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Self-assembled quantum dots (QDs) are born out of lattice mismatched ingredients where strain plays an
indispensable role. Through the electric quadrupolar coupling, strain affects the magnetic environment as seen
by the nuclear spins. To guide prospective single-QD nuclear magnetic resonance (NMR), as well as dynamic
nuclear spin polarization experiments, an atomistic insight to the strain and quadrupolar field distributions is
presented. A number of implications of the structural and compositional profile of the QD have been identified.
A high aspect ratio of the QD geometry enhances the quadrupolar interaction. The inclined interfaces introduce
biaxiality and the tilting of the major quadrupolar principal axis away from the growth axis; the alloy mixing
of gallium into the QD enhances both of these features while reducing the quadrupolar energy. Regarding the
NMR spectra, both Faraday and Voigt geometries are investigated, unraveling in the first place the extend of
inhomogeneous broadening and the appearance of the normally forbidden transitions. Moreover, it is shown that
from the main extend of the NMR spectra the alloy mole fraction of a single QD can be inferred. By means of
the element-resolved NMR intensities it is found that In nuclei has a factor of 5 dominance over those of As.
In the presence of an external magnetic field, the borderlines between the quadrupolar and Zeeman regimes are
extracted as 1.5 T for In and 1.1 T for As nuclei. At these values the nuclear spin depolarization rates of the
respective nuclei get maximized due to the noncollinear secular hyperfine interaction with a resident electron in
the QD.
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I. INTRODUCTION

In the coherent control of electron spins within a solid-state
environment, such as in quantum dots (QDs), the nuclear spin
reservoir acts as the main source of decoherence.1–3 Recent
studies now assure that nuclear spin bath can be tamed so as
to counter the detrimental effect it may have on the carrier
spins.4–8 Therefore, in the emerging state of understanding,
an alternative is to utilize nuclear spins as a resource,9 for
instance, as a natural qubit memory (for an extended review
and references, see Ref. 10). In these studies, self-assembled
QDs have been one of the archetypal systems. Within the full
gamut of possible combinations of self-organized materials,11

the InAs on GaAs system stands out due to extensive research
efforts devoted over more than a decade to their growth
and optoelectronic characterizations.12 For the purposes of
controlling the spin dynamics in InAs QDs, several groups13–25

have studied various aspects of the optical orientation26 of
an electron spin and its transfer to the nuclear spins via the
hyperfine interaction leading to the dynamic nuclear spin
polarization.27

One of the remarkable achievements that paved the way to
the coherent manipulation of nuclear spin dynamics has been
the nuclear magnetic resonance (NMR) of a single QD.28,29

With further improved precision, position selective control of
small groups of nuclear spins inside a dot is being pursued.30

This so-called optically detected NMR is initiated by the
circularly polarized excitation of a spin-polarized electron
spin inside a QD that polarizes the nuclear spins through
the hyperfine interaction. The Overhauser field established
by the polarized nuclei acts back on the electronic system,
which can be externally measured over an excitonic Zeeman
splitting. Additionally, if an rf magnetic field resonant with
nuclear spin transitions is incident, it depolarizes some of

the nuclear spins reducing the Overhauser field, which can
in turn be detected from a shift in the optical emission spectra.
Along this line, a recent demonstration utilized a sequence of
two phase-locked rf pulses to induce coherent rotations of a
targeted group of nuclear spins optically pumped to a high
polarization degree.31 The advantage of this technique is that
it enables full coherent control over the Bloch sphere and yet
on the order of microsecond time scales.

These NMR experiments were performed on GaAs
interface-fluctuation QDs with the deliberate aim of avoid-
ing any strain to keep the resonances narrow.30,31 On the
other hand, strain is an integral part of self-assembled InAs
QDs.12 The existing negative sentiments for the strain in
the context of electron and nuclear spin dynamics have been
dramatically reversed by the work of Dzhioev and Korenev.32

Actually, several decades ago it was experimentally shown
that anisotropic strain in a III-V crystal lattice causes local
electric-field gradients (EFG) with which a spin-I nucleus
with I � 2 interacts because of its quadrupolar moment.33–35

This quadrupolar interaction (QI) splits the nuclear spin
degeneracy even in the absence of an external magnetic
field;36,37 hence it energetically suppresses the nuclear spin-flip
events, stabilizing the electron spin orientation confined in
the QD.32 With this paradigm shift, strain is no longer just a
nuisance but something to be exploited as a new degree of
freedom to tailor the magnetic environment of InAs QDs.

The aim of this work is to offer an atomistic understanding
of the interesting physics arising from the coexistence of QI
together with the dc and rf magnetic fields. This is in accord
with the current progress of the experimental techniques
having the goal to address and control relatively few number
of nuclei within a QD.30,31 Starting from the behavior of
the spatial variation of the strain tensor, we trace the factors
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that affect QI, and identify primarily the high aspect ratio of
the QD as a factor for enhancing it. Considering different
magnetic field orientations and the effect of random alloy
mixing, i.e., InxGa1−xAs QDs, critical insight is gained on
the vulnerability of each nuclear spin transition in the NMR
spectrum under inhomogeneous broadening. An important
complication is that the mole fraction of the constituents can
vary appreciably from dot to dot within the same sample,38,39

rendering the in situ compositional identification of a targeted
QD so far not practical. We demonstrate that this can be readily
extracted from the main span of the NMR spectra. Moreover,
our element-resolved spectra present crucial information for
the labeling of the features in the rather complicated overall
spectra. For the typical QD parameters reported in relevant
experiments, we extract an effective quadrupolar field, BQ

of 1.5 T (1.1 T) for the In (As) nuclei, as a borderline below
which QI dominates. The atomistic picture that we acquire also
provides us the distribution of the quadrupolar principal axes
within the QD. We make use of this information in working
out the nuclear spin depolarization due to noncollinear secular
hyperfine interaction arising from the tilting of the major
quadrupolar axis from the optical axis. The depolarization time
drops to a minimum on the order of an hour at the magnetic
field coinciding with BQ, as a manifestation of the strong
competition between the QI and the Zeeman field at this value.

Regarding the organization of the paper: in Sec. II we give
the theoretical details for the strain, QI, and the nuclear spin
depolarization; in Sec. III some information about our QD
structures is given, followed by the results grouped into strain
and quadrupolar splittings, NMR spectra, and the noncollinear
secular hyperfine interaction; in Sec. IV we summarize our
conclusions, and append a section on the matrix elements for
obtaining the energy spectra and the rf-initiated nuclear spin
transitions under an arbitrary EFG.

II. THEORY

Although the theoretical ingredients employed in this work
are not new, an account of the procedures and the mathematical
models will be helpful for clarifying how the results are
obtained.

A. Strain

From a computational point of view, to identify the strain
profile, the ionic relaxation of the QD and the host matrix atoms
is needed. The technique used for this purpose is molecular
statics as implemented in the LAMMPS code.40 Here, the main
input is the semiclassical force field that governs the atomic
interactions. The preferred choice for group IV and III-V
semiconductors are the Abell-Tersoff potentials.41 We make
use of the recent parametrization by Powell et al., who fitted
their force-field expression to a large set of cohesive and
elastic properties obtained from density functional theory.42

With these tools and for a chosen compositional profile, the
relaxed atomic positions become readily available.43 Next, one
needs to extract the strain state, again in an atomistic level as
we aim for the EFGs at each nuclear site. Among the several
possible strain measures, we adopt the one proposed by Pryor
et al. because of its inherent compatibility with tetrahedral
bonds, as in the present case.44 In this measure, the critical

task is to correctly align an unstrained reference tetrahedron
for each local bonding topology. This local strain attains a
very rapid variation especially for the random alloy mixing
of InxGa1−xAs. Therefore, like Bester et al.,45 we average
the strain tensor; in our case over the twelve neighboring
same-ionicity sites, which we also apply to the pure InAs
QDs as well.

B. Quadrupolar interaction

In the linear elastic limit, we can express the EFG tensor
components Vij in any orthogonal coordinate frame46 using
the computed local strain tensor εij as

Vij ≡ ∂2V

∂xi∂xj

=
3∑

k,l=1

Sijklεkl, (1)

where S is the fourth-rank gradient elastic tensor.47–49 Trans-
forming this tensor expression to Voigt notation in the cubic
crystallographic frame we get

Vμ =
6∑

ν=1

Sμνεν. (2)

As the trace of the EFG is unobservable50 it is conveniently
set to zero,

∑
i Vii → 0, which leads to S11 = −2S12. This

results in the following explicit relations for the EFG tensor
components in the mixed Voigt and tensor notation:

Vzz = S11
[
εzz − 1

2 (εxx + εyy)
]
, (3)

Vxy = Vyx = 2S44εxy, (4)

with the remaining components being obtained by their
cyclic permutations.51,52 The EFG tensor couples to the
nuclear quadrupole moment tensor (operator) Qαβ through
the Hamiltonian37

HQ = 1

6

∑
α,β

VαβQαβ,

= eQ

6I (2I − 1)

∑
α,β

Vαβ

[
3

2
(IαIβ + IβIα) − δαβI2

]
,

where I is the dimensionless spin operator, e is the electronic
charge, I is 9/2 for In, and 3/2 for As and Ga nuclei, and Q is
the electric quadrupole moment of the nucleus. This expression
gets simplified in the frame of EFG principal axes (VIJ ≡ 0,
for I �= J ) as

HQ = e2qQ

4I (2I − 1)

[
3I2

Z − I2 + η
I2

+ − I2
−

2

]
, (5)

where I± ≡ IX ± iIY , q ≡ VZZ/e is the field gradient param-
eter, and η = (VXX − VYY )/VZZ is the biaxiality (asymmetry)
parameter. The former is the primary coupling constant of QI,
and the latter determines the mixing between the free nuclear
spin magnetic quantum numbers. In the most general case that
we shall consider, in addition to quadrupolar partHQ, a nuclear
spin will have interactions with dc and rf magnetic fields
in the form HM = −γh̄I · B0 and Hrf = −γh̄I · Brf cos ωrf t ,
where γ is the gyromagnetic ratio of the nucleus. The weak
rf part can safely be treated perturbatively, whereas the dc
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magnetic field can be strong and gives rise to Zeeman effect; we
shall abbreviate the stationary states under both quadrupolar
and Zeeman splittings as the QZ spectra.53 Individual matrix
elements for obtaining the QZ spectra for an arbitrary EFG
and B0 as well as the Hrf-initiated transition rates are given in
the Appendix section for the sake of completeness.

C. Noncollinear secular hyperfine interaction

Quite commonly in the nuclear spin experiments there
exists an electron in the QD with an optically oriented spin
along the growth axis.13–25 Through the hyperfine interaction
it then polarizes the QD nuclear spins, termed as the dynamic
nuclear polarization.27 Deng and Hu have suggested that in
the presence of quadrupolar mixing a new spin depolarization
channel becomes possible through the hyperfine coupling.54 If
we leave out the weaker anisotropic dipolar part in the s-type
conduction band of III-V semiconductors,55 the hyperfine
interaction can be represented by the isotropic Fermi contact
term56

Hhf =
√

feAhf|ψ(R)|2
⎡
⎣IzSz︸︷︷︸

secular

+ 1

2
(I+S− + I−S+)︸ ︷︷ ︸

nonsecular

⎤
⎦ ,

(6)
where Sz,S± are the z component and the raising/lowering
electron spin operators, Ahf is the hyperfine constant of the
nucleus, fe is the average fraction of the time electron is inside
the QD (i.e., hyperfine interaction is on) for which we use
the value 0.035.56,57 At a nuclear site, R, ψ(R) is the electron
wave function, that we simply approximate with a z-varying
(height-dependent) Gaussian profile over the QD as ψ(ρ,z) ∝
e−[3ρ/D(z)]2

, where D(z) is the z-dependent diameter of the
truncated cone-shaped QD.

The nonsecular part ofHhf , which is responsible for the spin
flip-flops as a direct process, becomes energetically impossible
due to the presence of the external magnetic field and the
large energy mismatch between nuclear and electronic Zeeman
energies. On the other hand, in the noncollinear case of major
EFG principal axis being tilted from the growth axis the secular
part becomes much more interesting. When we express Iz

operator in EFG-coordinate components we observe that this
allows a nuclear spin transition without changing the spin
orientation of the electron. There is still an energy cost for
the nuclear spin flip but this is much less compared to the
nonsecular term being on the order of a few neV, which is
negligible compared to the spontaneous lifetime broadening
of 
l ∼ 1 μeV of the exciton state in the optically created
electron spin pumping configuration.58 Therefore, the rate
of noncollinear secular hyperfine interaction (NCSHFI) can
become significant. For a transition from state |i〉 to |j 〉, this
rate is given by

WNCSHF
ji = fe[Ahf|ψ(R)|2]2|〈j |Iz|i〉|2 2
l/h̄

(Ej − Ei)2 + 
2
l

.

(7)

III. RESULTS

A. Test structures

There exists a plethora of different realizations for the
compositional and structural profiles of the self-assembled
QDs; for a very recent experimental review, see Ref. 38,
and specifically for the InAs QDs, see Ref. 39. Guided by
the samples used in recent nuclear spin experiments,13–25 we
center our discussion around a QD of a truncated cone shape59

with a base (top) diameter 25 nm (10 nm), placed over a 0.5 nm
wetting layer, all fully embedded in a GaAs host lattice. The
computational supercell contains some 1 800 000 atoms, most
of which for the host matrix region, with the InAs QD region
having 16 702 In and 15 432 As atoms. In the case of alloy
mixing discussions, we randomly replace a fraction of the In
atoms with Ga atoms. We start from a uniform compressive
strain in the QD region by setting its lattice constant to that of
bulk GaAs. During the energy minimization we use periodic
boundary conditions while allowing for the computation box
to shrink and expand, so as to attain a zero pressure on the
walls.60 After this relaxation, the InAs QD height settles to
2.93 nm. Our choice for such a high-aspect-ratio QD is again
guided by the samples used in relevant experiments.13–25 In
order to extract the dependence on the aspect ratio and alloy
composition of the QDs, different heights and indium mole
fractions are considered as well.

B. Strain and quadrupolar splitting

To have a broad overview, we would like to start with
Fig. 1 displaying the atomistic profiles over (100) and (010)
cross sections of InAs and In0.7Ga0.3As QDs. A compressive
in-plane strain, ε⊥ ≡ (εxx + εyy)/2, is seen to be mainly
preserved after relaxation, whereas for εzz it is released along
the growth axis to its environs leaving the QD region with
a tensile εzz value. The opposite signs for the in-plane and
growth axis QD strain components is a reflection of the Poisson
effect.62 Thus, with the biaxial strain defined as εB ≡ εzz − ε⊥,
a compressive value follows directly from these two. It can be
observed by comparing left and right panels in Fig. 1 that
the compositional variation does not lead to a qualitative
change on the strain behavior. In the case of quadrupolar
energy parameter, νQ the variation among different elements
is substantial, while those within each element simply follow
that of the biaxial strain.

To support these observations with more quantitative data,
in Table I the strain and quadrupolar statistics of the InAs QD
atoms are summarized. Since a common way of nuclear spin
polarization is via that of an optically oriented electron spin,26 a
relevant measure for the nuclear ensemble would be an electron
wave function-weighted statistics. Hence, in Table I and in
other discussions, we provide equal-weighted and electron
envelope-square-weighted statistics for QD nuclear spins,
taking the aforementioned Gaussian form for the latter. We
suggest the use of equal-weighted (envelope-square-weighted)
statistics in the absence (presence) of a polarizing electron spin
in the QD.

Starting our comparison with the strain components, in
general terms, In and As atoms look very similar. The
exception to this is the shear strain measure that we define
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FIG. 1. (Color online) Atomistic profiles61 over (100) and (010)
cross sections for InAs and In0.7Ga0.3As QDs. Bigger spheres
correspond to In atoms.

as εS ≡ |εxy | + |εyz| + |εzx |, which is significantly larger for
As. This is caused by those As atoms on the interface forming
heterobonds with In and Ga atoms. The shear strain is known to
be crucial for the piezoelectric field,63 whereas in this context

it also causes the tilting of the quadrupolar axes. Regarding
the angular behavior, first of all, the strain major principal
axis lies almost on the in-plane direction, which is due to
the dominance of ε⊥. As a direct consequence of this strain
profile, and in particular due to the relation Vzz = S11εB , the
EFG major principal axis is oriented very close to the growth
direction. In contrast, for the Vxx and Vyy EFG components,
the strain components εxx and εyy appear in opposite signs
and largely cancel. A curious discrepancy between In and
As occurs for the tilting angle of the major quadrupolar axis
from the growth direction, θz,Q: This angle is about eight
times larger for As than In. The tilting is caused by the shear
EFG components, and the discrepancy between In and As
mainly follows from the S44 coefficients, which are 10.0 ×
1015 statcoulomb/cm3 and 25.9 × 1015 statcoulomb/cm3,
respectively.35 In addition, as mentioned before, shear strain
is also larger for As and, hence, the larger deviation of the
As major quadrupolar axis from the growth axis. As an
indirect consequence of this, As system has twice as large EFG
biaxiality, η = (VXX − VYY )/VZZ compared to In (cf. Table I).
The vibrant character of the arsenic ensemble as manifested
in the tilting of the major principal axes also reflects itself as
a stark contrast in the standard deviation in νQ normalized
to its mean value, which is much higher in As compared
to In system. There is again marked difference between the
quadrupolar energy gaps: if we temporarily assume a uniaxial
case (η → 0), the energy difference between m = ±1/2 and
m = ±3/2 levels becomes hνQ = 3e2qQ/[2I (2I − 1)]; this
energy is more than twice as large for As (∼8.3 MHz)
compared to In (∼4 MHz). The underlying reason is that
In has I = 9/2, whereas As has 3/2 nuclear spins. The
Q values are however in favor of In, which has 0.86 ×
10−24 cm2 compared to As having 0.27 × 10−24 cm2.35 As
a matter of fact, if one considers the full nuclear spin manifold
energy span under QI, i.e., between m = ±1/2 and m = ±I ,
In has an extend of ∼36 MHz, which is about four times larger
than that of As.

If we now focus on the difference between envelope-
square- and equal-weighted (in parentheses) results, the main
deviations are seen to be on the shear strain, EFG tilt angles,
and biaxiality values, which indicate that there comes a
substantial contribution from the inclined interface regions in
the case of equal-weighted statistics. Also note that standard

TABLE I. Mean and standard deviation for certain atomistic quantities of the considered InAs QD. ε⊥: in-plane strain perpendicular to
growth axis; εS : shear strain; εB : biaxial strain; νQ: quadrupolar (lowest) energy splitting; η: EFG biaxiality parameter; θz,ε : polar angle the
strain major principal axis makes with the growth axis; θz,Q: polar angle the quadrupolar major principal axis makes with the growth axis.
Envelope-square-weighted statistics are given, while the raw (equal-weighted) values are quoted in parentheses.

Indium Arsenic

Mean Standard deviation Mean Standard deviation

ε⊥ −0.057 (−0.054) 0.005 (0.012) −0.056 (−0.055) 0.004 (0.007)
εS 0.004 (0.008) 0.004 (0.005) 0.005 (0.010) 0.004 (0.006)
εB 0.090 (0.088) 0.010 (0.018) 0.086 (0.084) 0.013 (0.020)
νQ (MHz) 3.974 (4.074) 0.427 (0.801) 9.804 (8.256) 6.322 (8.955)
η 0.042 (0.080) 0.041 (0.085) 0.117 (0.255) 0.198 (0.272)
θz,ε 89.3◦ (86.8◦) 2.3◦ (8.0◦) 88.0◦ (87.6◦) 1.6◦ (3.4◦)
θz,Q 1.7◦ (2.7◦) 1.6◦ (2.8◦) 12.9◦ (23.7◦) 24.1◦ (30.6◦)
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FIG. 2. (Color online) Monolayer-averaged axial variations of εB ,
εzz, θz,Q, and νQ along the growth axis starting from the base of the QD
without including the wetting layer. Filled (hollow) symbols are for
InAs (In0.7Ga0.3As) QD. The Gaussian envelope square weighting
is used for the contribution of atomistic quantities within each
monolayer.

deviation for all quantities are higher when the interface region
is included (i.e., under equal-weighted statistics).

Next, in Fig. 2 we return to the effect of alloy mixing
and examine the variation of monolayer-averaged strain and
quadrupolar quantities along the growth axis, using Gaussian
envelope-square weighting. In all cases the quantities show a
rather flat profile along the growth axis up until the top two
monolayers. It can be observed that compared to pure InAs
case, a substitution of 30% of Ga changes the overall QD
strain state in such a way that both εzz and εB are reduced
and, in corollary, so is the energy splitting, νQ. On the other
hand, the tilt angle of the major quadrupolar axis from the
growth axis, θz,Q, is larger caused by the local random alloy
configurations. A large θz,Q has a number of implications such
as enhancing the NCSHFI, as will be discussed later. These

FIG. 3. (Color online) Aspect ratio (defined as the base diameter
over the height) dependence of εB and νQ for an InAs QD. Base (top)
diameter is kept at 25 nm (10 nm), while the QD height is varied.
Envelope-square-weighted values are used.

observations are further supported quantitatively in Table II,
which compares the statistics of ε⊥, εS , εB , νQ, η, θz,ε , and
θz,Q for three different alloy compositions. With the reduction
of indium composition from the pure InAs case, the in-plane
and biaxial strain diminishes as well as the quadrupolar energy
splitting, whereas the increased random alloying enhances the
EFG biaxiality and causes substantial deviation of the major
strain and quadrupolar axes from the growth axis, especially
for the As and Ga nuclei.

Finally, we consider the role of aspect ratio of the QD on
the strain and quadrupolar state. To begin with, if we were
to have a spherical QD embedded into a host of a different
lattice constant, in the continuum approximation we would
have only a hydrostatic strain and no biaxial strain and no
quadrupolar shift. In accordance with this, as seen in Fig. 3,
QDs with a large aspect ratio possess a larger biaxial strain
causing large quadrupolar shifts. Note that due to the truncated
cone shape, an anisotropy always remains regardless of the
height of the QD. In self-assembled QDs, while the height is
controlled to a very high precision, such as by capping and
double capping techniques,39 this is not the case for the lateral
dimension, which is essentially determined by the local growth

TABLE II. Effect of alloy composition on the Gaussian envelope-square-weighted statistics for the same atomistic quantities considered in
Table I. Three different alloy compositions are compared for a InxGa1−xAs QD: x = 1, 0.7, and 0.4.

Indium Arsenic Gallium

x = 1 x = 0.7 x = 0.4 x = 1 x = 0.7 x = 0.4 x = 0.7 x = 0.4

ε⊥ − 0.057 − 0.046 − 0.024 − 0.056 − 0.045 − 0.018 − 0.044 − 0.015
εS 0.004 0.008 0.008 0.005 0.011 0.011 0.008 0.008
εB 0.090 0.067 0.034 0.086 0.065 0.031 0.068 0.033
νQ (MHz) 3.974 3.846 2.346 9.804 8.048 1.677 4.555 2.037
η 0.042 0.198 0.431 0.117 0.414 0.584 0.239 0.476
θz,ε 89.3◦ 87.7◦ 82.3◦ 88.0◦ 86.3◦ 74.5◦ 88.3◦ 70.5◦

θz,Q 1.7◦ 3.2◦ 12.4◦ 12.9◦ 17.9◦ 41.5◦ 5.3◦ 17.4◦
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FIG. 4. (Color online) QZ spectra of single In and As nuclei for
the Faraday and Voigt geometries.

kinetics.11 Therefore, we can expect a significant variance on
the quadrupolar shifts from dot to dot within the same sample,
much like their light emission properties.

C. NMR spectra

Now, including a dc magnetic field, B0, both Faraday
and Voigt geometries will be discussed where B0 is parallel
and perpendicular to the (optical) growth axis, respectively.
In Fig. 4 the QZ spectra of a single In and As nuclei are
given. For the quadrupolar parameters we use those listed in
Table I under the envelope-squared QD statistics. Some of the
comparisons regarding the quadrupolar splittings between As
and In were already made in the previous section. Here, we
would like to focus on the evolution of the QZ spectra from
the quadrupolar- to the Zeeman-dominated regime. One can
easily realize the marked discrepancy between the Faraday
and Voigt geometries: in the former, as the magnetic field is
increased, the quadrupolar-split m = +I state moves down
in energy through a number of band crossings followed by a
final anticrossing. The couplings are localized to the vicinity
of these “crossings.”In the case of Voigt geometry, however,
there are no such band crossings. The fundamental difference
is illustrated in Fig. 5. Most importantly, QI being a rank-2
tensor has a bilateral axis because of which there remains the
±m degeneracy in its spectrum, whereas the magnetic field is
vectorial, i.e., unilateral. In the Faraday geometry, as the field
increases the system loses its bilateral character while slightly
rotating to align with the magnetic axis. In the Voigt geometry,
almost orthogonal setting of the two axes causes all the states
to be mixed as the system evolves, as can be seen from the
corresponding QZ spectra.

Next, we proceed to the theoretically predicted NMR ab-
sorption spectra. Before analyzing the results, we would like to
give some details on how these calculations are done. To excite
the nuclear spins a linearly polarized rf magnetic field perpen-
dicular to B0 is introduced. If EFG were both uniaxial (i.e.,
η = 0) and its major principal axis were collinear with B0, then
only a perpendicular rf magnetic field would cause transitions.
In our test structures, where these assumptions do not hold, we

FIG. 5. (Color online) Illustration of the magnetic field (B0) and
quadrupolar (Z) axes for Faraday and Voigt geometries. The single-
and bi-cones represent the |I 〉 and |±I 〉 states for the Zeeman and
quadrupolar cases, respectively.

observed that an rf field parallel to B0 also couples to nuclear
spins yielding a similar spectra. However, their intensity is
about two orders of magnitude weaker, and for this reason
will not be included here. We assume that initially all nuclear
spin states are equally populated giving rise to full spectra,
which can be justified based on the much smaller energy
separations among QZ states with respect to thermal energy
at few kelvins, as well as due to the presence of dipole-dipole
interactions among the nuclei.36,37 So, by the full spectra, we
mean all possible transitions that are dynamically allowed.
To what extent this full spectrum will materialize depends on
the nuclear kinematics, i.e., phase-space considerations. That
means some parts of the full spectra to be given below can
become hindered depending on how the nuclear spin ensemble
gets prepared under various experimental realizations.

The NMR spectra of InAs and In0.7Ga0.3As QDs are
shown in Figs. 6 and 7 for Faraday and Voigt geometries,
respectively. To assist their interpretation, we also include
those of the element-resolved and single nucleus spectra as
well. As a matter of fact, the fingerprints of the single nucleus
spectra can be readily identified on the overall QD cases.
Not observing In nuclei in the Voigt geometry NMR spectra,
Flisinski et al. attributed this to the 2.5 times smaller population
of each spin state compared to a spin-3/2 nucleus.64 However,
our predictions show that In nuclei must have stronger rf
absorption intensity compared to As, which stems from the
γ I 2 dependence in the rate expression (cf. Appendix); together
with the aforementioned population discrepancy this results
in an overall factor of about 5 in favor of In over As. For
this reason, In nuclei are dominant on the total spectra. As
marked in the Faraday geometry of single nucleus cases, a
borderline between the quadrupolar and Zeeman regimes can
be introduced, which corresponds to about 1.1 T for the As and
1.5 T for the In nucleus. These can be taken as the effective
magnetic fields, BQ up to which QI is strong. Even though it is
not as distinct, one can observe that same values also hold for
the Voigt geometry. The transitions among m states are also
labeled on the single As nucleus with its simpler spectrum,
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FIG. 6. (Color online) Faraday geometry NMR spectra for InAs and In0.7Ga0.3As QD nuclei (top row), together with their element-resolved
contributions, As (center row) and In (bottom row) for the InAs QD (left panel, center and bottom rows), contrasted with respective single-nucleus
spectra (right panel, center and bottom rows).

where we use on either side of BQ the asymptotic pure
quadrupolar or pure Zeeman basis. For each case individually,
the selection rule is65 
m = ±1; however, EFG biaxiality
or the noncollinear EFG axis with respect to B0 introduce
higher-order transitions albeit with much weaker strength.

The severity of the inhomogeneous broadening can be
clearly observed from a comparison between the single nucleus
and element-resolved spectra. As expected, the higher-order
transitions, which are forbidden in the absence of QI are highly
broadened because of the atomistic level strain variation over
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FIG. 7. (Color online) Same as Fig. 6 but for the Voigt geometry.

the QD to which they owe their existence. If we now focus
on the overall spectra, we observe that for Faraday geometry,
the so-called central transition, 1/2 → −1/2 is the sharpest
among all, even in the presence of alloy mixing in In0.7Ga0.3As,
with the reason being that for this transition QI has no
influence.66 On the other hand, for the Voigt geometry all of

single-nucleus resonances are broadened due to orthogonality
of the quadrupolar axis with respect to B0.

In Fig. 8 we compare the NMR spectra at 1 T and 5 T
for the Faraday and Voigt geometries. Note that to gain a
broader insight to the compositional effects we also include
the In0.4Ga0.6As case. Once again it can be verified that for the
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FIG. 8. (Color online) Comparison of NMR spectra at 1 T and 5 T
for InAs (dashed), In0.7Ga0.3As (solid), and In0.4Ga0.6As (dotted)
QDs. Upper (lower) plot is for the Faraday (Voigt) geometry. The
vertical arrows in the Faraday geometry for 5 T mark the central
transitions for In, As, and Ga nuclei.

Faraday geometry the central transitions of all QDs coincide
with the same sharp resonances, marked by three vertical
arrows in the 5 T case, corresponding to As (36 MHz), In
(47 MHz), and Ga (51 MHz) nuclei. Another pivotal ob-
servation is that the In0.7Ga0.3As and In0.4Ga0.6As QDs have
progressively narrower overall spectral support with respect to
InAs case. This effect of random alloying recalls the random
motion of atomic gases,36,37 both giving rise to narrowing of
the resonances, however, in this case caused by quite a different

reason, where the spin-9/2 manifolds of the In nuclei are
partially replaced by the spin-3/2 manifolds of the Ga nuclei,
with the latter having much narrower energy span. Therefrom,
this simply suggests that the NMR spectra, especially in the
Faraday geometry, can be utilized to extract the indium mole
fraction, which is one of the key unknown material parameters
for a specific QD under consideration.38,39

D. NCSHFI-mediated nuclear spin depolarization

Finally, we discuss within the Faraday configuration the
NCSHFI-mediated nuclear spin depolarization, or for that
matter the polarization process as well, as it is also governed
by the same matrix element [cf. Eq. (7)]. We assume that
nuclear spin is polarized through an electron spin that is aligned
along the growth axis (here, z direction). The presence of
the quadrupolar field with tilted principal axes introduces a
complication, as to which the QZ state is to be ascribed for
such a polarized nuclear spin. For this purpose, we introduce
the so-called maximally overlapping state, |imax〉, selected from
all QZ states i ∈ {−I, . . . ,I } that maximizes the overlap,
|〈mz|i〉|, where |mz〉 denotes a free nuclear spin state, which
is aligned along the polarizing electron’s spin direction.

In the inset of Fig. 9, we see the evolution of the maximally
aligned state through a number of band crossings over the QZ
states. The total out-transition time from such a state, hence the
depolarization time, for an individual In or As nucleus under
the mean quadrupolar field values (taken from Table I) are
shown in Fig. 9. We observe that the depolarization is enhanced
when the initial maximally aligned state goes through band
crossings with other QZ states, and the broader minimum
occurs with the final band anticrossing. In the case of alloy
mixing (dashed lines) larger tilt of the EFG axis from the
growth direction in general causes rapid depolarization and
the minimum magnetic field that this occurs also decreases.
The minimum NCSHFI-mediated depolarization is seen to
be on the order of an hour.67,68 Just as in the NMR spectra,
above BQ level where Zeeman regime takes over, the NCSFHI
gradually becomes weaker.

FIG. 9. (Color online) Nuclear (de)polarization time of individual
In and As nuclei due to NCSHFI. QD mean EFG values are used with
solid (dashed) lines for InAs (In0.7Ga0.3As). Insets show the evolution
of the maximally aligned state (highlighted) among all QZ states as
a function of magnetic field. All plots are for the Faraday geometry.
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IV. CONCLUSIONS

The progress of the optically detected NMR techniques
assure that the manipulation of a few-number-nuclei will not
be a distant future.28–31,64 In line with this prospect, we present
the strain and quadrupolar fields that these nuclei are exposed
to at an atomistic level. First we summarize several structural
and compositional underpinnings: a high aspect ratio enhances
the QI, and the interface regions introduce biaxiality and the
tilting of the major quadrupolar principal axis from the growth
axis. On the other hand, alloy mixing of gallium into the QD
reduces both the strain and the quadrupolar energy splitting.
The spectra for Faraday and Voigt geometries are quite distinct
from each other. For the latter, all lines are inhomogeneously
broadened due to the orthogonality of the quadrupolar axis
with B0. For the former, central transition, 1/2 → −1/2
remains sharp even in the presence of alloy mixing. Forbidden
transitions are also observed, though highly broadened, arising
from the EFG biaxiality and the tilting of the quadrupolar
axis from the growth direction. The borderline between the
quadrupolar and Zeeman regimes is extracted as 1.5 T for
In and 1.1 T for As nuclei. At this value the nuclear spin
depolarization rate due to the noncollinear secular hyperfine
interaction with a resident electron in the QD gets maximized.
In the case of alloy mixing larger tilting of the EFG axis from
the growth direction causes more rapid depolarization and the
minimum magnetic field that this occurs also decreases. The
shortest NCSHFI-mediated depolarization time is seen to be on
the order of an hour. As Zeeman regime takes over above BQ,
this depolarization channel progressively becomes weaker.

Note added. After the initial submission of this work a new
ODNMR technique is reported;69 the experimental data for
InGaAs QDs at 5.3 T agree extremely well with the central
transitions marked in Fig. 8, with the added feature that the
less common 71Ga isotope is also resolved, whereas in this
work we consider only the dominant 69Ga isotope.
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APPENDIX: MATRIX ELEMENTS
AND RF TRANSITION RATES

In the orthogonal coordinate system as defined by the
principal axes of the EFG, the dc magnetic field vector B0

will be in general tilted as governed by the spherical polar
angles θ and φ, so that its contribution becomes65

HM = −h̄�(IX sin θ cos φ + IY sin θ sin φ + IZ cos θ ),
(A1)

where � = γB0. Choosing the angular momentum quantiza-
tion axis as Z, and denoting53 the free nuclear spin states by
|m〉, we can easily obtain the matrix elements of the parts of
the full Hamiltonian as

〈m′|HM |m〉 = −h̄�

[
m cos θδm′,m + 1

2
(sin θ cos φ

∓ i sin θ sin φ)fI (±m)δm′,m±1

]
,

〈m′|HQ|m〉 = AQ

{
[3m2 − I (I + 1)]δm′,m

+ η

2
fI (±m)fI (1 ± m)δm′,m±2

}
,

where fI (m) = fI (−m − 1) = √
(I − m)(I + m + 1), and

AQ = e2qQ

4I (2I−1) = hνQ/6. Solving for the QZ spectrum essen-

tially yields the expansion coefficients, Ci
m, of the QZ states

|i〉 in terms of free spin states as

|i〉 =
I∑

m=−I

Ci
m|m〉. (A2)

In the case of an incident rf field, the nuclear spins are excited
over their established QZ spectrum through the Hamiltonian

Hrf = −h̄γ
[
Brf

XIX + Brf
Y IY + Brf

ZIZ

]
︸ ︷︷ ︸

H′

cos ωrf t. (A3)

Hence, based on Fermi’s golden rule, the rf absorption rate
from an initial state |i〉 to any final state |j 〉 will be

W rf
ji(ωrf) = |〈j |H′|i〉|2 2
/h̄

(Ej − Ei − h̄ωrf)2 + 
2
, (A4)

where 
 is the fundamental linewidth of an individual nuclear
spin for which we take 10 kHz for all the nucleus types in this
work.66 The corresponding matrix element is then given by

〈j |H′|i〉 = −h̄γ

I∑
m=−I

Brf
Z

(
Cj

m

)∗
Ci

mm

+Brf
−
(
C

j

m+1

)∗
Ci

mfI (m) + Brf
+
(
C

j

m−1

)∗
Ci

mfI (−m),

where Brf
± = (Brf

X ± Brf
Y )/2. In the context of NCSHFI having

essentially the same matrix element 〈j |Iz|i〉, one has to
replace the components of Brf in the above expression with
the components of the unit vector along the growth axis z
expressed in the EFG coordinate system.
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