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Algorithm (MLFMA)
Hierarchical parallelization of the multilevel fast multipole algorithm,

a method suitable for problems with hundreds of millions of unknowns,

is discussed in this paper.

By Levent Gürel, Fellow IEEE, and Özgür Ergül, Senior Member IEEE

ABSTRACT | Due to its OðN log NÞ complexity, the multilevel

fast multipole algorithm (MLFMA) is one of the most prized

algorithms of computational electromagnetics and certain

other disciplines. Various implementations of this algorithm

have been used for rigorous solutions of large-scale scattering,

radiation, and miscellaneous other electromagnetics problems

involving 3-D objects with arbitrary geometries. Parallelization

of MLFMA is crucial for solving real-life problems discretized

with hundreds of millions of unknowns. This paper presents the

hierarchical partitioning strategy, which provides a very effi-

cient parallelization of MLFMA on distributed-memory archi-

tectures. We discuss the advantages of the hierarchical strategy

over previous approaches and demonstrate the improved

efficiency on scattering problems discretized with millions of

unknowns.

KEYWORDS | Computational electromagnetics; multilevel fast

multipole algorithm (MLFMA); parallelization; surface integral

equations

I . INTRODUCTION

The multilevel fast multipole algorithm (MLFMA) is a

powerful tool for iterative solutions of large-scale electro-

magnetics problems [1]–[3]. This algorithm provides fast

and accurate multiplications with dense matrices derived

from the discretization of integral-equation formulations.

Thanks to its low computational complexity, it is possible
to solve electromagnetics problems several orders of

magnitude faster by using MLFMA. Without exaggeration,

this means accelerating the solutions by thousands or even

millions of times, compared to the Gaussian elimination.

However, due to the already-too-complicated structure of

the algorithm, it is very difficult to parallelize MLFMA for

the purpose of solving even larger problems on parallel

computers.
Recently, there have been many efforts to improve the

parallelization of MLFMA, especially by developing

advanced partitioning and distribution schemes [4]–[22].

In [5], an efficient partitioning of computational boxes is

discussed considering communications between pro-

cessors. Using a simple strategy, where each box is

assigned to a single processor, the success of such an opti-

mization is limited. For more efficient solutions, tradi-
tional partitioning strategies that are based on distributing

boxes among processors must be replaced with novel

strategies, such as the hybrid partitioning strategy [4]. In

[6], it is shown that the hybrid strategy can provide effi-

cient parallelization of MLFMA for canonical and com-

plicated objects on distributed-memory architectures

involving as many as 32 processors. In [7] and [10], we

further improve the hybrid strategy via load balancing and
optimization of communications, enabling the solution of

large-scale problems discretized with tens of millions of

unknowns. The hybrid strategy is also used in [9], where
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the truncation numbers for the far-field interactions are
carefully reduced for solving larger problems. Neverthe-

less, even with the optimized versions of the hybrid strat-

egy, the parallelization efficiency drops rapidly as the

number of processors increases to more than 32. Hence,

better strategies, such as the asynchronous strategy [11]

that can efficiently handle those problems involving multi-

ple dielectric objects, are required for more complicated

and larger problems. Such alternative strategies are also
developed for shared-memory architectures [18].

In addition to increasingly large numbers of processors,

recently developed architectures usually involve multicore

processors and highly nonuniform communication rates

between cores, leading to new challenges for the efficient

parallelization of MLFMA. Along this direction, using the

fast Fourier transform (FFT) can provide important ad-

vantages when solving extremely large electromagnetics
problems on supercomputers [15], [16]. One of the major

advances in the parallelization of MLFMA is the develop-

ment of the hierarchical strategy, which is based on the

simultaneous partitioning of boxes and field samples

among processors at all levels of tree structures [8]. This

strategy is implemented for 2-D [12], [13] and 3-D prob-

lems [14], and its favorable properties are demonstrated on

extremely large problems involving metallic [19], dielec-
tric [17], [22], and composite [21] objects discretized with

hundreds of millions of unknowns. In addition to solu-

tions of challenging problems on moderately large com-

puters, an adaptive application of the hierarchical strategy

is used on supercomputers for the solution of multiscale

problems [20].

The hierarchical strategy is a successful technique for

the efficient parallelization of MLFMA without increasing
the complexity of the solver (full parallelization). Low

computational complexity enables the solution of large

problems with limited computational resources, whereas

high parallelization efficiency translates into an ability to

efficiently use the available memory to solve even larger

problems on moderately large computers with distributed-

memory architectures. Within the limits of this particular

realm, i.e., the combination of MLFMA and its full paral-
lelization, we have been able to solve some of the largest

integral-equation problems in the literature. Solutions of

larger equations with other solver-parallelization combi-

nations are reported, but not necessarily faster or more

accurate. In general, it is harder to obtain high paralleliza-

tion efficiency for low-complexity solvers. For example, it

is much easier to parallelize the fast multipole method

(FMM) [3], [23], [24] with OðN3=2Þ or OðN4=3Þ complex-
ity, compared to MLFMA with OðN log NÞ complexity.

However, the same problem solved with FMM (e.g., with

95% parallelization efficiency) requires longer central

processing unit (CPU) time and more memory than with

MLFMA (with 70% parallelization efficiency, for instance)

on a fixed number of processors. It is also possible to re-

duce the solution time and improve the parallelization

efficiency of a fast solver by deliberately decreasing the
accuracy of the solution. Therefore, performances of fast

solvers should be compared for the same accuracy of their

results [25]–[27]. MLFMA is an error-controllable solver,

and this feature should be preserved after parallelization.

Unlike previous parallelization techniques, with the

hierarchical partitioning strategy, the tree structure of

MLFMA is distributed among processors by partitioning

both boxes and samples of fields at each level. Due to
improved load-balancing and reduced communications,

this strategy offers a higher parallelization efficiency than

previous approaches, especially when the number of pro-

cessors is large. In this paper, we review the hierarchical

strategy and discuss its advantages over previous ap-

proaches. We demonstrate the improved efficiency pro-

vided by the hierarchical strategy on scattering problems

discretized with millions of unknowns.

II . HIERARCHICAL PARALLELIZATION

For the efficient parallelization of MLFMA, it is crucial to

understand the multilevel tree structure, which needs to

be distributed among processors. Consider a 3-D object

discretized with OðNÞ unknowns. A tree of L ¼ Oðlog NÞ
levels can be constructed by placing the object in a com-
putational domain and dividing it into subdomains

(boxes). Each box at the lowest level ðl ¼ 1Þ involves

Oð1Þ unknowns; hence the number of the lowest level

boxes is OðNÞ. The number of nonempty boxes decays

exponentially (usually by a factor of four between two

consecutive levels) from the lowest level to the top of the

tree structure, and there are Oð1Þ boxes at the highest

level. During a matrix–vector multiplication, only the
near-field interactions that are between neighboring boxes

at the lowest level are calculated directly. All other inter-

actions are calculated in a group-by-group manner using

the factorization and diagonalization of the homogeneous-

medium Green’s function [24]. Specifically, each matrix–

vector multiplication requires a cycle of aggregation,

translation, and disaggregation stages that are performed

on the tree structure in a multilevel scheme.
In the aggregation stage, radiated fields for boxes are

calculated from the lowest level to the highest level. Using

the coefficients provided by the iterative algorithm, ra-

diated fields at the lowest level are obtained by the super-

position of radiated fields of the discretization elements,

i.e., basis functions. Then, radiated fields at the higher

levels are obtained by combining radiated fields at the

lower levels. In the diagonalized form, radiated fields are
expressed in terms of plane waves, but the addition theo-

rem that is used for the factorization of the interactions is

based on multipoles. The number of plane-wave direc-

tions, i.e., the number of samples on the unit sphere, can

be determined rigorously via excess bandwidth formulas

[3], [28] and depends on the box size. In general, Oð1Þ
samples are required at the lowest level and the number of
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samples grows exponentially (usually by a factor of four
between two consecutive levels) from the lowest level to

the highest level of the tree structure.

The aggregation stage is followed by the translation

stage, where radiated fields are converted into incoming

fields. Using plane waves, translations are simply diagonal

with one-to-one mapping, i.e., the incoming field in a

direction is the translation of the radiated field in the same

direction. For each box, incoming fields from Oð1Þ differ-
ent boxes are combined. After translations, the disaggre-

gation stage is performed by calculating the total incoming

fields from the top to the bottom of the tree structure. The

total incoming field for a box is the combination of in-

coming fields due to translations and the incoming field

from the parent box, if it exists. At the lowest level, in-

coming fields are received by the discretization elements,

i.e., testing functions, to complete the matrix–vector
multiplication.

The time and memory complexity of MLFMA is

OðN log NÞ, and interestingly, each level of the tree struc-

ture makes an equal contribution to this overall cost.

Generally, the cost of a level is the number of boxes times

the number of samples per box. At the lowest level, there

areOðNÞ boxes andOð1Þ samples per box, leading toOðNÞ
cost. At the highest level, there are Oð1Þ boxes and OðNÞ
samples per box, again leading to OðNÞ cost. At the inter-

mediate levels, the numbers of boxes and samples balance

each other and the cost is OðNÞ per level. This interesting

property is also the reason why MLFMA is difficult to

parallelize. Since all levels of MLFMA have an equal cost,

an efficient parallelization of MLFMA should give equal

importance to all levels. In fact, the hierarchical strategy is

based on this principle; it uses the best partitioning at each
level.

A. Partitioning of the Tree Structure
Fig. 1 depicts the partitioning of a multilevel tree

structure among eight processors using different strate-

gies. The tree structure involves four levels, each repre-

sented by a 3-D rectangular prism partitioned into eight

colors (processors). As also depicted in the figure, the
horizontal direction stands for boxes in MLFMA, whereas

the other two directions are used for field samples on the

unit sphere in the �- and �-directions. Hence, the prism

representing the lowest level is long in the horizontal

direction (to account for many boxes), but short in the

other directions (due to few field samples). Moving higher,

the prism dimensions change accordingly, i.e., by shrink-

ing in the horizontal direction (the number of boxes
decreases) and expanding in the other two directions (the

number of samples increases).

Fig. 1(a) shows a Bsimple parallelization[ of the four-

level tree structure among eight processors. In this paral-

lelization strategy, boxes are distributed among processors

at all levels. Hence, the partitioning is only in the horizon-

tal direction. This is quite straightforward at the lowest

level involving OðNÞ boxes, considering that N is much
greater than the number of processors. Unfortunately,

problems arise at the higher levels because the number of

boxes decreases, making it difficult to distribute small

numbers of boxes equally among processors. In fact, quite

extreme cases, e.g., distributing 50 boxes among 128 pro-

cessors, are encountered in real-life simulations. Unequal

distribution of boxes at the higher levels is not the only

disadvantage of the simple parallelization strategy. Specif-
ically, since the levels are connected via aggregation and

disaggregation operations, load balancing at a higher level

significantly affects load balancing at the lower levels.

Hence, duplications, communications, or both are re-

quired in accordance with the relationships between sub-

boxes. Consequently, the simple parallelization is efficient

only for cases with several (lower) levels and with a small

number of processors.
A recent study on the parallelization of MLFMA has led

to the development of the Bhybrid parallelization[ strategy

[4], [6]. This strategy is illustrated on the four-level tree

structure in Fig. 1(b). Comparing with Fig. 1(a), it can be

seen that the lowest two levels are distributed exactly as in

the simple strategy. These levels are considered to be pa-

rallelized efficiently using the simple strategy. At the

higher levels, however, samples instead of boxes are distri-
buted among processors. Since there are many samples at

the higher levels, partitioning samples instead of boxes

may lead to good load balancing. In fact, as the number of

processors increases, it has been shown that the hybrid

strategy significantly improves parallelization efficiency

compared to the simple strategy. One needs to decide the

level at which to change the partitioning (from boxes to

samples), but this can be done heuristically, based on the
experimental data. In addition to better load balancing at

the higher levels, partitioning samples eliminates the need

for communications during translations. Although this is

an important advantage, one should keep in mind that

communications are now introduced in the aggregation

and disaggregation stages. At many levels, suppressing

these new communications can be a challenging task, if

not impossible [10]. The need to reduce communications
during the aggregation and disaggregation stages is also

the reason for applying the partitioning only along the

�-direction, without any partitioning in the �-direction.

By using different partitioning schemes for the lower

and higher levels, the hybrid parallelization strategy can

provide more efficient parallelization of MLFMA, com-

pared to the simple strategy. Unfortunately, the hybrid

strategy also fails to provide efficient solutions, especially
when the number of processors is larger than 16. This is

because partitioning only the boxes or samples may not be

efficient for some levels in the middle of the tree struc-

tures. Specifically, for these levels, partitioning the boxes

leads to unequal work distribution, while partitioning the

samples leads to excessive communications during the

aggregation and disaggregation stages. This dilemma can
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be solved with the Bhierarchical parallelization[ strategy

proposed and developed in [8] and [14].

Fig. 1(c) depicts the hierarchical strategy on the four-

level tree structure. In this strategy, each level is parti-

tioned to optimize communications and the load balancing

of computations. Specifically, both boxes and their samples

(along the �-direction) are partitioned among processors,

and the partitioning is determined by load-balancing algo-

rithms. Usually, the lowest level is partitioned only along

boxes, without partitioning samples. Then, the partition-

ing is changed accordingly at the higher levels, depending

on the optimizations. Typically, as depicted in Fig. 1(c),

Fig. 1. Partitioning of a four-level tree structure among eight processors using (a) simple, (b) hybrid, and (c) hierarchical strategies.
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the number of partitions along boxes/samples is decreased/
increased by a factor of two from one level to the next

higher level. Changing the partitioning between levels

bears an additional cost, but this is negligible in compa-

rison to the improved load-balancing and reduced com-

munications. Advantages of the hierarchical strategy are

detailed in Section II-B.

B. Advantages of the Hierarchical Strategy
The major advantage of the hierarchical strategy is the

improved load balancing due to partitioning both boxes

and their samples. Computations are distributed almost

equally among processors at all levels. Although less

obvious, the hierarchical strategy also decreases commu-

nications between processors. Changing the partitioning
between levels leads to a new type of communication, i.e.,

data exchanges, but in fact, the overall data transfer is

significantly reduced. Theoretical bounds for communica-

tions in the hierarchical strategy are given in [14]; in this

paper, we will present experimental comparisons.

Table 1 lists all types of communications required for

the solution of a scattering problem involving a conducting

sphere of radius 20�, where � is the wavelength in the host
medium. The problem is discretized with 1 462 854 un-

knowns and the solution via a seven-level MLFMA is

parallelized into 64 processes using the hybrid and hierar-

chical strategies. In the hybrid strategy, boxes are parti-

tioned in the lowest four levels (l ¼ 1; 2; 3; 4) and samples

are partitioned in the highest three levels (l ¼ 5; 6; 7). In
the hierarchical strategy, the numbers of partitions of

boxes and samples are 64� 1, 64� 1, 32� 2, 16� 4,

8� 8, 4� 16, and 2� 32 for l ¼ 1; 2; . . . ; 7, respectively.

Table 1 lists both the number of communication events and

the amount of communications (in bytes) between the

processors in various categories, i.e., interpolations, data

exchanges and partitioning switches, and translations at

different levels. Not all types of communications are
required for both strategies; for example, data exchanges

are required only for the hierarchical strategy to change

partitioning between levels, whereas the hybrid strategy

requires a partitioning switch at an intermediate level.

Further, the hybrid strategy does not require communica-

tions for the interpolations at the lower levels or for the

translations at the higher levels, as expected.

In addition to the communications in different catego-
ries, Table 1 lists the number of communication events and

amount of communications in the aggregation, translation,

and disaggregation stages, as well as the overall values for a

matrix–vector multiplication. Comparing the values for

the hybrid and hierarchical strategies, the following con-

clusions can be drawn.

• The number of communication events is reduced

by 54% (from 25 335 to 11 611) using the hierar-
chical strategy instead of the hybrid strategy.

• The total amount of communications is reduced

by 31% (from 6 112 844 to 4 241 784 B) using

the hierarchical strategy instead of the hybrid

strategy.

• The average package size is increased from 241

to 365 B. A larger package size (without increas-

ing the overall volume) means more effective
communication.

As shown in this example, the hierarchical strategy not

only improves load balancing but also reduces the amount

of communications.

Finally, in addition to reduced communications, the

hierarchical strategy allows for processor rearrangements

to communicate faster. To demonstrate this, we consider

again the four-level tree structure parallelized among eight
processors. Fig. 2 shows the lowest three levels and a

hypothetical distribution of the processes in two processor

packages, each involving four cores. Considering this ar-

rangement of the cores, it can be shown that all communi-

cations during the aggregation and disaggregation stages

are performed between pairs of cores that are located in

the same processor package. Note that communications

between the cores are faster if the cores are located in the
same package. Using the hierarchical strategy, it is rela-

tively easy to rearrange processes such that most of the

communications are between the cores that are physically

close to each other. This is an important advantage, parti-

cularly for the recently developed architectures involving

multicore/multiprocessor nodes and highly nonuniform

communication rates between processors.

Table 1 Communications During a Matrix–Vector Multiplication for the

Solution of a Scattering Problem Involving a Sphere Discretized With

1 462 854 Unknowns on 64 Processors
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In summary, compared to other parallelization strate-

gies, the hierarchical strategy improves the load balancing,

reduces the amount of communications, and allows for

faster communications via processor arrangements. Fur-

ther comparisons of the hierarchical strategy with the
simple and hybrid strategies, especially in terms of the

parallelization efficiency, can be found in [8] and [14].

III . MEMORY CONSIDERATIONS

With the hierarchical strategy, the available memory is

used very efficiently thanks to the improved load balanc-

ing. On the other hand, parallel implementations of

MLFMA usually have complicated memory footprints. Dy-
namic memory allocations and deallocations are essential

to recycle the used memory as much as possible. As pre-

dicted by Amdahl’s law, sequential data structures, parti-

cularly those that are allocated in the initial stages of

implementations, often become bottlenecks as the prob-

lem size grows and more processors are used. Three simple

rules are used repetitively to avoid stagnations.

• Rule 1: Allocate memory for a data structure just
before it is required.

• Rule 2: Deallocate memory used for a data

structure as soon as it becomes useless so that it

can be used later in the program.

• Rule 3: Rearrange the program such that Rules 1

and 2 can be further applied.

Rule 3 is particularly useful to reduce memory peaks

before iterations and matrix–vector multiplications,
which are parallelized very efficiently with the hierarchical

strategy.

Code rearrangements for memory recycling depend on

the implementation and, to the best of our knowledge, no

common procedure exists. We again present an experi-

mental demonstration of how these rearrangements and

the resulting memory recycling can be effective to reduce

peak memory. Fig. 3 depicts memory recycling based on

code rearrangements on a very large scattering problem

involving a sphere of radius 260� discretized with

307 531 008 unknowns. The solution of the problem is

parallelized into 128 processes using the hierarchical
strategy. Fig. 3(a) and (b) presents the memory required

for each process as a function of time steps before and after

memory recycling is applied. In both cases, the memory

required for the master process is quite different than

those of other processes due to some initial sequential

operations for data input and management. Most im-

portantly, there are memory peaks in all processes before

the matrix–vector multiplications are performed. These
peaks are the major bottlenecks before memory recycling

strategy is applied. Using code rearrangements and mem-

ory recycling, the peak memory of the implementation is

significantly reduced (from 12.6 to 10.4 GB), as depicted in

Fig. 3(b). This means that larger problems can now be

solved by using the same memory.

IV. NUMERICAL RESULTS

To demonstrate the efficient parallelization of MLFMA

with the hierarchical partitioning strategy, we consider

the solution of scattering problems involving a conduct-

ing sphere of radius 20�. The sphere is discretized with

1 462 854 unknowns, and the scattering problem is solved

on various parallel computers, listed in Table 2. All com-

puters involve computing nodes that are connected via

Infiniband networks and Intel Xeon processors with differ-
ent clock rates. MVAPICH is used as the message passing

interface (MPI) version. In addition, Intel Math Kernel

Library (MKL) and Portable-Extensible Toolkit for Scien-

tific Computation (PETSc) are used for mathematical

functions and iterative solutions. Table 3 presents the

setup, iterative solution, and total computation times for

the solution of the scattering problem on these computers

Fig. 2. Hierarchical partitioning of the tree structure in Fig. 1 among eight processors. Using the hierarchical strategy, communications during

the aggregation and disaggregation stages can be performed faster since they are between the cores that are physically close to each other.
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using different numbers of nodes and processors per node.

The setup time includes (and is dominated by) the compu-

tation of the near-field interactions. The iterative solution

time includes 27 iterations (54 matrix–vector multiplica-

tions) to reduce the residual error to below 10�6. Finally,

the total time includes the setup and iterative solution

times, as well as data input and management. It can be

seen that the total time of the fastest solution is 161 s on

128 processors (of N-Nehalem).

As discussed in [14], the parallelization efficiency and

speedup values can be misleading when comparing parallel
implementations. This is mainly because the paralleliza-

tion efficiency and speedup do not give complete informa-

tion on the actual efficiency, i.e., the computation time.

Specifically, a very slow implementation can be Bembar-

rassingly[ parallelizable while a faster implementation

can be parallelized less efficiently. Accuracy of solutions

(which is often relaxed or omitted) is another parameter

that must accompany the time measurements [25]. Hence,
we emphasize that the results presented in Table 2 are

obtained efficiently (with many efforts to minimize the

processing time) and accurately (with maximum 1% error

in the scattered fields). For these accurate and efficient

solutions, the parallelization efficiency is

�p ¼
t1

128� t128
¼ 68% (1)

which corresponds to an 87-fold speedup, on the 128

processors of the N-Nehalem computer.

Finally, Fig. 4 presents the solution of a large scattering

problem involving a conducting sphere of radius 210�
discretized with 204 823 296 unknowns. The problem is

solved with maximum 1% target error on the N-Nehalem

Table 2 Parallel Computers With Distributed-Memory Architectures

Used for Numerical Tests

Table 3 Solutions of a Scattering Problem Involving a Sphere Discretized

with 1 462 854 Unknowns on Different Numbers of Processors,

Using the Computers in Table 2

Fig. 3. Memory used for the solution of a scattering problem involving

a sphere of radius 260� discretized with 307 531 008 unknowns.

The solution of the problem is parallelized into 128 processes using

the hierarchical strategy. Memory for each process is plotted as a

function of time steps (a) before and (b) after code rearrangements

and memory recycling.
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computer using 16, 32, 64, and 128 processors. Fig. 4

depicts both the total time and a matrix–vector multipli-

cation time. In addition to the time measurements, the
workload is shown as a function of time for each solution

and all processors. We observe that the total time is re-

duced from 44 to 5.95 h (corresponding to 93% paralle-

lization efficiency), while the matrix–vector multiplication

time is reduced from 1200 to only 170 s (corresponding to

88% parallelization efficiency). Fig. 5 depicts the normal-

ized bistatic radar cross section (RCS, in decibels) of the

sphere from 0� to 180�. RCS values around the backscat-
tering (0�) and forward-scattering (180�) directions are

focused in separate plots. Computation results obtained

with MLFMA agree very well with the analytical Mie-

series solution. The relative error in the computational
values with respect to the Mie-series solution is found to

be 1.20%, 0.90%, and 0.71% in the 0�–30�, 0�–90�, and

0�–180� intervals, respectively. These errors are in agree-

ment with the target 1% error of the solutions.

V. CONCLUDING REMARKS

This paper presents the hierarchical parallelization of

MLFMA for rigorous solutions of large-scale electromagnetics

Fig. 4. Solutions of a scattering problem involving a conducting sphere of radius 210� discretized with 204 823 296 unknowns. The total time

and a matrix–vector multiplication time are plotted for all processors, when the solution is parallelized into 16, 32, 64, and 128 processes.

Fig. 5. Bistatic RCS (in decibels) of a conducting sphere of radius 210�. Computational values obtained with MLFMA agree well with

the analytical Mie-series solution.
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problems. As discussed in detail, the hierarchical strategy
has three important advantages over the previous

approaches:

• improved load balancing with nearly equal distri-

bution of the workload among processors;

• reduced amount of communications and more ef-

fective communications with larger data packages;

• faster communications due to localized (intrapro-
cessor and/or intranode) data transfers.

Efficient parallelization of MLFMA using the hierarchical

strategy translates into an ability to use more memory and

to solve larger and more realistic problems with the

available computing resources, as also demonstrated in

[19] and [29]. h
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parallelization of the multilevel fast multipole
algorithm for the solution of large-scale
scattering problems,[ IEEE Trans. Antennas

Propag., vol. 56, no. 8, pp. 2335–2345,
Aug. 2008.

[11] J. Fostier and F. Olyslager, BAn asynchronous
parallel MLFMA for scattering at multiple
dielectric objects,[ IEEE Trans. Antennas
Propag., vol. 56, no. 8, pp. 2346–2355,
Aug. 2008.

[12] J. Fostier and F. Olyslager, BProvably scalable
parallel multilevel fast multipole algorithm,[
Electron. Lett., vol. 44, no. 19, pp. 1111–1113,
Sep. 2008.

[13] J. Fostier and F. Olyslager, BFull-wave
electromagnetic scattering at extremely large
2-D objects,[ Electron. Lett., vol. 45, no. 5,
pp. 245–246, Feb. 2009.
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Levent Gürel (Fellow, IEEE) received the B.Sc.

degree from the Middle East Technical University

(METU), Ankara, Turkey, in 1986 and the M.S. and

Ph.D. degrees in electrical and computer engi-

neering from the University of Illinois at Urbana-

Champaign (UIUC), Urbana, in 1988 and 1991,

respectively.

He is the Director of the Computational Elec-

tromagnetics Research Center (BiLCEM), Bilkent

University, Ankara, Turkey. He joined the Thomas

J. Watson Research Center of the International Business Machines Cor-

poration, Yorktown Heights, NY, in 1991, where he worked as a Research

Staff Member on the electromagnetic compatibility (EMC) problems

related to electronic packaging, on the use of microwave processes in the

manufacturing and testing of electronic circuits, and on the development

of fast solvers for interconnect modeling. Since 1994, he has been a

faculty member in the Department of Electrical and Electronics Enginee-

ring, Bilkent University, where he is currently a Professor. He was a

Visiting Associate Professor at the Center for Computational Electro-

magnetics (CCEM) of the UIUC for one semester in 1997. He returned to

the UIUC as a Visiting Professor in 2003–2005, and as an Adjunct

Professor after 2005. He founded the Computational Electromagnetics

Research Center (BiLCEM) at Bilkent University in 2005. His research

interests include the development of fast algorithms for computational

electromagnetics (CEM) and the application thereof to scattering and

radiation problems involving large and complicated structures, antennas

and radars, frequency-selective surfaces, high-speed electronic circuits,

optical and imaging systems, nanostructures, and metamaterials. He is
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