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Abstract. Phase transitions of the two-finite temperature Ising model on a square lattice are investigated
by using a position space renormalization group (PSRG) transformation. Different finite temperatures,
Tx and Ty, and also different time-scale constants, αx and αy for spin exchanges in the x and y directions
define the dynamics of the non-equilibrium system. The critical surface of the system is determined by RG
flows as a function of these exchange parameters. The Onsager critical point (when the two temperatures are
equal) and the critical temperature for the limit when the other temperature is infinite, previously studied
by the Monte Carlo method, are obtained. In addition, two steady-state fixed points which correspond to
the non-equilibrium phase transition are presented. These fixed points yield the different universality class
properties of the non-equilibrium phase transitions.

1 Introduction

In recent years, work in the field of non-equilibrium phase
transitions has provided a rich variety of knowledge about
the critical behavior of stationary non-equilibrium sys-
tems [1,2]. Understanding the critical behavior of non-
equilibrium systems is very important, as this phenomena
appears in very different areas.

Research about a large class of non-equilibrium steady
states is based on using uniformly or randomly driven
lattices or the two temperature Ising model. Distinct
long-range correlations and the universality properties of
systems with an anisotropic conserved dynamics have at-
tracted special interest. Long-range correlations occur at
all temperatures above the critical temperature, while the
universality properties of the system are quite different
from the Ising universality class.

Katz et al. proposed a non-equilibrium model with
particle-conserving hopping dynamics subjected to an ex-
ternal field [3,4]. Starting with this model, the driven lat-
tice models (usually with attractive interactions) have pro-
vided a basis for studies in the field of non-equilibrium
phenomena. Monte Carlo simulations (in two [3–10] and
three [11] dimensions), mean-field solutions [12–14] and
field theoretic renormalization analysis [15–18] have been
used as main methods to investigate the critical behavior
of these systems.

Long-range correlations with conserved anisotropic
dynamics were studied by field-theoretic analysis (for
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driven lattices [19–21] and for the two temperature Ising
model [22,23]), and confirmed by the Monte Carlo method
(for driven lattices [19,20] and for the two temperature
Ising model [22,23]).

The two temperature Ising model with conserved an-
isotropic dynamics has been extensively used to study
non-equilibrium phase transitions. The two temperature
Ising model with exchange dynamics, and in contact with
two heat baths, one of them at an infinite temperature,
has attracted special attention [12,13,22–25]. An interest-
ing feature of this model is that criticality appears at a
considerably elevated temperature (in comparison to the
equilibrium system) of the finite-temperature heat bath.

Cheng et al. indicate that long-range correlations with
the anisotropic two-temperature (one of them infinite)
Kawasaki (exchange) dynamics occur at Tc ≈ 1.33To

where To is the Onsager critical temperature [23]. Monte
Carlo studies of this system yield the critical tempera-
ture at Tc ≈ 1.36To [25,26]. Note that for the driven lattice
system, when the external field approaches to infinity, the
spin exchange along the field direction becomes random.
Consequently, the behavior of the system is analogous to
the two temperature Ising model with one of the tem-
peratures infinite. Therefore at this limit, one obtains the
same critical temperature of the driven lattice from Monte
Carlo studies [26], as that of the two temperature Ising
model [25]. Præstgaard et al. also study the correspond-
ing critical behavior of a non-equilibrium version of the
time dependent Landau-Ginzburg model using renormal-
ization group (RG) analysis [22]. They use a field-theoretic
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approach to construct an ε-expansion. Their study, as well
as numerous others show that non-equilibrium systems
have new universality classes [22,25–27].

In this work, we focus on the two-temperature Ising
model with conserved dynamics. We analze the system for
general values of temperature and exchange rate param-
eters and determine its steady state phase transition be-
havior. The results of the position-space renormalization
group (PSRG) transformation explicitly show the differ-
ent universality class property of the system. We report
for the first time, the phase diagram for this system which
includes a multitude of critical points investigated sepa-
rately previously: the equilibrium, the steady state and
the limits where one of the temperatures and/or exchange
rates is infinite.

At this point, we would like to comment on the suit-
ability of using a position space renormalization proce-
dure which is isotropic, when it is known that for the
non-equilibrium phase transition under consideration the
characteristic length scales in the x and y directions
scale with different exponents. Our procedure constructs
new block-spins which have a distance a factor b = 2
larger than the distance between the original spins. We
also assign probabilities to configurations of these block
spins consistent with the steady state probabilities of the
original spin configurations. Therefore there is no doubt
that the new system thus obtained corresponds to one in
which the characteristic distances (such as the correlation
lengths) have been scaled down by a factor b = 2. In par-
ticular, infinite (or zero) correlation length systems trans-
form again into infinite (or zero) correlation length sys-
tems. Critical points flow eventually into fixed points. The
procedure then allows for the determination of the phase
diagram as usual. The limitation of the transformation ap-
pears in the determination of the correlation length expo-
nent: the scaling relation for correlation length, ξ(k)/b =
ξ(kbλk ), together with the behavior ξ(k) ∼ k−ν implies
a unique correlation length exponent ν = 1/λk indepen-
dent of direction (we have used the variable k to represent
the small deviation from criticality instead of the custom-
ary variable t, which we use to denote the time). This is
indeed a limitation of our approach, and we cannot re-
port any anisotropy in this exponent. We do report the
value corresponding to 1/λk. We should also note that
the dynamical critical exponent z is not obtained through
a linearization of the RG transformation, but through a
comparison of the time scales of the original and renor-
malized systems at a fixed point.

2 The model

In this study, the results of renormalization group study
(RG) of a spin-1/2 Ising lattice gas on a square lattice
in contact with two-finite temperature baths is presented.
The energy of the system is written as

E = −
∑

〈ij〉
Jsisj , (1)

where 〈ij〉 denotes a sum over nearest-neighbor pairs of
sites, and J is the interaction energy constant. Variables si

can take values ±1. The dynamics of the system is taken
to be driven by exchanges of the neighbor spins in the x
and y directions. To constitute the dynamics of a non-
equilibrium system, different temperatures for exchange
in each direction are considered: along the x and y direc-
tions spin exchanges are influenced by different tempera-
tures, Tx and Ty. If these temperatures are equal, Tx = Ty,
then the system reduces to the equilibrium spin-1/2 Ising
model.

If two neighboring spins are different from each other,
an exchange in the x direction may occur with the tran-
sition rate

wx = αx[1− tanh(ΔE/2kBTx)] (2)

and
wy = αy[1− tanh(ΔE/2kBTy)] (3)

in the y direction. Here, ΔE is the change in the energy
of the system upon exchange of the spins and kB is the
Boltzmann constant. We will use the unitless interaction
constants Kx and Ky in place of Tx and Ty:

Kx =
J

kBTx
and Ky =

J

kBTy
. (4)

The timescale constants for exchanges along the x and y
directions are indicated by αx and αy respectively.

Critical behavior is expected when the total numbers
of the ±1 spins in the square lattice are equal. Our RG
transformation described in the next section, maps a 4×4
system with periodic boundary conditions and with zero
magnetization, to a scaled 2× 2 system again with a zero
magnetization.

3 The RG transformation

3.1 General remarks

PSRG transformations are appealing because they enable
one to work directly on the lattice system of interest, in
contrast to the field theoretical versions which represent
some extreme limit of system parameters. The advantage
of the field theoretical studies is the clear identification
of the universality classes, and the availability of system-
atic series expansions for critical exponents, albeit usu-
ally around some dimensionality possibly not too close to
that of the system under investigation. On the other hand,
this approach is not as useful for obtaining the phase di-
agram as PSRG methods. The disadvantages of the use
of a PSRG transformation are the loss of the systematic
nature of the approximation, and the inaccuracies that
normally need be introduced due to the truncations of the
infinite lattice into finite, uncorrelated pieces, and due to
the truncations of the interaction energies at some level of
complexity.

In equilibrium PSRG, in order to construct a scaled
version of the system, “block variables” which depend on
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the “original variables” are formed. One can then associate
the equilibrium probabilities of the original system with
those of the scaled (renormalized) system. Interaction con-
stants that will produce these probabilities are the renor-
malized versions of the interaction constants of the original
system. One may need to introduce interaction constants
that were not present in the original system in order to
obtain a “fit” to the probabilities of the states of the renor-
malized system, indeed a truncation in the number of in-
teraction constants may be necessary for practical reasons.
In some other cases, a limited number of distinctly differ-
ent probabilities of the states of the renormalized system
may limit the number of renormalized interaction con-
stants that may be assigned.

3.2 Previous work

Before we describe our particular RG analysis, we pro-
vide a historical (albeit necessarily incomplete) summary
of dynamical PSRG methods that have been applied to
equilibrium systems, most of them to systems with non-
conserved order parameters. The dynamical version of the
PSRG to obtain the equilibrium dynamical critical expo-
nent z takes a number of forms: the earliest techniques uti-
lized in position-space for obtaining the parameters of the
renormalized dynamical equations employed the Monte
Carlo method. Ma [28] has provided a first example to
such an approach, carrying out a statistical analysis of the
dynamics of block spins constructed out of spins driven
by a Monte Carlo simulation with a non-conserved or-
der parameter. Monte Carlo approaches to the problem
have been extended by Swendsen [29] and by Tobochnik
et al. [30]. Yalabik and Gunton [31] indicated that the re-
laxation times of various types of correlations may be used
to parametrize the renormalized state, their discussion in-
cludes the two dimensional Ising model with Kawasaki
dynamics.

Alternatively, one may attempt to renormalize the
transition rates in the master equation directly [32–34]
to obtain a scaled equation of a similar form, and the ra-
tio of the constants that define the time scales at the fixed
point will lead to bz.

In both types of dynamical RG approaches, one needs
to thin out the dynamical degrees of freedom as well as the
spatial correlations of the system. The block spins in gen-
eral contain the full dynamics of the original system: the
probability functions associated with the original system,
driven by the dynamics of the N × N Liouville opera-
tor, relax with the N time constants associated with the
eigenvalues of this operator. Since the probabilities of the
renormalized system are formed as linear combinations of
those of the original system, the renormalized system also
relaxes with the same time constants. In fact, the same
eigenvalue structure can be preserved by relating the rate
of change of block-spin probabilities to their higher order
derivatives. This dynamics will no longer be Markovian (it
now has “memory”): a block-spin which has just changed
its direction will have a larger probability per unit time to
reverse its direction because its state is determined by a

very marginal majority. Once the state of the block-spin
survives this “infant-mortality” stage, its transition rate
will settle down to a smaller value. The smaller time-scale
dynamics is thus assumed to contain the non-Markovian
effects, and larger time-constants to better represent the
Markovian effects (such an assumption of separation of
time scales is also relevant to field-theoretic RG).

Neither can one claim detailed balance in the renor-
malized system, as the probability flow among states is
now much more complicated. The complexity of the dy-
namics may be preserved to some degree in Monte Carlo
RG studies, where one attempts to match time depen-
dent correlation functions in the original and scaled sys-
tems [28,31,35,36]. More commonly though, one keeps
only the large time-constant modes in the scaled system,
usually connected with an assumption that a Markovian
master equation for the renormalized system will be
sufficient to describe its long-time behavior [31,33,37].
Zheng [36] in particular has found that there is no short-
time scaling in the exchange dynamics of the two dimen-
sional Ising Model relaxing from a random initial state.

It is not clear however how much of the experience
gained from the scaling of the equilibrium critical dynam-
ics will carry over to the steady-state problem.

Relaxation type of RG studies have also been used for
non-equilibrium systems, for example those which have
continuous growth mechanisms [38].

3.3 Our transformation

In the present study, we are applying a PSRG scheme to
a non-equilibrium system at a steady state. To our knowl-
edge, this is the first attempt in the use of a non-Monte
Carlo dynamical PSRG method for a model with con-
served dynamics. In order to calculate probabilities and
relaxation rates in the original system, we approximate it
with a 4×4 lattice with periodic boundary conditions. This
leads to N = 12 870 possible states with zero magnetiza-
tion. In general, the rescaled 2×2 lattices have 16 possible
spin configurations in the phase space. In our transforma-
tion, we only consider the small part of this phase space
by using only the configurations with zero magnetization.
The results would be more accurate by using all the phase
space of the system. We however report the results of the 6
renormalized states with zero magnetization. As a result of
this choice of small number of states, the equilibrium limit
of the system becomes inaccurate. However the rest of the
phase diagram and the phase transition points are consis-
tent with the previous works on this problem. We deter-
mine the probabilities of the possible states of the block
variables in our system based on the steady state proba-
bilities of the original variables that constitute them. In
the same spirit as equilibrium implementations, we then
determine the interaction constants of the renormalized
lattice that would produce these probabilities.

At this stage we assume that the renormalized sys-
tem too obeys Markovian dynamics. The symmetry of the
2 × 2 lattice (in the presence of x − y anisotropy) allows
for only 3 distinct steady-state probability values for the
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Fig. 1. Possible 6 rescaled states of the renormalized 2 × 2
system with M ′ = 0. Spin exchange can be accepted only for
a single direction for the first four ordered states. The allowed
exchange in (a) and (b) can occur along the y direction. Simi-
larly, in (c) and (d) exchange can be seen along the x direction.
However, spin exchange along both directions can be observed
in (e) and (f).

6 renormalized states (Fig. 1). The symmetry also reduces
the number of possible nearest-neighbor spin-exchange
rates connecting the 6 states to 4 distinct values (one
could also assume the presence of next-nearest neighbor
and 4-spin-exchange processes in the renormalized lattice,
however the rates for these processes would be expected to
be very small, due to the nature of the mechanisms that
drive the block-spin dynamics). The steady-state probabil-
ities depend on the ratio of a pair of such rates, resulting in
a form which may be described using the detailed balance
condition. The 2×2 lattice with periodic boundary condi-
tions then, together with the Markovian assumption, may
be interpreted as a system with exchange dynamics driven
at two different temperatures (defined through detailed
balance) in the two orthogonal directions with isotropic
nearest neighbor coupling. Note that even within this as-
sumption determination of the coupling constants carry
some arbitraryness, as the detailed balance condition may
be achieved by a variety of spin-exchange rates. However,
the set of coupling constants thus obtained may be seen
as just a re-parametrization of the spin-exchange rates in
terms of the two coupling constants. The constants that
define the time-scales of the renormalized dynamics are
determined from the time-constants of the two slowest de-
caying modes of the system, lending some justification to
the assumption of Markovian dynamics.

Allowing for non-Markovian dynamics and/or more
complicated spin-exchange processes for the block-spins
would enable the introduction of more parameters into
the dynamics (this is also a necessity if the detailed bal-
ance assumption for the renormalized dynamics is to be
lifted). In fact, determination of additional of eigenvec-
tors (and corresponding eigenvalues) of the original sys-
tem would allow the introduction of two more indepen-
dent coupling constants and an additional time scale to
the dynamics (of course, this dynamics must be imple-
mented in the original system as well so that recursions
can be constructed). We doubt however, if the introduc-
tion this next level of complexity to the analysis would
lead to any significant improvements in our results. One
would need to follow faster processes in the original and
the scaled systems, and identification of the correspond-
ing modes in the two systems could be a challenge. There
is even some evidence from the equilibrium case which
suggests that shorter time-scale processes (for conserved
dynamics) may best be treated separately for dynamical

scaling [36]. In any case, we truncate the complexity in the
dynamics with the assumption that the form displayed in
equations (2) and (3) are valid for the renormalized system
as well.

We first construct a 6×12 870 transformation matrix T
which implements the block spin transformation. This ma-
trix transforms the probabilities of the states of the orig-
inal system to those of the rescaled system as

P ′(i) =
∑

j

TijP (j). (5)

The square lattice of 4 × 4 sites is partitioned into 4 in-
dividual blocks. Each block generates the new spin on a
site of the rescaled square lattice. The sign of the sum of
spins in each block determines the possible states of the
rescaled spin. If the sum is equal to zero, the sign of the
rescaled spin is decided based on the constraint that the
total magnetization of the rescaled system is zero. If there
is more than one such possibility, the probability is equally
shared between these possible states (note that this trans-
formation will not preserve the symmetry of the ordered
states if the energy coupling constant J is negative, corre-
sponding to an antiferromagnetic system). Conservation
of the probability implies

∑

i

Tij = 1, (6)

for all j. On the other hand, we expect a totally ran-
dom original system (with equal probabilities P (i)) should
map to a totally random renormalized state. This in
turn implies as a second condition that

∑
j Tij should

be independent of i. Although our transformation satis-
fies equation (6) exactly, the second condition is satisfied
approximately, within 0.5%.

The transformation from the original system to the
rescaled system involves the determination of the scaled
interaction constants, K ′

x and K ′
y and the scaled transition

rates α′
x and α′

y in terms of the original values Kx, Ky,
αx and αy.

Since the dynamics of the 2 × 2 system is simple, we
calculate it exactly. When we have ordered the states in
the sequence shown in Figure 1, the Liouville matrix is
obtained as

�L′=

⎛

⎜⎜⎜⎜⎜⎝

−2Ωy 0 0 0 ωy ωy

0 −2Ωy 0 0 ωy ωy

0 0 −2Ωx 0 ωx ωx

0 0 0 −2Ωx ωx ωx

Ωy Ωy Ωx Ωx −2(ωx+ωy) 0
Ωy Ωy Ωx Ωx 0 −2(ωx+ωy)

⎞

⎟⎟⎟⎟⎟⎠

(7)
where the transition rates may be expressed in terms of
the detailed-balance condition:

ωx

Ωx
= exp (8K ′

x) and
ωy

Ωy
= exp(8K ′

y). (8)

The factor 8 appears because we assume periodic bound-
ary conditions in both directions.
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The three largest eigenvalues and corresponding eigen-
vectors of the Liouville matrix are sufficient to calculate
the scaled interaction constants, K ′

x and K ′
y, and the

ratio of the scaled transition rates α′
x/α′

y. The largest
eigenvalue λmax = 0 corresponds to the steady state. The
corresponding eigenvector yields the steady state proba-
bilities which have the following form consistent with the
symmetries of the system:

Ψ (0) =

⎛

⎜⎜⎜⎜⎜⎝

a
a
b
b
c
c

⎞

⎟⎟⎟⎟⎟⎠
(9)

with (
b

c

)
=

(
ωx

Ωx

)
= exp(8K ′

x) (10)

and (a

c

)
=

(
ωy

Ωy

)
= exp(8K ′

y). (11)

We also determine the eigenvalues corresponding to slow-
est relaxation with the same symmetry as the eigenvectors
shown in below:

λ1 = −2Ωy with Ψ (1) =

⎛

⎜⎜⎜⎜⎜⎝

1
−1

0
0
0
0

⎞

⎟⎟⎟⎟⎟⎠
(12)

and

λ2 = −2Ωx with Ψ (2) =

⎛

⎜⎜⎜⎜⎜⎝

0
0
1
−1

0
0

⎞

⎟⎟⎟⎟⎟⎠
. (13)

Note that Ψ (1) and Ψ (2) correspond to relaxation of mag-
netization waves in y and x directions, respectively. We
assume that transition rates of the rescaled system are
also in the form given by equations (2) and (3). This then
implies that the steady state probabilities and relaxation
time which are to be obtained from the scaling of the 4×4
system may be used to calculate the rescaled parameters
as follows:

K ′
x =

1
8

ln
(

b

c

)
(14)

K ′
y =

1
8

ln
(a

c

)
(15)

α′
x = −λ2

4

(
b

c
+ 1

)
(16)

α′
y = −λ1

4

(a

c
+ 1

)
. (17)

Our RG procedure is then as follows: we first construct a
12 870× 12 870 Liouville operator �L for the 4× 4 original

system. The eigenvalues λ and the corresponding eigen-
vectors Φ of the original system can be calculated as

�LΦ(i) = λiΦ
(i). (18)

We need to determine only three of the eigenstates, the
one corresponding to the steady state probabilities, Φ(0),
and those corresponding to the slowest relaxation of the
system with symmetries given in equations (12) and (13),
Φ(1) and Φ(2). Converting the 12 870 states of the original
system into the rescaled system with 6 possible states,
the transformation matrix T transforms the eigenvectors
of the original system to the ones of the rescaled system.
Transformation of the steady state probabilities to their
rescaled version is accomplished by

Ψ
(0)
i =

∑

j

TijΦ
(0)
j . (19)

The eigenvalues λ1 and λ2 yield the parameters used in
equations (16) and (17). This formulation provides all the
quantities necessary to get the rescaled parameters as in
equations (14)–(17).

4 Results and conclusion

We obtain the critical behavior of the system by study-
ing the RG flows in the space of interaction parameters.
Transformation of parameters from the original system to
the rescaled one constitute RG flows in parameter space.
The critical surface is determined by RG flows that extend
into critical fixed points.

The critical RG flow obtained from the transformation
is shown schematically in Figure 2. The critical surface is
plotted as a function of the parameters Kx, Ky, and r,
where r = (αx − αy)/(αx + αy). Note that since one can
scale the time arbitrarily, it is the ratio αx/αy which plays
a role in the determination of the steady state. In addition,
the system is symmetric under the simultaneous transfor-
mation Kx ←→ Ky and r ←→ −r. In Figure 2, we show
the RG flows only for Kx > Ky.

The case r = ±1 demands special consideration: when
this limit is reached by setting one of the rates α equal to
zero, exchange in the corresponding direction is inhibited,
the total magnetization along the other direction is con-
served, the steady state properties become dependent on
the initial condition. To avoid such ergodicity problems,
we assume that this limit is reached by speeding up the ex-
change (corresponding α approaching∞) in one direction,
while the exchange in the other direction is kept at a finite
rate. Two interesting special cases appear at this limit.
When the temperature corresponding to the infinitely fast
process itself is also infinite, the corresponding column or
row effectively becomes completely randomized, and the
effect of the finite exchange rate in the other direction can
then be treated exactly [12,13,24]. One expects mean-field
like behavior for this condition [13]. We indicate this case
as R1 in Figure 2.
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C

P

R
1

R2

Kx

yK

S

E

Fig. 2. A schematic drawing of the critical surface of the sys-
tem. C and E indicate the fixed points for the steady-state
and the equilibrium, respectively. R1, R2 and P denote the
critical points for certain limits. Thick lines indicate the RG
flows. Thin lines refer to the cross sections at certain values
of the variable r. Surface S (at Kx = Ky) corresponds to the
first-order phase transition between the ordered states at low
temperatures.

Alternatively, if the temperature corresponding to the
fast process is finite, but the temperature corresponding
to the finite exchange is infinite, we conjecture that the
system is effectively equivalent to the equilibrium Ising
system. It is driven by the fast process, the slow process
acting to randomize the magnetization of the fast columns
or rows as the case may be. Since the equilibrium con-
dition corresponds to equal magnetization of rows and
columns, the randomization acts to maintain that con-
dition. One then would expect equilibrium type behavior
at this limit. This critical point is indicated by R2 in Fig-
ure 2. Note that the RG flow from R2 is expected to flow
into the equilibrium fixed point (our numerical calculation
cannot implement the RG transformation for very small
or very large values of α. We therefore use extrapolations
to r = ±1 case from calculations at r ≈ ±0.82, for which
(αx/αy)±1 = 0.1).

We first list known or previously studied points about
this system. When the two temperatures Tx and Ty are
equal, one obtains the equilibrium Ising model. For this
case, while Kx = Ky, the critical behavior is independent
of αx and αy. The exact solution of the two-dimensional
Ising model gives a critical coupling Ko = J/kBTo =
0.4407 . . . [40].

The case of αx/αy = 1 and Kx = 0 as a function
of Ky was studied extensively by Præstgaard et al. [22].
They report the critical point at KP = 0.322 = 0.732Ko

(point P in Fig. 2). Another limit of the model was studied
by Krug et al. with αx/αy = 0 and Ky = 0 [13]. Using
this analysis, Sanli has reported an exact critical coupling

value of KR1 = 0.59Ko for the type of exchange we are
using (point R1 in Fig. 2) [24]. Again, we expect that the
critical coupling value KR2 for Kx when Ky = 0 and r = 1
to be equal to Ko (point R2 in Fig. 2).

Note that our transformation depends on the three
largest eigenvalues and the corresponding eigenvectors of
the Liouville matrix. Consequently, the dynamical critical
exponent of the system is observed in the long time scal-
ing regime. For the steady state fixed point, dynamical
scaling relations imply z = 4 − η while the field theoretic
RG method using the ε-expansion yields the critical ex-
ponents η = (4/243)ε2, ν = (1/2) + (1/12)ε + O(ε2) [22].
Monte Carlo simulations of the two temperature lattice
gas are consistent with these theoretical results and the
critical exponents are given as ν = 0.60(5), η = 0.20(8),
β = 0.33(6) and γ = 1.08(8) [25]. This implies that the
dynamical critical exponent is approximately z ≈ 3.80.

Our transformation produces an equilibrium critical
value of KE = 0.8789 corresponding to the fixed point E
in Figure 2. This high value is a consequence of the strong
finite size effects resulting from the conserved order pa-
rameter dynamics. Our calculations result in the critical
values KP = 0.73KE, KR1 = 0.68KE and KR2 = 0.83KE.

The full RG flow is demonstrated in Figure 2. Note
that the flow has the symmetry indicated above. The equi-
librium state corresponds to a fixed point at αx/αy = 1,
Kx = Ky = KE . Critical couplings on the line with
Kx = Ky = KE with αx/αy 	= 1 flow into this fixed
point. There is a steady state fixed point, shown as C in
Figure 2 (with rC = 0.099, KCx = 0.791, KCy = 0.693),
which corresponds to the non-equilibrium phase transi-
tion. This fixed point generates the universality class for
the non-equilibrium transition, different from the equilib-
rium universality class associated with fixed point E. Us-
ing the eigenvalues of the linearized transformation around
the fixed points, we report the values of the correlation
length exponent ν for both universality classes. We also
report the time-scale exponent z = log2(α/α′) for these
fixed points, as well as the exponent λc corresponding to
the critical crossover from the equilibrium to the steady
state.

Figure 3 shows the phase diagram for various values
of r. Note that the coupling constants have been scaled
by the equilibrium critical coupling. The filled points are
where critical RG trajectories cross the planes with a par-
ticular r (the irregularities at point positions arise due
to the inaccuracies in estimating the path of the trajec-
tory from recursion points). The corresponding lines are
Bezier curve smoothed fits to these points. The dashed
extensions to the lines are extrapolations to values on the
axes, represented by open circles. These extrapolated val-
ues on the Ky axis are carried into the plot in the inset.
This plot gives estimates for the critical values of Ky when
Kx = 0 at r = −1 and r = +1 reported in Table 1. The
variation in the phase diagram with respect to the rela-
tive exchange time scales in the x and y directions is not
much, but noticeable. It is remarkable that our PSRG can
produce this very untypical phase diagram.
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Table 1. Quantitative results for various phase transition points studied in this work. Results from other studies are also
included for comparison. Critical points P , R1, and R2 belong to steady state, mean-field, and equilibrium universality classes
respectively.

Phase point (Kx, Ky , r) Quantity This work Previous studies

Equilibrium E:(KE , KE, 1)

KE 0.8789 Ko = 0.4407 . . . [40]
ν 1.74 1 (exact)
z 3.72 3.75 [41,42]
λc 0.36 –

Steady state C:(0.791, 0.693, 0.099)
ν 0.65 0.60(5) [25]
z 3.1 ≈3.80 [22,25]

P (KP , 0, 0) KP 0.73KE 0.732Ko [22]

R1 (KR1, 0, −1) KR1 0.68KE 0.59Ko [24]

R2 (KR2, 0, 1) KR2 0.83KE Ko (our conjecture)
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Fig. 3. The phase diagram for various values of the pa-
rameter r. P represents the disordered paramagnetic phase,
while O1 and O2 are the two symmetric ordered phases sep-
arated from one another by the first order transition line at
the upper right corner. The inner most phase boundary is the
result of Monte Carlo work reported in reference [39] for r = 0.
The diagram and the inset are further explained in the text.

Major flaw of our calculations is the large values ob-
tained for KE and the equilibrium correlation length ex-
ponent. We believe that this arises due to the very strong
finite-size effects associated with conserved dynamics in
the original and the scaled lattices (indeed, an exact eval-
uation of the specific heat for a 4×4 system yields a peak
at approximately K = 2.6 when the order parameter is
conserved, while this value is approximately K = 1.5 for
the non-conserved system). The dynamical critical expo-
nents, which are determined from the ratios of the time
scales associated with the original and renormalized lat-
tices, do turn out to be reasonably accurate. We note that
these time scales vary slowly for each of the lattices, and
that the ratio is relatively insensitive to the precise value

of the fixed point parameters. We believe that the inaccu-
racy introduced by finite size effects is a systematic one,
as evident in the very atypical phase diagram of Figure 3
(consistent with previous Monte Carlo studies) which we
obtain when all interactions are scaled by the critical equi-
librium coupling.

We report the full phase diagram of the system, dis-
playing the interrelation of the various critical points stud-
ied in previous work. Crossover of critical behavior (from
equilibrium to steady state) would be apparent for transi-
tions when Tx and Ty are not too different. Monte Carlo
studies in this regime could provide a check for the value
of λc we report.

This work was supported by the Turkish Academy of Sciences
(TUBA).

Appendix: Finite size and truncation effects
for the non-conserved RG transformation

We provide for comparison, the performance of our RG
transformation (near the equilibrium critical point) when
the order parameter is not conserved. We keep the form of
the transformation and the assumption of periodic bound-
ary conditions. Again, the 4×4 lattice is transformed into
a 2 × 2 lattice. Since the renormalized lattice now allows
for a larger number (16) of final states, a larger number of
interactions may be incorporated into the Hamiltonian. In
Table 2, we provide a summary of the results one obtains
for various levels of truncations of the interactions in the
system. Each line in the table shows a progressively lower
level of the truncation of interaction constants, keeping
nearest-neighbor Knn, next-nearest-neighbor Knnn, and
four-spin K4 product terms. The critical nearest neigh-
bor interaction Kc (which flows into the fixed point un-
der repeated renormalizations), the fixed point values of
the interaction constants K∗, and ν, the critical exponent
for the correlation length has been listed. The level of
truncation is apparent from the values listed for the fixed
point values of the interaction constants.

These results show that our transformation produces
relatively good results (for equilibrium systems in which
the order parameter is not conserved) if interactions of

http://www.epj.org
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Table 2. PSRG results of the Ising model with non-conserved order parameter near the equilibrium point via the transformation
method presented in this paper. Different type of interactions are considered in each case.

Type of interactions Kc K∗
nn K∗

nnn K∗
4 ν

Nearest neighbor 0.704 0.704 − − 0.3797
Next nearest neighbor 0.4189 0.2989 0.08657 − 0.947

Four spin 0.4184 0.2999 0.08704 −0.001172 0.9256

order higher than the nearest neighbor interaction (espe-
cially the next nearest neighbor interaction) may be kept.
Unfortunately, when the number of allowed states in the
small size renormalized lattice is restricted due to conser-
vation of the order parameter, only the nearest-neighbor
interaction may be kept in the transformation, leading to
an accuracy comparable to that of the non-conserved sys-
tem with the same level of truncation.
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