.1.1. We modify (14)–(17)
such that λ will be replaced by w , δ(t) will be replaced by x(t)
and ε(t) = w0(t) − w(t). After these replacements, we obtain

E
[
ε(t + 1)

] = E
[

I − μdiag
(

w1(t) + w2(t)
)
x(t)xT (t)

]
E
[
ε(t)

]
+ E

[
w0(t + 1) − w0(t)

]
. (33)

Since, we have limt→∞ E[w0(t + 1) − w0(t)] = 0 for most adap-
tive filters in the first stage [14] and if μ is chosen so that all the
eigenvalues of E[I − μdiag(w1(t) + w2(t))x(t)xT (t)] have strictly
less than unit magnitude for every t , then limt→∞ E[w(t)] =
limt→∞ w0(t).

For the transient analysis of MSE, defining γ (t) � E{u(t)y(t)}
and Γ (t) � E[u(t)uT (t)], (18) is modified as

E
[
e2(t)

] = E
{

y2(t)
} − 2w̄ T

a (t)γ (t)

+ tr
(

E
[

wa(t)w T
a (t)

]
Γ (t)

)
. (34)

Accordingly, we modify the mean recursion (19) and the variance
recursion (20) such that instead of λa(t) we use wa(t). We also
modify Table 1 using qa(t) � w̄a(t) and Q a(t) � E[wa(t)w T

a (t)].
If we use this modified mean and variance recursions in (34), then
we obtain the time evolution of the final MSE. This completes the
transient analysis of the unconstrained mixture weights updated
with the EGU algorithm.

4.2.2. Relative entropy
For the unconstrained combination updated with the EG algo-

rithm, we have the multiplicative updates as

w(i)
a (t + 1)

= u
w(i)

a (t)exp{μe(t) ŷi(t)}∑m
k=1[w(k)

a (t)exp{μe(t) ŷk(t)} + w(k+m)
a (t)exp{−μe(t) ŷk(t)}]

,

i = 1, . . . ,m,

w(i)
a (t + 1)

= u
w(i)

a (t)exp{−μe(t) ŷi(t)}∑m
k=1[w(k)

a (t)exp{μe(t) ŷk(t)} + w(k+m)
a (t)exp{−μe(t) ŷk(t)}]

,

i = m + 1, . . . ,2m.

Following similar lines, we modify (23)–(25), (27)–(29) such that
we replace δ(t) with x(t), λ with w and u(t) = [x(t);−x(t)]. Fi-
nally, we use the modified mean and variance recursions in (34)
and obtain the time evolution of the final MSE. This completes the
transient analysis of the unconstrained mixture weights updated
with the EG algorithm.

5. Simulations

In this section, we illustrate the accuracy of our results and
compare performances of different adaptive mixture methods
through simulations. In our simulations, we observe that using
the EG algorithm to train the mixture weights yields better perfor-
mance compared to using the LMS algorithm or the EGU algorithm
to train the mixture weights for combinations having more than
two filters and when the combination favors only a few of the
constituent filters. The LMS algorithm and the EGU algorithm per-
form similarly in our simulations when they are used to train
the mixture weights. We also observe in our simulations that the
mixture weights under the EG update converge to the optimum
combination vector faster than the mixture weights under the LMS
algorithm.
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Fig. 2. Using RLS, LMS, Sign–error LMS, Sign–sign LMS filters as constituent filters, where learning rates are μLMS = 0.12, μSign−error LMS = 0.11 and μSign−sign LMS = 0.1. For
the RLS filter, λ = 1 and ε = 20. SNR = 10 dB. For the mixture stage, the EG algorithm has μEG = 0.001 and the LMS algorithm has μLMS = 0.01. For the EG algorithm, u = 50.
(a) The weight of the RLS filter in the mixture, i.e., E[λ(1)(t)]. (b) The EMSE curves for adaptive mixture updated with the EG algorithm, the adaptive mixture updated with
the LMS algorithm, the RLS filter, the Sign–error LMS filter and the LMS filter. (c) Theoretical values λ̄

(1)
a (t) and λ̄

(4)
a (t) and simulations. (d) Theoretical values E[λ(1)

a (t)2] and
E[λ(2)

a (t)λ(4)
a (t)] and simulations.
To compare performances of the EG and LMS algorithms and
illustrate the accuracy of our results in (27)–(29) under differ-
ent algorithmic parameters, the desired signal as well as the
system parameters are selected as follows. First, a seventh-order
linear filter, w0 = [0.25,−0.47,−0.37,0.045,−0.18,0.78,0.147]T ,
is chosen as in [17]. The underlying signal is generated using the
data model y(t) = τ w T

0 a(t) + n(t), where a(t) is an i.i.d. Gaus-
sian vector process with zero-mean and unit variance entries, i.e.,
E[a(t)aT (t)] = I , n(t) is an i.i.d. Gaussian noise process with zero-
mean and variance E[n2(t)] = 0.3, and τ is a positive scalar to
control SNR. Hence, the SNR of the desired signal is given by

SNR � 10 log(
E[τ 2(w T

o u(t))2]
0.01 ) = 10 log(

τ 2‖wo‖2

0.01 ).
For the first experiment, we have SNR = 10 dB. To model the

unknown system we use four linear filters using the RLS algo-
rithm, LMS algorithm, Sign–error LMS algorithm and Sign–sign
LMS algorithm. We emphasize that depending on the underly-
ing signal and/or application, one of these algorithms is prefer-
able to the others, however, such a selection is only possible in
hindsight. Hence, an adaptive combination could resolve such un-
certainty [12]. In this experiment, there is a sudden change in the
desired signal such that the target w0 changes in the middle of
the simulations as seen in Fig. 2. In the start of the simulations,
the desired signal is generated from a seventh-order linear filter
w0 = [0.25,−0.47,−0.37,0.045,−0.18,0.78,0.147]T [17], which
is then replaced by w0 = [0.62,0.81,−0.74,0.82,0.26,−0.80,

−0.44]T at the 4000th sample. The constituent RLS algorithm is
initialized after w0 is updated. The learning rates of these con-
stituent filters are set to μLMS = 0.12, μSign−error LMS = 0.11 and
μSign−sign LMS = 0.1. The parameters for the RLS algorithm are set
to λ = 1 and ε = 20. Therefore, in the steady state, we obtain the
optimum combination vector approximately as λo = [1,0,0,0]T ,
i.e., the final combination vector is sparse. In the second stage,
we train the combination weights with the EG and LMS algorithms
and compare performances of these algorithms. The EG algorithm
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Fig. 3. Using 10 LMS filters as constituent filters, where learning rates for 2 constituent filters are μ = 0.002 and for the rest are μ ∈ [0.1,0.11]. SNR = −10 dB. For the
mixture stage, the EG algorithm has μEG = 0.0005 and the LMS algorithm has μLMS = 0.005. For the EG algorithm, u = 500. (a) The weight of the first constituent filter in the
mixture, i.e., E[λ(1)(t)]. (b) The EMSE curves for adaptive mixture updated with the EG algorithm, the adaptive mixture updated with the LMS algorithm, the first constituent
filter and the second constituent filter. (c) Theoretical values λ̄

(1)
a (t) and λ̄

(10)
a (t) and simulations. (d) Theoretical values E[λ(1)

a (t)2] and E[λ(1)
a (t)λ(3)

a (t)] and simulations.
has two parameters to adjust while the LMS algorithm has only
one parameter to adjust. For the second stage, the learning rates
for the EG and LMS algorithms are selected as μEG = 0.001 and
μLMS = 0.01 such that the EMSEs of both mixtures converge to
the same final EMSE to provide a fair comparison. However, there
exist a wide range of values for the step sizes so that the al-
gorithms converge to very similar EMSEs. We select u = 50 for
the EG algorithm. In Fig. 2(a), we plot the weight of the RLS
filter, i.e. E[λ(1)(t)], updated with the EG and LMS algorithms.
In Fig. 2(b), we plot the EMSE curves for the adaptive mixture up-
dated with the EG algorithm, the adaptive mixture updated with
the LMS algorithm, the RLS filter with λ = 1 and ε = 20, the Sign–
error LMS filter with μSign−error LMS = 0.11 and the LMS filter with
μLMS = 0.12. From Figs. 2 (a) and (b), we see that the EG algorithm
performs better than the LMS algorithm such that the combination
weight under the update of the EG algorithm converges to 1 faster
than the combination weight under the update of the LMS algo-
rithm. We also observe from these simulations that even after the
sudden change in the statistics, the EG algorithm quickly recov-
ers and performs better than the LMS algorithm. Furthermore the
EMSE of the adaptive mixture updated with the EG algorithm con-
verges faster than the EMSE of the adaptive mixture updated with
the LMS algorithm. In Fig. 2(c), we plot the theoretical values for
λ̄

(1)
a (t) and λ̄

(4)
a (t) along with simulations. Note that in Fig. 2(c) we

observe that λ̄(1)(t) = λ̄
(1)
a (t) − λ̄

(4)
a (t) converges to 1 as predicted

in our derivations. In Fig. 2(d), we plot the theoretical values of
E[λ(1)

a (t)2] and E[λ(2)
a (t)λ(4)

a (t)] along with simulations. As we ob-
serve from Figs. 2 (c) and (d), there is a close agreement between
our results and simulations in these experiments. We observe sim-
ilar results for the other cross terms.

We next model the unknown system using ten linear fil-
ters with the LMS update as the constituent filters. For this ex-
periment, we have SNR = −10 dB. The learning rates of two
constituent filters are set to μ1 = 0.002 and μ6 = 0.002 while
the learning rates for the rest of the constituent filters are se-
lected randomly in [0.1,0.11]. Therefore, in the steady state, we
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Fig. 4. Two LMS filters as constituent filters with learning rates μ1 = 0.002 and μ2 = 0.1, respectively. SNR = 1 dB. For the second stage, the EGU algorithm has μEGU = 0.01
and the EG algorithm has μEG = 0.01. For the EG algorithm, u = 3. (a) Theoretical values for the mixture weights updated with the EGU algorithm and simulations.
(b) Theoretical values E[w(1)

a (t)2], E[w(1)
a (t)w(2)

a (t)], E[w(2)
a (t)w(3)

a (t)] and E[w(3)
a (t)w(4)

a (t)] and simulations. (c) Theoretical mixture weights updated with the EG algorithm
and simulations. (d) Theoretical values E[w(2)

a (t)2], E[w(1)
a (t)w(2)

a (t)], E[w(2)
a (t)w(3)

a (t)] and E[w(2)
a (t)w(4)

a (t)] and simulations.
obtain the optimum combination vector approximately as λo =
[0.5,0,0,0,0,0.5,0,0,0,0]T , i.e., the final combination vector is
sparse. In the second stage, we train the combination weights with
the EG and LMS algorithms and compare performances of these al-
gorithms. For the second stage, the learning rates for the EG and
LMS algorithms are selected as μEG = 0.0005 and μLMS = 0.005
such that the EMSEs of both mixtures converge to the same final
EMSE to provide a fair comparison. However, there exist a wide
range of values for the step sizes so that the algorithms converge
to very similar EMSEs. We select u = 500 for the EG algorithm.
In Fig. 3(a), we plot the weight of the first constituent filter with
μ1 = 0.002, i.e. E[λ(1)(t)], updated with the EG and LMS algo-
rithms. In Fig. 3(b), we plot the EMSE curves for the adaptive mix-
ture updated with the EG algorithm, the adaptive mixture updated
with the LMS algorithm, the first constituent filter with μ1 = 0.002
and the second constituent filter with μ2 ∈ [0.1,0.11]. From Figs. 3
(a) and (b), we see that the EG algorithm performs better than the
LMS algorithm such that the combination weight under the update
of the EG algorithm converges to 0.5 faster than the combination
weight under the update of the LMS algorithm. Furthermore the
EMSE of the adaptive mixture updated with the EG algorithm con-
verges faster than the EMSE of the adaptive mixture updated with
the LMS algorithm. In Fig. 3(c), to test the accuracy of (27), we
plot the theoretical values for λ̄

(1)
a (t) and λ̄

(10)
a (t) along with simu-

lations. Note in Fig. 3(c) we observe that λ̄(1)(t) = λ̄
(1)
a (t) − λ̄

(10)
a (t)

converges to 0.5 as predicted in our derivations. In Fig. 3(d), to
test the accuracy of (28) and (29), as an example, we plot the
theoretical values of E[λ(1)

a (t)2] and E[λ(1)
a (t)λ(3)

a (t)] along with
simulations. As we observe from Figs. 3 (c) and (d), there is a close
agreement between our results and simulations in these experi-
ments. We observe similar results for the other cross terms.

We next simulate the unconstrained mixtures updated with
the EGU and EG algorithms. Here, we have two linear filters
and both using the LMS update to train their weight vectors as
the constituent filters. The learning rates for two constituent fil-
ters are set to μ1 = 0.002 and μ2 = 0.1 respectively. Therefore,
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Fig. 5. (a) The difference ‖exp{μe(t)( ŷi (t)− ŷm(t))}−{1+μe(t)( ŷi (t)− ŷm(t))}‖2√
‖exp{μe(t)( ŷi (t)− ŷm(t))}‖2‖{1+μe(t)( ŷi (t)− ŷm(t))}‖2

for i = 1 with the same algorithmic parameters as in Figs. 3 and 4. (b) The first parameter of the

difference
‖E{u [I+μe(t) diag(u(t))]λa (t)

[1T +μe(t)uT (t)]λa (t)
}−u E{[I+μe(t) diag(u(t))]λa (t)}

E{[1T +μe(t)uT (t)]λa (t)} ‖2√
‖E{u [I+μe(t) diag(u(t))]λa (t)

[1T +μe(t)uT (t)]λa (t)
}‖2‖u E{[I+μe(t) diag(u(t))]λa (t)}

E{[1T +μe(t)uT (t)]λa (t)} ‖2
with the same algorithmic parameters as in Figs. 3 and 4.

t = 150 t = 320 t = 560 t = 920 t = 1210 t = 1440 t = 1760

λ
(1)
a (t) 2.94 3.25 3.20 2.93 2.90 3.00 2.97

λ
(2)
a (t) 2.71 3.05 3.43 3.02 2.96 3.13 2.88

Fig. 6. Empirical kurtosis values. Experimental setup is from Fig. 4.
in the steady state, we obtain the optimum vector approximately
as wo = [1,0]. We have SNR = 1 for these simulations. The uncon-
strained mixture weights are first updated with the EGU algorithm.
For the second stage, the learning rate for the EGU algorithm
is selected as μEGU = 0.01. The theoretical curves in the figures
are produced using Γ (t) and γ (t) that are calculated from the
simulations, since our goal is to illustrate the validity of derived
equations. In Fig. 4(a), we plot the theoretical values of w̄(1)

a (t),
w̄(2)

a (t), w̄(3)
a (t) and w̄(4)

a (t) along with simulations. In Fig. 4(b),
as an example, we plot the theoretical values of E[w(1)

a (t)2],
E[w(1)

a (t)w(2)
a (t)], E[w(2)

a (t)w(3)
a (t)] and E[w(3)

a (t)w(4)
a (t)] along

with simulations. We continue to update the mixture weights with
the EG algorithm. For the second stage, the learning rate for the EG
algorithm is selected as μEG = 0.01. We select u = 3 for the EG
algorithm. In Fig. 4(c), we plot the theoretical values of w̄(1)

a (t),
w̄(2)

a (t), w̄(3)
a (t) and w̄(4)

a (t) along with simulations. In Fig. 4(d),
as an example, we plot the theoretical values of E[w(2)

a (t)2],
E[w(1)

a (t)w(2)
a (t)], E[w(2)

a (t)w(3)
a (t)] and E[w(2)

a (t)w(4)
a (t)] along

with simulations. We observe a close agreement between our re-
sults and simulations.

To test the accuracy of the assumptions in (9) and (10), we plot
in Fig. 5(a), the difference

‖exp{μe(t)( ŷi(t) − ŷm(t))} − {1 + μe(t)( ŷi(t) − ŷm(t))}‖2√‖exp{μe(t)( ŷi(t) − ŷm(t))}‖2‖{1 + μe(t)( ŷi(t) − ŷm(t))}‖2

for i = 1 with the same algorithmic parameters as in Figs. 3 and 4.
To test the accuracy of the separation assumption in (27), we plot
in Fig. 5(b), the first parameter of the difference∥∥E

{
u [I+μe(t) diag(u(t))]λa(t)

[1T +μe(t)uT (t)]λa(t)

} − u E{[I+μe(t) diag(u(t))]λa(t)}
E{[1T +μe(t)uT (t)]λa(t)}

∥∥2

√∥∥E
{

u [I+μe(t) diag(u(t))]λa(t)
[1T +μe(t)uT (t)]λa(t)

}∥∥2∥∥u E{[I+μe(t) diag(u(t))]λa(t)}
E{[1T +μe(t)uT (t)]λa(t)}

∥∥2
with the same algorithmic parameters as in Figs. 3 and 4. We ob-
serve that assumptions are fairly accurate for these algorithms in
our simulations.

To illustrate the assumption that λa(t) have Gaussian distri-
bution, we calculate the kurtosis of the “empirical” distribution
of λa(t) under the setup of the paper. Note that although not rig-
orous, the kurtosis is often used to measure the closeness of an
empirical distribution to a Gaussian distribution [22,23]. For this
experiment, we collect 2000 samples of λa(t) under the same al-
gorithmic framework as in Fig. 4 and report the kurtosis values for
randomly chosen t ’s. The corresponding kurtosis values are pro-
vided as a table in Fig. 6. As we observe from Fig. 6, the kurtosis
values are close to 3 supporting the assumption that λa(t) follows
Gaussian distribution.

To illustrate the assumption of λ
(i)
a (t) and λ

( j)
a (t) are uncorre-

lated for j 
= i, we perform 1000 iterations and plot the ensemble
averaged curves that correspond to the difference

‖E[λ(i)
a (t)λ( j)

a (t)]−E[λ(i)
a (t)]E[λ( j)

a (t)]‖√
‖E[λ(i)

a (t)λ( j)
a (t)]‖2‖E[λ(i)

a (t)]E[λ( j)
a (t)]‖2

for different randomly chosen i

and j parameters with the same algorithmic parameters as in
Fig. 3 both for the EG and EGU algorithms. In Fig. 7, we plot this
difference for λ

(1)
1 (t) − λ

(1)
2 (t) and λ

(2)
1 (t) − λ

(2)
2 (t) pairs. We also

plot the difference for λ
(3)
1 (t) − λ

(8)
1 (t) and λ

(4)
1 (t) − λ

(6)
2 (t) pairs.

As we observe from the plots that it is reasonable to use this as-
sumption to approximate the expectation of the product as the
product of the expectations.

In the last simulations, we compare performances of the EGU,
EG and LMS algorithms updating the affinely mixture weights un-
der different algorithmic parameters. Algorithmic parameters and
constituent filters are selected as in Fig. 3 under SNR = −5 and 5.
For the second stage, under SNR = −5, learning rates for the EG,
EGU and LMS algorithms are selected as μEG = 0.0005, μEGU =
0.005 and μLMS = 0.005 such that the EMSEs converge to the
same final EMSE to provide a fair comparison. However, there exist
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Fig. 7. (a) The difference ‖E[λ(i)
a (t)λ( j)

a (t)]−E[λ(i)
a (t)]E[λ( j)

a (t)]‖√
‖E[λ(i)

a (t)λ( j)
a (t)]‖2‖E[λ(i)

a (t)]E[λ( j)
a (t)]‖2

for different randomly chosen i and j parameters with the same algorithmic parameters as in Fig. 8(a) for the EG

algorithm. (b) The difference ‖E[λ(i)
a (t)λ( j)

a (t)]−E[λ(i)
a (t)]E[λ( j)

a (t)]‖√
‖E[λ(i)

a (t)λ( j)
a (t)]‖2‖E[λ(i)

a (t)]E[λ( j)
a (t)]‖2

for different randomly chosen i and j parameters with the same algorithmic parameters as in Fig. 8(a) for the

EGU algorithm.

Fig. 8. Algorithmic parameters and constituent filters are selected as in Fig. 3 under SNR = −5 dB. For the second stage, the EG algorithm has μEG = 0.0005, the EGU
algorithm has μEGU = 0.005 and the LMS algorithm has μLMS = 0.005. For the EG algorithm, u = 500. (a) The EMSE curves for the adaptive mixture updated with the EG
algorithm, the adaptive mixture updated with the EGU algorithm, the adaptive mixture updated with the LMS algorithm (approximately same as the EGU algorithm), the
first constituent filter and the second constituent filter. Next, SNR = 5 dB. For the second stage, the EG algorithm has μEG = 0.002, the EGU algorithm has μEGU = 0.005 and
the LMS algorithm has μLMS = 0.005. For the EG algorithm, u = 100. (b) The EMSE curves for the adaptive mixture updated with the EG algorithm, the adaptive mixture
updated with the EGU algorithm, the adaptive mixture updated with the LMS algorithm (approximately same as the EGU algorithm), the first constituent filter and the
second constituent filter.
a wide range of values for the step sizes so that the algorithms
converge to very similar EMSEs. We choose u = 500 for the EG
algorithm. In Fig. 8(a), we plot the EMSE curves for the adaptive
mixture updated with the EG algorithm, the adaptive mixture up-
dated with the EGU algorithm, the adaptive mixture updated with
the LMS algorithm, first constituent filter with μ1 = 0.002 and sec-
ond constituent filter with μ2 ∈ [0.1,0.11] under SNR = −5. Under
SNR = 5, learning rates for the EG, EGU and LMS algorithms are se-
lected as μEG = 0.002, μEGU = 0.005 and μLMS = 0.005. We choose
u = 100 for the EG algorithm. In Fig. 8(b), we plot same EMSE
curves as in Fig. 8(a). We observe that the EG algorithm performs
better than the EGU and LMS algorithms such that EMSE of the
adaptive mixture updated with the EG algorithm converges faster
than the EMSE of adaptive mixtures updated with the EGU and
LMS algorithms. We also observe that the EGU and LMS algorithms
show similar performances when they are used to train the mix-
ture weights.

6. Conclusion

In this paper, we investigate adaptive mixture methods based
on Bregman divergences combining outputs of m adaptive filters
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to model a desired signal. We use the unnormalized relative en-
tropy and relative entropy as distance measures that produce the
exponentiated gradient update with unnormalized weights (EGU)
and the exponentiated gradient update with positive and negative
weights (EG) to train the mixture weights under the affine con-
straints or without any constraints. We provide the transient anal-
ysis of these methods updated with the EGU and EG algorithms.
In our simulations, we compare performances of the EG, EGU and
LMS algorithms and observe that the EG algorithm performs better
than the EGU and LMS algorithms when the combination vector
in steady state is sparse. We observe that the EGU and LMS algo-
rithms show similar performance when they are used to train the
mixture weights. We also observe a close agreement between the
simulations and our theoretical results.
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