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The linear response theory for current is investigated in a variational context. Expressions are derived for the Drude
and superfluid weights for general variational wavefunctions. The expression for the Drude weight highlights the
difficulty in its calculation since it depends on the exact energy eigenvalues which are usually not available in practice.
While the Drude weight is not available in a simple form, the linear current response is shown to be expressible in
terms of a geometric phase, or alternatively in terms of the expectation value of the total position shift operator. The
contribution of the geometric phase to the current response is then analyzed for some commonly used projected
variational wavefunctions (Baeriswyl, Gutzwiller, and combined). It is demonstrated that this contribution is
independent of the projectors themselves and is determined by the wavefunctions onto which the projectors are applied.
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1. Introduction

Variational studies have contributed greatly to our under-
standing of correlated systems. In part this is due to their
relative simplicity, applicability to larger sizes irrespective
of the number of dimensions, and the easily accessible
physical insight they provide. In the case of the Hubbard
model1–4) frequently used variational wavefunctions include
the Gutzwiller1,2) (GWF) and Baeriswyl wavefunctions5–7)

(BWF), and their combinations. The former is based on
suppressing charge fluctuations in the noninteracting solu-
tion, the latter on projecting with the hopping operator onto a
wavefunction in the large interaction limit.

The GWF has been studied by a variety of methods. It
can be solved exactly in one8,9) and infinite9–11) dimensions,
and it can be simulated in two and three dimensions by
variational Monte Carlo.12) The one-dimensional exact
solution produces a state with a finite discontinuity of
the momentum density at the Fermi surface. Millis and
Coppersmith13) have investigated the response of the GWF
and have concluded that it is metallic with a conductivity
proportional to the kinetic energy. Insulating behavior
in projected wavefunctions similar to the one due to
Gutzwiller can be produced by generalized projection
operators,14,15) for example non-centro-symmetric or singu-
lar projectors.

Calculating the Drude or the superfluid weight in a
variational context is a difficult issue. These two quantities
can be cast in terms of identical expressions [see eq. (1)], the
second derivative of the ground state energy with respect to
a Peierls phase.16–19) As pointed out by Scalapino, White,
and Zhang, the two quantities differ in the interpretation of
the derivative.17,18) For the Drude weight the Peierls phase
shifts the ground state energy adiabatically, remaining
always in the same state, for the superfluid weight level
crossings are also considered.

In this work general expressions for the Drude and
superfluid weights are derived in a variational setting. For
the Drude weight deriving an easily applicable expression is
a difficult issue, since the expression derived herein depends

on the exact eigenvalues of the perturbed Hamiltonian, in
practical settings often not available. It is then demonstrated
that the linear response expression for the current can be cast
in terms of a geometric phase. The tool for calculating this
geometric phase (the total position shift operator) are also
presented. The formalism is then used to interpret the current
response of projected wavefunctions. It is demonstrated that
the current response in the commonly used Gutzwiller and
Baeriswyl projected, as well as wavefunctions based on
combinations of the two projections, produce a current
response identical to the wavefunction on which the
projections are applied (the Fermi sea or the wavefunction
in the strongly interacting limit).

2. Drude and Superfluid Weights in Variational Theory

An expression for the frequency (!) and wave vector
(q)-dependent conductivity was derived by Kohn.16) The DC
conductivity (Drude weight, Dc) corresponds to the strength
of the �-function peak of the conductivity in the zero
frequency limit. The correct expression forDc is obtained by
first taking the limit (q ! 0) and then the other limit ! ! 0.
Dc is often expressed16,19) in terms of the second derivative
of the ground state energy with respect to a phase associated
with the perturbing field as

Dc ¼ �

L

@2E0ð�Þ
@�2

� �
�¼0

: ð1Þ

Here E0ð�Þ denotes the perturbed ground state energy, �
denotes the Peierls phase.

Scalapino, White, and Zhang (SWZ)17,18) have investi-
gated the distinction between the Drude and superfluid
weights. In particular they studied the importance of the
order of different limits (! ! 0, q ! 0) for the conductiv-
ity. In a variational context implementation of the frequency
limit is not straightforward, since, strictly speaking there is
no frequency to speak of. However, SWZ have also pointed
out that the derivative with respect to the phase � in eq. (1)
is ambiguous. They showed that if the derivative is defined
via adiabatically shifting the state which is the ground state
at zero field, then the Drude weight results. In the presence
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of level crossings the adiabatically shifted state may be an
excited state for a finite value of the perturbation. The
superfluid weight is obtained if the derivative corresponds
to the ‘‘envelope function’’, i.e., the ground state of the
perturbed system is taken to define the derivative. The
distinction between these two derivatives can be imple-
mented by embedding the periodic system under study in a
larger periodic system, and defining the perturbation in terms
of the periodic boundary conditions of this larger system.
In cases in which level crossings are close to � ¼ 0

conductors, superconductors, and insulators can be distin-
guished.17,18,20) In general, the position of level crossings
depends on dimensionality.17,18)

The finite temperature extension of Dc has been given by
Zotos, Castella, and Prelovšek21) (ZCP). This generalization
can be summarized as

DcðT Þ ¼ �

L

X
n

expð��EnÞ
Q

@2Enð�Þ
@�2

� �
�¼0

: ð2Þ

Note in this expression the Boltzmann weight factors remain
unchanged as the perturbation � is turned on. Equation (2)
has been applied22) to calculate the DC conductivity in
strongly correlated systems. Taking the zero temperature
limit reproduces Kohn’s expression for Dc. To define a finite
temperature analog of Ds one lets the Boltzmann weight
factors depend on the perturbing field � as

DsðT Þ ¼ �

L

@2

@�2

X
n

expð��Enð�ÞÞ
Q

Enð�Þ
" #

�¼0

: ð3Þ

Indeed the ground state superfluid weight is reproduced in
the zero temperature limit. Equations (2) and (3) follow
from the assumption that the distinction between the Drude
and superfluid weights is due to the different types of
derivatives as discussed by SWZ.

Similarly, in deriving expressions for Dc and Ds in a
variational setting our starting assumption will also be that
the distinction between the two quantities is due to the effects
of level crossings. Suppose j ~�ð�Þi is a variational wavefunc-
tion, where � denotes a set of variational parameters, which
we wish to use to optimize some Hamiltonian Ĥ with
eigenbasis

Ĥj�ni ¼ Enj�ni: ð4Þ
The estimate for the ground state energy may be written in
terms of a density matrix as

h ~�ð�ÞjĤj ~�ð�Þi ¼
X
n

h ~�ð�Þj�niEnh�nj ~�ð�Þi

¼
X
n

PnEn; ð5Þ

the probabilities can be written as

Pn ¼ jh ~�ð�Þj�nij2: ð6Þ
Comparing with eq. (2) it is obvious that a consistent
formalism requires that the variational Drude weight be
defined as

Dc ¼ �

L

X
n

Pn
@2Enð�Þ
@�2

; ð7Þ

with Pn independent of the perturbation�. It follows that the
variational parameter � is independent of the perturbation �.

The variational analog of Ds [based on eq. (3)] corresponds
to

Ds ¼ �

L

@2

@�2

X
n

Pnð�ÞEnð�Þ; ð8Þ

where the probabilities Pnð�Þ depend on � and the
variational parameters � in this case also depend on �.

A central difficulty in calculating Dc in a variational
theory is the fact that it depends on the exact eigenvalues of
the perturbed Hamiltonian [see eq. (1)], however variational
theories are usually applied in cases where the exact solution
is not easily accessible. While the Drude weight remains a
difficult problem in general, it is shown below that the
current can be cast in terms of a geometric phase, and
evaluated even in a variational context.

3. Current in Terms of a Geometric Phase

In this section we consider the adiabatic current response
of a system in general, not only in a variational context.
After showing that the persistent current can be expressed as
a geometric phase,23,24) we explicitly construct the mathe-
matical tools to calculate it, and use the results in the next
section to interpret the GWF. Since the current can be cast in
terms of observables, it follows that the calculation of the
Drude weight is also accessible, being the first derivative of
the current as a function of the Peierls phase.

Consider a system periodic in L, and experiencing
a perturbation in the form of a Peierls phase �. Its
Hamiltonian can be written as

Ĥð�Þ ¼
XN
i¼1

ðp̂i þ�Þ2
2m

þ V ðx1; . . . ; xNÞ: ð9Þ

The following identity also holds

@�Ĥð�Þ ¼
XN
i¼1

ðp̂i þ�Þ
m

: ð10Þ

The ground state energy can be written as

Eð�Þ ¼ h�ð�ÞjĤð�Þj�ð�Þi: ð11Þ
The average current for such a system can be expressed as16)

Jð�Þ ¼ @�Eð�Þ ¼ h�ð�Þj@�Ĥð�Þj�ð�Þi: ð12Þ
Substituting for the partial derivative of the Hamiltonian we
obtain

Jð�Þ ¼ N�

m
þ
XN
i¼1

h�ð�Þj p̂i
m
j�ð�Þi: ð13Þ

In the position representation the current can be written

Jð�Þ ¼ N�

m
� i

m

XN
i¼1

h�ð�Þj @

@xi
j�ð�Þi: ð14Þ

Next we rewrite the wavefunction in terms of a shift of the
total position and define a wavefunction

hx1; . . . ; xNj�ð�;XÞi ¼ �ðx1 þX; . . . ; xN þX; �Þ: ð15Þ
The action of the total momentum can then be cast in terms
of the derivative with respect to X asXN

i¼1

@

@xi
�ðx1 þX; . . . ; xN þX; �Þ

¼ @X�ðx1 þX; . . . ; xN þX; �Þ: ð16Þ
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The effect of X on the particle positions is similar to the
effect of the Peierls phase on the momenta. Like the Peierls
phase it is an external parameter, so one can perform
adiabatic cycles as a function of it. Averaging in X over the
unit cell 1

L

R L
0
dX . . . leads to

Jð�Þ ¼ N�

m
� i

mL

Z L

0

dXh�ð�;XÞj@Xj�ð�;XÞi: ð17Þ

The second term in eq. (17) is a geometric phase.23) Since it
results from the periodicity of the parameter X it is similar to
the geometric phase derived by Zak.25) It is also similar to
the geometric phase expression appearing in the modern
theory of polarization,26) with the variable X playing the role
of the crystal momentum in this case. Thus the current due
to a perturbation can be expressed in terms of a constant
proportional to the number of particles, and a geometric
phase term. Below an interpretation of the phase term is
given. It is interesting to note that a finite persistent current
is in principle possible for an unperturbed system (the case
� ¼ 0).

The next question to address is the actual calculation of
this quantity. We can construct a scheme which is in the
spirit of the total position operator proposed by Resta27,28) to
calculate the polarization. We consider the case � ¼ 0 (and
suppress the notation), without loss of generality. We first
rewrite the Berry phase appearing in the expression for the
current in terms of its discretized analog as29)

Jð0Þ ¼ lim
�X!0

1

mL
Im ln

YM�1

s¼0

h�ðs�XÞj�ððsþ 1Þ�XÞi: ð18Þ

The continuous expression can be recovered by Taylor
expanding the wavefunction j�ððsþ 1Þ�XÞi around s�X
and taking the limit as �X ! 0. Indeed

Jð0Þ ¼ lim
�X!0

1

mL
Im
XM�1

s¼0

lnh�ðs�XÞj½j�ðsÞ�XÞi

þ @Xj�ðs�XÞi�X�
¼ ln½1þ h�ðs�XÞj@Xj�ðs�XÞi�X�: ð19Þ

When the limit �X ! 0 is taken the natural logarithm can
be expanded and we obtain

Jð0Þ ¼ 1

mL
Im

Z
dXh�ðXÞj@Xj�ðXÞi

� �

¼ � i

mL

Z
dXh�ðXÞj@Xj�ðXÞi: ð20Þ

The shift in the total position of the system by a value of �X
can be accomplished using the total position shift operator
Ûð�XÞ. The explicit form of this operator will be derived
below, for now we assume its existence. We define it as

Ûð�XÞj�ðXÞi ¼ j�ðXþ�XÞi: ð21Þ
Using eq. (21) we can express the product in eq. (18) as

YM�1

s¼0

h�ðs�XÞj�ððsþ 1Þ�XÞi ¼ h�ð0ÞjÛð�XÞj�ð0ÞiM: ð22Þ

Substituting into eq. (18) the expression for the current
becomes

Jð0Þ ¼ lim
�X!0

1

m

1

�X
Im lnh�ð0ÞjÛð�XÞj�ð0Þi: ð23Þ

The total position shift operator can be constructed using
real space permutation operators. This derivation has been
given elsewhere,30) here we emphasize the main results. In
second quantized notation the permutation operator between
two positions can be written as

Pij ¼ 1� ðcyi � cyj Þðci � cjÞ: ð24Þ
This operator has the properties

Pijcj ¼ ciPij; Pijci ¼ cjPij; Pijc
y
j ¼ cyi Pij; Pijc

y
i ¼ cyj Pij: ð25Þ

Assuming a grid with spacing �X, using Pij we can
construct an operator which shifts all the positions on the
grid in a periodic system. The operator

Ûð�XÞ ¼ P12P23 � � �PL�1L; ð26Þ
where it is assumed that the indices refer to particular grid
points, has the property that

Ûð�XÞci ¼ ci�1Ûð�XÞ; i ¼ 2; . . . ; L

cLÛð�XÞ; i ¼ 1.

�
ð27Þ

It also holds that

Ûð�XÞ ~ck ¼ ei�Xk ~ckÛð�XÞ; ð28Þ
where ~ck denotes the annihilation operator in reciprocal
space. Equation (28) can be demonstrated by Fourier
transforming ~ck and applying (27). Taking the Fermi sea

jFSi ¼ ~cyk1 � � � ~cykN j0i; ð29Þ
as an example one can show that

Ûð�XÞjFSi ¼ ei�XKjFSi; ð30Þ
with K ¼PN

i¼1 ki.
As an example we consider again the non-interacting

Fermi sea given by

jFSi ¼ ~cyk1 � � � ~cykN j0i; ð31Þ
where the k-vectors are spread symmetrically around zero.
Applying a perturbation � shifts all k-vectors by �. The
resulting current is

Jð�Þ ¼ 2N

m
�; ð32Þ

corresponding to a Drude weight of Dc ¼ 2N=m. It is
interesting to see that the current is proportional to twice
the number of particles. In a Fermi sea conduction can
occur due to particles as well as holes, of which at half-
filling there are an equal number. For systems with bound
particles and holes, Jð�Þ is reduced, as bound excitons
do not participate in conduction and reduce the effective
number of charge carriers. Thus the geometric phase in
eq. (17) accounts for exciton binding. When all the particles
are bound to holes then the constant term in eq. (17) is
cancelled by the phase term leading to Jð�Þ ¼ 0. An
example of bound particles and holes in the same band
leading to insulating behaviour is the Baeriswyl variational
wavefunction.6)

4. Contribution of the Geometric Phase to the Current
Response of Projected Wavefunctions

In this section we provide the response theory of some
commonly used projected wavefunctions.1,2,5,6) We empha-
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size that it is the contribution of the phase term to the current
response we calculate, not the Drude weight, which is the
first derivative of the current response with respect to the
perturbing phase.

The Gutzwiller wavefunction1,2) (GWF) was proposed as
a variational wavefunction for the Hubbard model, and it has
the form

j�Gð�Þi ¼ e��D̂jFSi; ð33Þ
where D̂ ¼P

i ni"ni#. Without loss of generality we
consider the one-dimensional case.

Before developing the current response theory of the
GWF, we present the calculation of a quantity which
expresses the extent of localization. Localization has been
suggested long ago as a general criterion of metallicity,16)

and the relation of the spread to the DC conductivity has
been shown in a number of places.20,27,28) In particular we
calculate the normalized spread defined as

hX2i � hXi2
L2

: ð34Þ

Due to the ill-defined nature of the position operator in
periodic systems we choose a sawtooth representation which
can be written as

X ¼
XL=2�1

m¼�L=2
m 6¼0

1

2
þ Ŵm

exp

�
i
2�m

L

�
� 1

0
BBB@

1
CCCA; ð35Þ

where Ŵ denotes the total momentum shift operator, which
has the property that

Ŵj�ðKÞi ¼ j�ðKþ ð2�Þ=LÞi: ð36Þ
The construction31) of this operator is analogous to the total
position shift operator used to define the persistent current in
x3. For a state j ~�i diagonal in the position representation
one can write

Ŵj ~�i ¼ exp i
2�

L

X
i

x̂i

 !
j ~�i; ð37Þ

where xi denotes the position of particle i. Using the
sawtooth representation one can show that for the Fermi sea
that the spread in position

hX2i � hXi2
L2

¼ lim
L!1

1

L2

XL�1

m¼1

1

2

�
1� cos

�
2�m

L

�� ¼ 1

12
: ð38Þ

To show this one needs to substitute eq. (35) into eq. (34),
and then use the fact that

ŴmjFSi ¼ 0 m ¼ 2; . . . ; L� 1

jFSi m ¼ 0

�
: ð39Þ

Our results are shown in Table I. The GWF results for two
different values of the variational parameter were calculated
for a one-dimensional system based on the variational Monte
Carlo method of Yokoyama and Shiba.12) The fact that the
normalized spread approaches a constant for large L (system
size) indicates that the system is delocalized, hence metallic.
What is surprising in these results, however, is that for large
L the spread of all three examples converges to the same
value. The projecting out of double occupations in the GWF

seems to have no effect on the spread for large L, and is
identical to the result for the Fermi sea. The GWF though is
thought to be a representative of ‘‘bad metals’’, metals whose
conductivity is reduced due to strong correlations.32,33)

It turns out that these results are actually consistent with
what one obtains for the current response. We consider the
phase term under a perturbation in the form in eq. (23).
Consider first the action of the operator Ûð�XÞ on the GWF.

Ûð�XÞj�ð�Þi ¼ Ûð�XÞe��
P

i
ni"ni# jFSi: ð40Þ

The operator Ûð�XÞ shifts the positions of all particles
by one lattice spacing. Such a shift will not change the
total number of double occupations, hence the Gutzwiller
projector and the total position shift operator commute. We
can write

Ûð�XÞj�ð�Þi ¼ e��
P

i
ni"ni#Ûð�XÞjFSi

¼ ei�X
P

i
ki j�ð�Þi; ð41Þ

where
P

i ki denote the sum over the momenta of the Fermi
sea. One obtains exactly the same result in the absence of the
Gutzwiller projector. When substituting back into eq. (23)
we find that the current response of the GWF is exactly
that of the Fermi sea, and this result is independent of
correlations (whose strength increases monotonically with
the variable �). The above derivation can be extended to
projections based on Jastrow-type correlations and the
conclusion is valid as long as the projections are centro-
symmetric (considered in ref. 13). It has been shown14) that
non-centrosymmetric correlators can produce an insulating
state. The current response in this case will also not follow
the derivation above, since a shift in all the particles can
change the contribution to the projector. Another exception
is the case when � ! 1, i.e., the singular case, which in
general is also known to allow for insulating behavior.15)

For the GWF one can obtain further insight into the current
response by writing it in the position representation as

j�Gi ¼
X
R

e��DðRÞ DetðK;RÞjRi: ð42Þ

In eq. (42) R indicates the configurations of particles
(both up-spin and down-spin), DðRÞ indicates the number
of double occupations for a particular configuration of
particles, DetðK;RÞ denotes the product of Slater determi-
nants for up-spin and down-spin electrons, and jRi denotes a
position space eigenstate. From eq. (42), we see that the
projection changes the relative weight of different config-

Table I. Spread in the total position divided by the square of the system

size for the Fermi sea and the Gutzwiller wavefunction. Two different

values of the variational parameter, � ¼ 1:0 and 2.0 are shown. As the

system size increases the value 1/12 is approached by all three systems. The

approach to the limiting value slows down as correlation effects are

introduced, it is slowest for � ¼ 2:0, the ‘‘most projected’’ of the three

examples.

L Fermi sea � ¼ 1:0 � ¼ 2:0

12 0.08275 0.079(1) 0.0412(9)

24 0.08312 0.0830(6) 0.0682(6)

36 0.08327 0.0831(5) 0.0797(5)

48 0.08330 0.0833(4) 0.0824(4)

60 0.08331 0.0829(3) 0.0830(3)

1 1/12
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urations but leaves their phases intact.33) The fact that the
current, a quantity related to the phase of the wavefunction,
is unaltered by the Gutzwiller projection coincides with the
result above, namely that the persistent current for a
Gutzwiller wavefunction is determined exclusively by the
Fermi sea. In fact Millis and Coppersmith13) suggest a
scheme in which a projector operator of the form eiS,
with S ¼ ð1=UÞðHþ

t �H�
t Þ, [Hþ

t (H�
t ) raises (lowers) the

number of double occupations] acts on the Fermi sea to
produce an insulating wavefunction. Clearly this scheme
would alter the phases of the Fermi sea.

The above reasoning can be extended to other commonly
used projected variational wavefunctions. The Baeriswyl–
Gutzwiller wavefunction can be written

j�BGð�; �Þi ¼ e��T̂ e��D̂jFSi: ð43Þ
In this case T̂ denotes the kinetic energy, and � denotes
the variational parameter. Since the total position shift
operator Ûð�XÞ is diagonal in momentum space, it trivially
commutes with the projector e��T̂ . We conclude that the
current response of the Baeriswyl–Gutzwiller projected
wavefunction is identical to that of the Fermi sea. The
other two commonly used variational wavefunctions are the
Baeriswyl and Gutzwiller–Baeriswyl projected wavefunc-
tions. Their form is

j�Bð�; �Þi ¼ e��T̂ j�1i; ð44Þ
j�GBð�; �Þi ¼ e��D̂e��T̂ j�1i: ð45Þ

In eqs. (44) and (45) j�1i denotes the wavefunction in the
limit of infinite interaction. This function is in general not
known. Again one can exploit the fact that the total position
shift commutes with the projector operators and conclude
that the current response in both cases will depend on j�1i
exclusively. While this function is not known, in general, in
the half-filled case one can assume that its current response
is zero.

5. Conclusion

The current response was investigated in the context of
variational theory. The Drude and superfluid weights have
seemingly identical expressions (second derivative of the
ground state energy with respect to the Peierls phase),
however, as was pointed by Scalapino, White, and Zhang,
the meaning of the derivative differs between the two, one
being the adiabiatic the other the ‘‘envelope’’ derivative.
Assuming their interpretation of the derivative we derived
the expressions for the Drude and superfluid weights
appropriate for variational theory. A key difficulty with the
former is the appearance of the exact eigenstates of the
perturbed Hamiltonian, in general not available in practical
situations where variational theory is used. As a partial
remedy the persistent current was shown to consist of a
constant term, proportional to the perturbation and the
number of charge carriers, and a geometric phase term. This
expression can be used in practical settings to obtain the
Drude weight by numerically taking the first derivative of
the current with respect to the phase. The current response of

several commonly used variational wavefunctions was also
analyzed, and shown that variational wavefunctions which
use a Baeriswyl or Gutzwiller projection will have a current
response determined by the wavefunction on which the
projectors are applied (Fermi sea or the solution in the
strongly interacting limit).
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