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Thermoelectric efficiency of nanowires with long-range surface disorder
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The electron transmission plays an important role in the design of thermoelectric devices made up from silicon
nanowires. It has been shown that the transmission spectra of a rough silicon wire can be modified by introducing
long-range correlations to its disordered surface. Although using the linear response theory in determining the
efficiency of the possible heat engine device based on silicon nanowires is useful to point out the overall behavior
with respect to the continuous incident electron energy, it says nothing about its performance as a heat engine.
Actually, the energy value at which the engine optimally works should be determined from its power output.
So, a nonlinear thermodynamic method is necessary to find the efficiency and power output concurrently. The
efficiency at the maximum power shows that some nanowires with specific surface disorder structure are more
appropriate to use as heat engines than others. The possibility of engineering the transmission of electrons in
the nanowires to increase their efficiency maybe an answer to the demand of highly efficient thermoelectric
semiconductor materials in future.
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I. INTRODUCTION

Silicon nanowires with rough surfaces are shown to perform
about 100 times better than in their bulk form as thermoelectric
materials.1,2 Electrons in the constricted geometries such as
nanowires do not obey the Wiedeman-Franz rule, which
states that the electron conductance is proportional to the
electron thermal conductance, however, it is generally valid
for bulk materials. Consequently, the thermoelectric efficiency
described partly as the ratio of these two conductances
can be improved more. Furthermore, the significance of the
surface randomness is shown to be prominent in both of the
experimental and the theoretical studies. Moreover, long-range
correlations on the surface randomness can be used to engineer
the electron transmission spectrum of silicon nanowires.3

Likewise, the random surface scattering is important in the
manipulation of the phonon scattering, and consequently the
control of heat conduction.4,5 Accordingly, there are several
studies reporting the increase of the overall thermoelectric
efficiency in silicon wires6,7 and graphene ribbons.8

The transport of electrons under a thermal gradient can be
utilized to convert the heat energy to the electrical energy,
i.e., working as a heat engine,9–11 or by supplying the
electrical energy to cool the electrons, i.e., as a cooler.12,13

The efficiency of the heat engine depends on the electron
transmission through the structure and the chemical potential
of the electron reservoirs. It is possible to achieve the
theoretically maximum efficiency, i.e., the Carnot efficiency,
η = 1 − TC/TH , where TH and TC are the hot and the cold
reservoir temperatures, respectively, at the opening of a new
channel in a nanowire.14 It has been shown that the maximum
thermoelectric efficiency can be obtained by adjusting the
chemical potential with respect to the incident energy in
such a way that enhances the transport of electrons without
leading to any entropy change.15,16 Anyhow, the problem with
the heat engine working under adiabatic condition is that it
only describes a system with zero power output, hence it
does not have practical value. The thermoelectric efficiency
therefore needs to be redefined for the finite-time process.17–19

One possible way to do this is to define the efficiency at

the maximum power.20,21 The efficiency of the heat engine
is shown universally to approach to η = 1 − √

TC/TH , also
known as the Curzon-Ahlborn limit.17,22 In this context, it is
interesting to see how efficient is to use nanowires as heat
engines depending on the electron transmission spectra.

We model a silicon nanowire with a rough surface as
a scattering problem connecting two electron reservoirs at
different temperatures. We solve this scattering problem using
the reaction matrix method and calculate all the transport
coefficients and the efficiency using the Landauer-Buttiker
formulation23–25 of the linear response theory for this system.26

The efficiency obtained in this way will not give any in-
formation about the feasibility of working condition of the
wire as a heat engine. A more explicit description involves
the calculation of the power generated in the system when
it is connected to an external load. We can achieve this
using a nonlinear thermodynamic approach.27 We obtained
the efficiency and the power, which are both functions of the
incident electron energy and the applied bias this way. The effi-
ciency at the maximum power is discussed for this system at
different regions of operation depending on the transmission
of the electrons. Previously, a comparison of the dimen-
sionality has been made for the quantum dots, the perfect
quantum wires, and the thermionic materials using nonlinear
thermodynamic methods.27,28 Here, we examine the quantum
wire case when the electronic transmission can be modul-
ated by adding long-range correlation to the surface
roughness.3,5 We compare two transmission profiles, one
being a single-window of the reduced transmission and the
other a double window of the reduced transmission in their
respective spectrum. It is customary to define the figure of
merit ZT as a dimensionless parameter proportional to the
efficiency. We find that the double-window transmission has
up to ZT = 3 efficiency peaks away from the threshold energy
of the nanowire. In general, the surface-engineered nanowires
show a thermoelectric efficiency larger than ZT = 2. We
compare the linear response efficiency and the efficiency at
the maximum power using nonlinear methods. We discuss in
general how the transmission profile affects the efficiency and
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GURSOY B. AKGUC AND OGUZ GÜLSEREN PHYSICAL REVIEW B 85, 075432 (2012)

FIG. 1. (Color online) The model of the quantum wire with hot
(red) and cold (blue) reservoirs. The potential bias, +V and −V , and
the temperatures of cold (Tc) and hot (Th) reservoirs are indicated. The
Fermi-Dirac distribution function of hot (fh) and cold (fc) electrons
on the corresponding reservoirs and their difference (fh − fc) on
the nanowire with respect to energy E are illustrated for a typical
case used in this paper. The incident and the outgoing waves of the
electrons illustrated by arrows labeled as a,b and c,d used to form the
scattering matrix S, where the |S12|2 element of the scattering matrix
yields the transmission.

the details of the calculation of the nonlinear thermodynamic
result including the effect of nonlinear temperature differences.

In the following section, we explain the model of a silicon
nanowire with a rough surface as a heat engine as well as
how one can introduce gaps in the transmission spectra by
changing the surface correlation of roughness. In Sec. III,
we discuss both the linear response theory and the nonlinear
thermodynamic results. And finally, we give some concluding
remarks.

II. MODEL SYSTEM

The model system we use for a long silicon nanowire having
a rough surface as a heat engine is illustrated in Fig. 1 as a
scattering system. A hot electron reservoir with temperature
Th and Fermi-Dirac distribution of electron density fh is
connected through a scattering region to a cold electron
reservoir with its own temperature Tc and distribution function
fc. The Fermi-Dirac distribution function is given, in general,
as

fc/h =
[

1 + exp

(
E − μc/h

kBTc/h

)]−1

, (1)

where μc/h is the chemical potential of either cold or hot
electrons, respectively. We plot a typical Fermi-Dirac distribu-
tion function for hot and cold electrons on the reservoirs and
their difference is shown in the scattering region. We apply a
negative potential bias between the hot and the cold ends of
the nanowire, set symmetrically as −V and +V as depicted
in Fig. 1. Therefore we have a symmetrical chemical potential
μc/h = μ ± V while the average μ can be adjusted according
to the incident electron energy by using a back gate potential.
When there is no electron temperature difference, the electrons
flow in the direction of potential (from right to left in Fig. 1). In
the same way, if no bias applied, then there is a net flow of the
electrons from the hot electron to the cold electron reservoir
(from left to right in Fig. 1) because of the difference in the
occupation number density on both sides. Finally, if both a
temperature difference and a potential bias are applied, there
can be a net electron flow to the one of either directions, and the

result can be described as the heat engine or the refrigerator
regime. When the hot electron moves against the potential
difference (from left to right in Fig. 1), hence generates work,
it is the heat engine regime, and when the reverse is true (from
right to left in Fig. 1), the system works as a refrigerator,
namely, a potential difference supplied to the system makes
it colder. In this work, we are interested in the heat-engine
regime.

The transmission probability of the electrons, t , in the
scattering region is crucial to define the device characteristics.
We find the scattering matrix for electrons from the nanowire,
and extract the transmission probability, t = |S12|2, from it.
The S matrix connects the amplitudes of the incoming plane
waves a,c to the outgoing ones, b,d, as (b,d)T = S(a,c)T ,
where we use the transpose of arrays. We use the reaction
matrix approach to find the S matrix as explained in Ref. 29.
This method constitutes two parts: the first part is finding a
set of basis functions to expand the exact scattering function
at the scattering region (gray region in Fig. 1), and the second
is combining the known asymptotic solution in the leads (blue
and red regions in Fig. 1) to the approximate solution in a
continuous way in the process. Hence we find the scattering
matrix as a function of the incident energy in order to relate
the unknown coefficients of the asymptotic solutions in the
leads.

The efficiency of a nanowire heat engine depends on
its electron transmission spectrum, which can be modified
in a controllable way by generating random surfaces with
long-range correlations as shown in Ref. 3. We compare
the efficiency of two transmission spectra produced by this
way in the following section. Here, the basic definitions are
introduced for completeness. The first step is to produce
a random surface y = 1 + ζ (x), which can be constructed
by dividing a long wire into pieces, and then shifting each
piece up or down randomly, and finally connecting each piece
smoothly with a cubic spline function.3 Randomness of the
surface ζ can be characterized by the autocorrelation function,
〈ζ (x)ζ (x ′)〉 = σ 2Cn(x − x ′), where σ is the variance of ζ (x).
The Fourier transform of the autocorrelation function is called
structure factor, and it has a contribution from a wide band of
wave vectors in the Fourier space for white noise. The second
step is to introduce a function ρ expressed in discrete space
as

ρ(x) =
∑

n

sin
(∣∣ar

n

∣∣x) − sin
(∣∣al

n

∣∣x)
∣∣ar

n

∣∣x , (2)

where al
n and ar

n are indices of monotonically increasing
numbers representing edge values of the step functions in the
Fourier space. In other words, the Fourier transform of the
autocorrelation function of ρ(x) will produce a step function
with the edge values given by these quantities. In order to
produce a colored noise, we use a discrete convolution of
the ζ with the ρ as ζ̃ (x) = ∫

dx ′ρ(x ′)ζ (x − x ′). The colored
surface profile is described by surface structure factor ζ̃ .
In this way, it is possible to choose a ρ(x) function with
any required form of Fourier transform of its autocorrelation
function. Specifically, we use single and double step functions
represented by surface structure factors ζ̃s and ζ̃d , respectively,
in the following section. Furthermore, it is possible to
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make a prediction of the localization length based on Born
approximation:30

1

l
= σ 2π4 χ (2k)

2k2
, (3)

where σ 2 is the surface fluctuation strength, χ is the Fourier
transform of the correlation function. Next, we will look at the
effect of such a spectrum on the efficiency.

III. EFFICIENCY OF A SILICON NANOWIRE WORKING
AS A HEAT ENGINE

We use the Landauer approach to calculate the electron
transport coefficient for this system. Since the parasitic heat
flow decreases the efficiency of the wire as a heat engine
drastically when there is more than one mode, we restrict
ourselves to the case where there is only one propagation mode
in the nanowire. General quantities governing the transport in
the system are the heating and the cooling rates of contacts
and the electrical current as a response to the thermal and the
potential gradients. They are described for a nanowire with
one propagating mode as follows:

I = 2e

h

∫
t(E)(fh − fc)dE, (4)

Iqh
= 2

h

∫
t(E)(E − μh)(fh − fc)dE, (5)

Iqc
= 2

h

∫
t(E)(E − μc)(fh − fc)dE, (6)

where Iqh
and Iqc

are the heating and the cooling rates of the hot
and the cold contacts, respectively, h is the Planck constant,
t(E) is the transmission, and fh and fc are the equilibrium
Fermi-Dirac distributions for the contacts. First, we look at
the linearized form of these equations to find the transport
coefficient. After that, we calculate the efficiency and the
power without using the linear approximation.

A. Linear response theory

In the linear response regime, IqH
≈ IqC

≡ Iq and we have
the following approximation:

I = G�V + SG�T, (7)

Iq = −T SG�V − κ�T, (8)

where �T is the temperature difference between the contacts,
G is the electric conductance, κ is the heat conductance, S is the
Seeback coefficient, and T is the temperature. We set μ = μh

and f = fh, and the transport coefficients in the Landauer-
Buttiker formulation are expressed as follows:

G = −2e2

h

∫ ∞

0
dE

∂f

∂E
t(E), (9)

S = 1

G

2e2

h

kB

e

∫ ∞

0
dE

∂f

∂E
t(E)(E − μ)/kBT , (10)

K

T
= −2e2

h

(
kB

e

)2 ∫ ∞

0
dE

∂f

∂E
t(E)[(E − μ)/kBT ]2,

(11)
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FIG. 2. (Color online) (a) Transmission probability (thick, blue)
t , electron thermal conductance (dotted, black) κ , and electron
conductance (dashed, magenta) G, in units of conductance quanta,
2e2/h2, are shown with respect to the incident energy of electrons in
units of first mode threshold energy E1. Thermal power (red) S is also
displayed in units of kB/e. The transmission probability that has two
windows of transmission dips in energy corresponds to the long-range
correlated surface ζ̃d . (b) same as in (a) but with a transmission
probability that contains a single window of transmission dip that
corresponds to the correlated surface described by the ζ̃s .

where f is the Fermi-Dirac distribution function and kB is the
Boltzman constant. Note that the heat conduction is given in
terms of K as

κ = −K

(
1 + S2GT

K

)
. (12)

We present these transport coefficients in Fig. 2 for two
different electron transmission spectra. We characterize them
according to the transmission hole in energy with one having
a single well as in Fig. 2(b) and the other a double well of
minimal transmission as in Fig. 2(a). For a perfect wire, the
transmission spectrum is unity for the energy range shown
here. We have a plateau starting at E = 1.4E1 for a white
noise surface transmission with an average amplitude of 0.2
in terms of the wire width taken as unity, see Ref. 3. For
the double-well transmission spectrum, we use a convolv-
ing function, ρd (x) = [sin(1.2πx) − sin(0.6πx)]/(1.2πx) +
[sin(2.2πx) − sin(1.8πx)]/(2.2πx) with corresponding sur-
face structure factor ζ̃d , and for the single-well spectrum, we
have ρs(x) = [sin(1.8πx) − sin(0.6πx)]/(1.8πx) with corre-
sponding surface structure factor ζ̃s . It has also been averaged
over several generated surfaces for each case. We use energy
units as the opening energy of first channel, which is given by
E = h̄2/2m(p2/w2), where the width is set to w = 1, however,
the system is scale invariant. We choose the length of the wire
to be one hundred times the width, and the temperature is
chosen as kBT = 0.05E1.

We can find the efficiency of the thermoelectric silicon
wire from the transport coefficient. First, we define a related
quantity known as figure of merit or (ZT ) as ZT = GT S2/κ .
Accordingly, the efficiency of the thermoelectric material is
related to the ZT by

ηmax = ηC

√
ZT + 1 − 1√
ZT + 1 + 1

, (13)
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FIG. 3. (Color online) (a) The figure of merit ZT (black) and the
transmission probability are shown for windows of two transmission
dips described by the surface structure factor ζ̃d . (b) same as in (a)
but for the case when the transmission contains single transmission
dip with the surface structure factor ζ̃s .

hence the Carnot limit, ηC , is reached when ZT → ∞. We
present the performance ZT of these two nanowires with
different surface structures as thermoelectric materials for the
double-well transmission spectrum in Fig. 3(a) and for the
single-well spectrum in Fig. 3(b). The ZT has a peak at about
3.3 in the double-well spectrum, whereas it is about 1.8 in
the single-well case. In both cases, the ZT goes to very high
values at the opening of the first channel. But, we will see that
these are not always the best regions to make the heat engine
work because of negligible power output.

B. Efficiency at maximum power

Linear response theory results in a continuous efficiency
valid for each incident energy, but the feasibility of these
efficiencies should be decided based on the power output for a
given incident electron energy. For this reason, we use general
transport equations without introducing linear approximations.
The first parameter we need to set for the model is the
temperature difference �T . The temperature should be set
accordingly in order to demonstrate the effects we have been
seeing in these systems. If we choose very high temperatures
for the cold and the hot reservoirs, then the detailed features of
the transmission spectrum might be totally washed up because
of the temperature averaging, and we hardly observe an
increase in the thermoelectric efficiency. Also, the temperature
difference has a nonlinear effect on the overall performance
of the device, if it is chosen very large. In Fig. 4, we
present several choices of the temperature difference, and the
resulting maximum heat production rate, Qmax = IqH

− IqC
,

calculated from Eqs. (5) and (6). We choose T1 = 0.06E1

and T2 = 0.04E1, where E1 is the channel threshold energy
of the waveguide. Note that we choose T = 0.05E1 for the
linear response approach. We see that the peak rate obtained
for this temperature difference is at a value close to the step
function transmission spectrum (valid for a perfect wire), and
this is comparable to the width of the transmission wells in
the spectrum of the disordered silicon nanowires we used.
The peak shifts to the lower energies with the increasing
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FIG. 4. Heat generation rate with varying chemical potential is
shown for different temperature differences pointed by arrows in the
figure. A perfect wire with a step-function transmission probability
has been used, and it has been shown here in units of conductance
quanta at the right axis.

temperature difference, and the heat rate becomes too low
for very small energy difference.

Next, we find the power generation and the efficiency for
the two systems with different spectra using the temperature
differences set at kTH = 0.06E1 and kTC = 0.04E1. First, we
need to locate the region of power generation. We calculate the
open circuit potential Voc to determine the region of potential
where the heat engine produces work. We determine Voc from

IqH
− IqC

= �V I, (14)

where �V is the potential difference produced due to the
temperature difference of two reservoirs. We can produce
power in the system until this potential is balanced by the
applied bias. We show the power generation, P = IV , in
Fig. 5(a), and the efficiency, η/ηC = P/IqH

in Fig. 5(b) for
the case of one well of low transmission in the spectrum. We
show the corresponding transmission spectrum in Fig. 5(b).
The limiting thick black curves in Figs. 5(a) and 5(b) denote
the open circuit potential Voc, which is a nonlinear function
of Fermi-Dirac distribution and transmission curves as well
as the temperature difference. As described earlier, we change
the chemical potential by supplying a potential bias to the
system with respect to the incident electron energy assuming
the average chemical potential can be changed in energy with
a back gate potential. There are three regions of high power
generation right at the discontinuities of the transmission
spectrum. Note that the discontinuities of the spectrum are
the only way with which the electron distribution function is
affected; for a smooth wire there is no power generation except
at the opening of a channel. The sharp increase or decrease in
the transmission results in the generation of heat and power,
increasing the efficiency, in general. In the first case, we see
that the best possible working conditions for a heat engine can
be found just before the opening of the channel energy, since
at this place both high power and efficiency can be achieved.

In Fig. 6, we show a similar graph for the second case, i.e.,
the silicon wire with a surface disorder arranged to produce
two transmission wells in the spectrum. The power generation
and the efficiency corresponding to the transmission spectrum
shown in Fig. 6(b) are plotted with respect to the changing
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FIG. 5. (Color online) Nonlinear analysis of the case in which
the transmission probability contains a window of single dip as a
result of used surface structure factor ζ̃s . (a) The power generation
P and the potential V in units of E1 are shown with varying
chemical potential μ. Arrows show each of the local power maxima.
(b) Normalized efficiency, (η/ηC), is shown for same variables.
Thin black curve is the transmission probability in units of the
conductance quanta. In both graphs, the thick black boundary curve is
the open circuit potential difference Voc calculated as described in the
text.

chemical potentials. Yet again, we have peak positions of the
power generations near the transmission discontinuities. In
this case, we observe that the working condition of a heat
engine is actually different than the channel opening but near
the second well as shown with arrow 3 in Fig. 6(a). At this
region, the power generation is much higher than the channel
opening pointed by arrow 1 in Fig. 6(a), and the efficiency is
comparable.

We present loop plots of the power versus the efficiency at
those incident chemical potentials, μ/E1, shown with arrows
in Figs. 5(a) and 6(a), in Figs. 7(a) and 7(b), respectively.

FIG. 6. (Color online) The power generation and the efficiency is
shown for the case in which the transmission probability contains
windows of two transmission dips produced by surface structure
factor ζ̃d . Same parameters are used as in Fig. 5.
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FIG. 7. (Color online) (a) The power vs the efficiency at constant
μ values shown with arrows in Fig. 5 with varying potential, (b) same
as in (a) but at the location of arrows in Fig. 6.

Here, we can see the efficiency at local maximum powers. We
observe the power buildup and increasing of the efficiency
at the location of third arrow in Fig. 6(a). Comparison
shows that the efficiencies at the maximum power are in
proportion and close to the efficiency one gets from the
linear response theory. The nanowire with a surface correlation
producing double gap near the transmission threshold could
be used with an efficiency given by a ZT number close to
three.

In this study, we confine our analysis to a simplified system
with no thermal effects coming from phonons, and also the
electron-electron interaction is not included. It is important to
discuss the connection between our results and the traditional
figure of merit for thermoelectric systems,

ZT = GT S2

κe + κp

= ZTe

(
κe

κp + κe

)
, (15)

where T is the average temperature, and κe and κp are the
electronic the phononic heat conductances, respectively. In
our calculation, we find an electronic figure of merit ZTe

that is higher than the traditional ZT . Moreover, the electron-
phonon interaction causes a further decrease of the electronic
conductance due to the phonon drag effect. Interestingly, it
has been shown that the phonon drag contributes positively
to thermopower with decreasing temperature.2 The phonon
drag contribution is of the form Sph ∝ ( 1

κpμT
), where μ is the

electron mobility. If we neglect the electronic contribution
and consider only the phononic part, then we have ZT ∝
n/(μT κ3

p), which shows that ZT increases with decreasing
temperature. This behavior has been found consistent with the
experimental results for temperatures around T = 200 K for
a silicon nanowire.2 The thermopower contribution of phonon
drag decreases again for temperatures below T = 200 K.
Therefore our results are valid for temperatures much less than
T = 200 K, however, they underestimate ZT for temperatures
around T = 200 K. Moreover, since the effect we observe here
is mainly due to the increasing thermopower that results from
jumps in the conduction curves, we do not expect significant
changes in our results due to an overall decrease in electron
conduction.
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Another important effect in determining the thermoelectric
efficiency is due to the electron-electron interaction. We
have not included the electron-electron interaction in our
calculations. We give some remarks about this before leaving
it to the future work. It has been shown that the conductance
dependence on temperature changes with the electron-electron
interaction for a perfect wire, and one cannot use simple
Onsager relations to find the electronic thermal conductance.31

For low temperatures, Friedel oscillations, Luttinger liquid
behavior, and 0.7 conductance anomaly can also be observed
due to electron-electron interaction. However, the temperature
increase undermines these effects due to screening of electron-
electron interaction, i.e., V = e2

4πεr
e−r/L with a screening

length L =
√

εkBT /(e2n) valid for low temperatures. Screen-
ing is less effective at high temperatures because of the smaller
fractional change of the energy of the electrons. For the
silicon wire with a density of electrons n = 1019 cm−3, the
screening length becomes large for temperatures greater than
T = 10 K.32 Consequently, we can use Onsager relations in
our model for temperatures larger than T = 10 K and our
results remain valid there. Neverthless, our focus in this study
are the improvements in the thermoelectric efficiency due to
the surface changes. Since the effect inherently comes from the
rate of change of the transmission probability curve and this
can be maintained by changing the surface correlations even in
a system with electron-electron interactions, our conclusions
are still sound. However, further work is necessary along these
lines including the electron-electron intarection.

IV. CONCLUDING REMARKS

Surface randomness with long-range correlations intro-
duced into silicon nanowires increases the thermoelectric

efficiency. We find that the figure of merit ZT can be increased
by manipulating the transmission spectra of the nanowire. It is
possible to produce silicon nanowire heat engines by applying
an electrical load. We characterize such a system and discussed
two cases with different transmission spectra as a result of
two different long-range correlations included in their surface
generation. The characterization requires the efficiency at a
given power generation. We find several of those at the local
maxima of power generations. The transmission spectrum with
a double well shows working conditions at an energy different
than the opening of a lead and with higher efficiency.

There is a variety of ways to manipulate the transmission
spectrum. Some examples might be nanowires with periodic
surface potentials that result in gaps in the spectrum, or some
specific structures with Fano-resonance type of transmission
spectra.33,34 Since the surface randomness is almost unavoid-
able at nanoscale, one should try to control it by mixing some
smooth function with the disorder or one should check the
possible correlation on the surface structure to see its effect on
the transmission spectrum. Nanoheat engines can be improved
in these structures by looking at the local power maxima and
the corresponding efficiencies.
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