
J. Parallel Distrib. Comput. 72 (2012) 547–563

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Bilkent University Institutional Repository
Contents lists available at SciVerse ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Replicated partitioning for undirected hypergraphs✩

R. Oguz Selvitopi, Ata Turk, Cevdet Aykanat ∗

Department of Computer Engineering, Bilkent University, 06800 Ankara, Turkey

a r t i c l e i n f o

Article history:
Received 23 February 2011
Received in revised form
27 September 2011
Accepted 12 January 2012
Available online 23 January 2012

Keywords:
Hypergraph partitioning
Recursive bipartitioning
Undirected hypergraphs
Replication
Iterative improvement heuristic

a b s t r a c t

Hypergraph partitioning (HP) and replication are diverse but powerful tools that are traditionally applied
separately to minimize the costs of parallel and sequential systems that access related data or process
related tasks. When combined together, these two techniques have the potential of achieving significant
improvements in performance of many applications. In this study, we provide an approach involving a
tool that simultaneously performs replication and partitioning of the vertices of an undirected hypergraph
whose vertices represent data and nets represent task dependencies among these data. In this approach,
wepropose an iterative-improvement-based replicated bipartitioning heuristic,which is capable ofmove,
replication, and unreplication of vertices. In order to utilize our replicated bipartitioning heuristic in
a recursive bipartitioning framework, we also propose appropriate cut-net removal, cut-net splitting,
and pin selection algorithms to correctly encapsulate the two most commonly used cutsize metrics. We
embed our replicated bipartitioning scheme into the state-of-the-art multilevel HP tool PaToH to provide
an effective and efficient replicated HP tool, rpPaToH. The performance of the techniques proposed and
the tools developed is tested over the undirected hypergraphs that model the communication costs of
parallel query processing in information retrieval systems. Our experimental analysis indicates that the
proposed technique provides significant improvements in the quality of the partitions, especially under
low replication ratios.

© 2012 Elsevier Inc. All rights reserved.
1. Introduction

Models and methods based on hypergraph partitioning (HP)
have been successfully used for different objectives in awide range
of areas such as parallel scientific computing [4,11,15,44], very
large scale integration (VLSI) circuit layout design [1,32], parallel
information retrieval (IR) [8], parallel volume rendering [9], and
database systems [12,13,40].

A hypergraph is a generalization of a graph where hyperedges
(nets) connect one or more vertices (cells). The HP problem is
defined as the task of dividing the vertex set of a given hypergraph
into disjoint subsets such that the cost (cutsize) isminimizedwhile
a certain balance constraint on the part weights is satisfied. The
cutsize is generally a function of the nets that connect more than
one part.

Hypergraphs can be used to represent different types of relation
in a wide range of problems which can broadly be categorized
into two as directed and undirected relations. Depending on

✩ This work is partially supported by the Scientific and Technological Research
Council of Turkey (TÜBİTAK) under project EEEAG-109E019.
∗ Corresponding author.

E-mail addresses: reha@cs.bilkent.edu.tr (R. Oguz Selvitopi),
atat@cs.bilkent.edu.tr (A. Turk), aykanat@cs.bilkent.edu.tr (C. Aykanat).

0743-7315/$ – see front matter© 2012 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2012.01.004
the category of the relation, directed or undirected hypergraphs
are used in the modeling. In undirected hypergraphs, a net is
used to model an equally shared relation among the tasks/data
represented by the vertices it connects. In directed hypergraphs, a
net is used tomodel an input–output relation among the tasks/data
represented by the vertices it connects.

We use the terms directional and undirectional HP models for
indicatingmodels based on partitioning of directed and undirected
hypergraphs, respectively. We should note here that almost all
of the state-of-the-art HP tools [2,14,26,43,45] are designed to
partition undirected hypergraphs. Hence, some special techniques
such as consistency condition [11] and the elementary hypergraph
model [44] are utilized to model some types of directed relations
correctly via undirectional HP models.

The schemes that combine vertex replication with HP models
have only been studied for directional HP models in the context of
VLSI circuit layout design. In these HP models, since the vertices
generally model the gates or logic devices, replication corresponds
to duplicating the same gate or logic device inmultiple networks of
a partitioned logic network. In thisway, the number of connections
between networks and the wiring density can be reduced at the
expense of implementing the same logic in multiple networks.

In directional HP models, vertex replication may cause an
increase in the cutsize, and it generally requires further replication
of other vertices and nets. However, in undirectional HP models,

https://core.ac.uk/display/52924012?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.jpdc.2012.01.004
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
mailto:reha@cs.bilkent.edu.tr
mailto:atat@cs.bilkent.edu.tr
mailto:aykanat@cs.bilkent.edu.tr
http://dx.doi.org/10.1016/j.jpdc.2012.01.004

548 R. Oguz Selvitopi et al. / J. Parallel Distrib. Comput. 72 (2012) 547–563
since an input–output relation does not exist between the vertices
connected by a net, replication does not have such an effect. This
forms the basic difference between vertex replication in directional
and undirectional HP models. To the best of our knowledge,
there are no studies in the literature addressing vertex replication
schemes for undirectional HP models. In this study, we try to
fill this gap. Note that, due to the above-mentioned fundamental
difference in vertex replication, the techniqueswe present here are
not directly applicable to directional HP models. Thus, replication
in undirectional HP models requires specific techniques and tools
tailored for this purpose.

1.1. Related work in directional HP models

Even thoughwe do not address applications in the VLSI domain,
we discuss replication schemes in this area, since, to our knowl-
edge, VLSI circuit layout design is the only area where HP is ap-
plied together with replication, albeit in a directional partitioning
framework.

Replication schemes in VLSI circuit layout design and partition-
ing arise in the form of gate replication to reduce pin counts and
the interconnection cost of the partitioned circuits. These schemes
can be categorized into two as one-phase schemes and two-phase
schemes with respect to when the partitioning and replication are
performed. In the one-phase approach, partitioning and replica-
tion are performed simultaneously, whereas in the two-phase ap-
proach replication is performed after obtaining a partition. In the
one-phase approach, generally, extended versions of the Fiduc-
cia–Mattheyses (FM) [17] heuristic are utilized [30,31]. In the two-
phase approach, after obtaining a partition, linear programming
or flow-network [22,33] formulations are used to achieve repli-
cation, and often, if needed, an extended FM heuristic is applied
as the last step to find a feasible solution. Since this study fo-
cuses on performing replication and partitioning simultaneously,
we briefly summarize the existing work on FM heuristics for di-
rectional graph/hypergraph partitioning with replication. In [30],
an extended version of the FM algorithm for directional HP mod-
els is proposed to perform replication in two-way partitioned net-
works by introducing new definitions for cell/net states and cell
gains. The authors of [31] introduce an extended version of the FM
algorithm to achieve partitioning and replication, and they propose
a new gain definition and objective function for this extended ver-
sion. In [33], the authors use a modified FM algorithm applied over
a replication graph which they obtain by a linear programming
formulation. A detailed discussion and comparison of replication
techniques in circuit partitioning can be found in [16].

1.2. Application

In order to show the validity of the algorithms proposed in
our paper, we investigate undirectional HP models proposed for
index partitioning of parallel IR systems [8,28], where replication
is beneficial and commonly used [37]. Although we address the HP
models used in parallel IR, our replication scheme can be used for
any domain in which the underlying problem can be modeled as
an undirected hypergraph.

In parallel IR systems, the index is partitioned across several
machines [7,23,36,38,41], typically in a document-based or term-
based fashion, in order to process very large text collections. In [42],
it is remarked that replication is necessary for improving query
throughput. The authors of [35] propose a bin-packing-based
greedy algorithm that utilizes query logs to distribute terms to
index servers. In their experiments, they replicate a small amount
of most frequent terms and discover that replication is a powerful
tool in reducing the average number of per-query servers, even
under low replication ratios. In the distributed IR system of Google,
the entire system is replicated [5]. A selective replication scheme
that replicates inverted lists of high workload terms to improve
load balancing in a pipelined and term-distributed IR system is
investigated in [37].

In the HP models utilized for term-based distribution of
inverted indices [28], the vertex vi represents the term ti and the
task of retrieving its inverted list. The net nj represents the query
qj and connects the subsets of vertices that represent the terms
requested by that query. In this HP model, the nets have unit costs
due to the infinite result cache capacity assumption.1 Theweight of
a vertex is set equal to either the number of postings in the inverted
list of the term represented by that vertex [8] or the multiplication
of term popularity and the corresponding posting list size [37].
The balance constraint in the former vertex weighting scheme
corresponds to maintaining storage balance, whereas the balance
constraint in the latter vertex weighting scheme corresponds to
maintaining computational workload balance. The partitioning
objective of minimizing the cutsize corresponds to minimizing the
communication volume during parallel query processing.

We introduce Fig. 1 to illustrate the relationship between the
target application and undirectional HP models. Fig. 1(a) shows
a sample term collection T that contains ten terms together
with a query log Q that contains six queries. Fig. 1(b) shows the
undirectional hypergraphmodel for this sample inverted index. As
seen in Fig. 1(b), net n1 connects vertices v1, v2, and v3, since query
q1 requests the terms t1, t2, and t3. Fig. 1(b) also shows a four-way
partition of this hypergraph. Fig. 1(c) shows the distribution of the
sample inverted index among four index servers (IS1, . . . , IS4) that
is induced by this four-way partition. For example, the index server
IS2 stores the terms t3, t4, and t5 and their inverted lists since part
V2 of the partition consists of the vertices v3, v4, and v5.

The correspondence between vertex replication and the men-
tioned HP model is as follows. A net in this HP model represents
the undirectional shared relation among the respective retrieval
tasks that can be performed concurrently and independently on
the inverted lists represented by the vertices connected by that net.
Thus, vertex replication corresponds to replicating inverted lists of
terms for further minimization of the communication volume. For
a given query, the task associatedwith each data is only performed
by one of the processors owning the replicas of that data. Thus, the
proposed scheme incurs redundant storage (data replication) but
does not incur redundant computation.

1.3. Contributions

There are five main contributions of this study. (1) The dif-
ferences between vertex replication in directional and undirec-
tional HPmodels are explained (Section 3). (2) A vertex replication
scheme for undirectional HP models is proposed (Section 4).
This replication approach is based on an iterative-improvement
heuristic, and it achieves replication during partitioning. For this
purpose, the FM heuristic is extended to support replication and
unreplication of vertices in addition to vertexmoves. This extended
heuristic is called rFM, and it operates on a given two-way partition
(bipartition) by introducing new gain definitions and vertex states.
(3) In order to utilize rFM in a recursive bipartitioning (RB) frame-
work, appropriate cut-net removal, cut-net splitting, and pin selec-
tion algorithms are proposed to correctly encapsulate the twomost
commonly used cutsize metrics (Sections 5 and 6). (4) The pro-
posed vertex replication and bipartitioning scheme is integrated
into the state-of-the-art multilevel HP tool PaToH [2] that uses

1 This assumption simply states that each query is processed only once and its
results are stored in the result cache. Further requests for the same query are
responded from this result cache [10].

R. Oguz Selvitopi et al. / J. Parallel Distrib. Comput. 72 (2012) 547–563 549
a b c

Fig. 1. The relation between an inverted index distribution and undirectional HP models. (a) A sample inverted index, (b) the corresponding hypergraph model, and (c) a
four-way term-based inverted index distribution.
the RB paradigm to provide a replicated HP tool, rpPaToH. Specifi-
cally, the uncoarsening phase of the multilevel framework is mod-
ified by using rFM as a replicated partitioning and refinement tool.
At each level of the uncoarsening phase, the rFM algorithm is run
and the multilevel scheme is extended to support replicated ver-
tices. (5) Detailed experimental analyses are performed over the
hypergraph model of the sample application (Section 1.2) using
synthetic and realistic datasets. The results obtained indicate that
rpPaToH performs significantly better than a successful partition-
ing and replication scheme [28] for this application domain.

The rest of the paper is organized as follows. Section 2 gives the
necessary background. Section 3 explains the differences between
replication in directional and undirectional HP models. Section 4
describes the details of the rFM heuristic. Section 5 presents
the proposed cut-net removal, cut-net splitting, and replication
distribution schemes. Section 6 addresses the pin selection issue
after obtaining a K -way partition. Section 7 discusses the results of
the experiments thatwere carried out. Finally, Section 8 concludes.

2. Background and problem definition

2.1. Definitions and hypergraph partitioning problem

A hypergraph H = (V ,N) is defined as a set of vertices V and
a set of nets N . Each net nj ∈ N connects a subset of vertices.
The set of vertices connected by net nj is denoted as Vertices(nj).
The set of nets that connect vertex vi is denoted as Nets (vi). The
vertices vi and vj are said to be neighbors if they are connected by
at least one common net, i.e., Nets (vi) ∩ Nets (vj) ≠ ∅. An (nj, vi)
tuple denotes a pin of nj where vi ∈ Vertices(nj). The degree of a
net nj is equal to the number of vertices it connects, |Vertices(nj)|.
The total number of pins P =

nj∈N
|Vertices (nj)| denotes the

size of a given hypergraph H . A weight value w(vi) is associated
with each vertex vi, and a cost value c(nj) is associated with each
net nj. The cost function for a net easily extends to a subset of nets
M ⊆ N , i.e., c(M) =

nj∈M

c(nj).
Π = {V1, . . . , VK } is a K -way partition of H = (V, N) if each

part Vk is a nonempty subset of V , the parts are pairwise disjoint,
and the union of K parts is equal to V . The weight W (Vk) of a
part Vk is the sum of the weights of the vertices in that part, i.e.,
W (Vk) =

vi∈Vk

w(vi). A partitionΠ is said to be balanced if each
part Vk ∈ Π satisfies the balance constraint:

W (Vk) ≤ (1+ ϵ)Wavg for k = 1, . . . , K , (1)

where Wavg = W (V)/K and ϵ is the predetermined maximum
imbalance ratio.
In a partition Π , a net is said to connect a part if it connects at
least one vertex in that part. The connectivity set Λ(nj) of a net nj is
defined as the set of parts connected by nj. The number of parts in
the connectivity set of nj is denoted byλ(nj) = |Λ(nj)|. A net is said
to be cut or external if it connects more than one part (λ(nj) > 1),
anduncut or internal if it connects only onepart (λ(nj) = 1). The set
of external nets in a partitionΠ is denoted asNE . The set of internal
nets that connect a vertex vi is denoted as InternalNets (vi). Two
cutsize metrics widely used in the literature to represent the cost
of a partition Π are

cutsize (Π) =

nj∈NE

c(nj), (2)

cutsize (Π) =

nj∈NE

(λ(nj)− 1)c(nj). (3)

The cost definitions in Eqs. (2) and (3) are called the cut-net metric
and the connectivity metric, respectively. For example, the cut-net
and connectivity metrics model the minimization of the commu-
nication volume in parallel sparse matrix vector multiplication
utilizing collective and point-to-point communication schemes,
respectively [11,44].

Given a hypergraph H = (V, N), hypergraph partitioning
can be defined as finding a K -way partition Π = {V1, . . . , VK }

that minimizes the cutsize (Eqs. (2) or (3)) while maintaining
the balance constraint (Eq. (1)). This problem is known to be
NP-hard [32].

2.2. Iterative improvement heuristics for two-way HP

FM-based schemes [1,17] are widely used iterative-improve-
ment heuristics to solve the HP problem. FM-based heuristics
improve the cutsize of a bipartition by moving vertices from one
part to the other. The gain of a vertex in these heuristics is generally
defined as the reduction in the cutsize if that vertex were to be
moved to its complementary part in a bipartition. FMheuristics can
performmultiple passes over all vertices until the improvement in
the cutsize drops below a certain threshold.

2.3. Recursive bipartitioning and multilevel frameworks

RB is the most commonly used method for obtaining a K -way
partition of a hypergraph, although there are other methods based
on direct K -way partitioning [3,27]. In the RB scheme, first a
bipartition of the initial hypergraph is obtained, and then this

550 R. Oguz Selvitopi et al. / J. Parallel Distrib. Comput. 72 (2012) 547–563
bipartition is decoded to construct two subhypergraphs using the
cut-net removal and cut-net splitting techniques [2] to capture
the cut-net and connectivity cutsize metrics, respectively. Then
these two subhypergraphs are further bipartitioned in a recursive
manner. This procedure continues until desired number of parts is
reached (in log K recursion levels for K parts).

FM-based heuristics perform poorly on hypergraphs with high
net degrees [3,27] and small vertex degrees [19]. To alleviate
these problems, multilevel algorithms have been proposed [6,20]
and applied to the HP problem, leading to successful HP tools
such as PaToH [2], hMeTiS [26], Mondriaan [45], Zoltan [14], and
ParKWay [43].

Multilevelmethodology consists of coarsening, initial partition-
ing, and uncoarsening phases. In the coarsening phase, the original
hypergraph is coarsened into a smaller hypergraph by a sequence
of coarsening levels, where, in each level, various matching and
clustering algorithms are used to form super-vertices from highly
coherent vertices. Coherent vertices are the vertices that share high
number of nets. In the initial partitioning phase, a bipartition of
the coarsest hypergraph is obtained, and this coarsest hypergraph
is projected back to the original hypergraph in the uncoarsen-
ing phase. At each level of the uncoarsening phase, FM-based or
KL-based [29] refinement heuristics are used to improve the
quality of the bipartitions.

3. Replication in directional versus undirectional HP models

There are two main differences between vertex replication in
directional and undirectional HP models. (i) The replication of a
vertex in directional HP models may bring internal nets to the cut
and thus can increase the cutsize of a partition, and (ii) vertex
replication generally requires further net and pin replication in
directional HP models. However, these two cases are not valid for
undirectional HP models.

In directed hypergraphs, the nets that connect a vertex vi are
categorized as input and output nets of vi. In a dual manner,
the vertices that are connected by a net nj are categorized as
input and output vertices of nj. For example, in hypergraph
representation of gate-level VLSI circuits for layout design [1]
and column-net hypergraph representation of sparse matrices for
parallel matrix–vector multiplication [11], nets have single input
and multiple output vertices, which correspond to vertices having
multiple input and single output nets.

In directional HP models, when an output vertex vi of an
internal net nj is replicated, nj becomes cut since any new instance
of the replicated vertex v′i must be fed by nj on the part it
is replicated to. Fig. 2 shows an example of vertex replication
in a directed hypergraph. A sample bipartition on this directed
hypergraph is illustrated in Fig. 2(a). Initially, the cutsize of the
bipartition is one, assuming that the nets have unit costs. As shown
in Fig. 2(b), when v3 is replicated, n1 and n2 become cut since v3
is an output vertex of these internal nets. Since v′3 has to be fed
by both of these nets, pins (n1, v

′

3) and (n2, v
′

3) are generated in
Fig. 2(b). Furthermore, when an external net nj’s input vertex vi is
replicated, nj is generally replicated together with vi to be able to
save nj from the cut. As shown in Fig. 2(b), when v3 is replicated, n3
is also replicated, leading to the addition of a new net n′3 and a new
pin (n′3, v

′

3) in VB. In this way, we are able to save n3 from the cut.
However, since n1 and n2 become cut, the cutsize of the bipartition
increases from one to two after the replication.

In contrast, in undirectional HP models, performing replication
does not bring internal nets to the cut, and putting additional
pins to the new instances of the replicated vertices may not be
necessary, since a net represents a shared relation rather than a
dependence among the vertices it connects. In other words, we
can make a choice among the instances of a replicated vertex for a
a b

Fig. 2. Replication in a directed hypergraph. (a) Initial bipartition, (b) after
replicating v3 .

a b

Fig. 3. Replication in an undirected hypergraph. (a) Initial bipartition, (b) after
replicating v3 .

net in order to decide which one of these instances will represent
that replicated vertex. This is done by putting a pin only to a
single instance of the replicated vertex for that net. Fig. 3 shows
an example of vertex replication in an undirected hypergraph.
The initial bipartition is seen in Fig. 3(a), which is the undirected
version of the directed hypergraph in Fig. 2(a) and has a cutsize of
one. As opposed to replication of v3 in Fig. 2, replication of v3 in
Fig. 3 does not bring any internal net to the cut, since, as seen in
Fig. 3(b), the nets n1 and n2 are not required to feed v′3. Instead, n1
(or similarly n2 and n3) can ‘‘choose’’ to use either v3 or v′3, since n1
just needs to select an instance for this replicated vertex. In other
words, n1 has to have just one pin to an instance of the replicated
vertex, which is selected to be the pin (n1, v3) in this example. We
refer to this problem as the pin selection problem and address it
in Section 6. After replication of v3, the cutsize of the bipartition
reduces from one to zero.

Having described the differences between vertex replication
in directional and undirectional HP models, we set our focus on
replication in undirectional HP models and define the Replicated
Undirected Hypergraph Partitioning problem as follows: given an
undirected hypergraph H = (V, N), an imbalance ratio ϵ, and
a replication ratio ρ, find a K -way covering subset of V, ΠR

=

{V1, . . . , VK } that minimizes the cutsize (Eqs. (2) or (3)) while
satisfying the following constraints.
• Balancing constraint: Wmax ≤ (1+ ϵ)Wavg, where

Wmax = max
1≤k≤K

W (Vk) and Wavg = (1+ ρ)W (V)/K .

• Replication constraint:
K

k=1 W (Vk) ≤ (1+ ρ)W (V).

R. Oguz Selvitopi et al. / J. Parallel Distrib. Comput. 72 (2012) 547–563 551
a b c

Fig. 4. Move and replication of a vertex. (b) Initial bipartition, (a) after moving v1 from VA to VB , and (c) after replicating v1 from VA to VB .
Note thatWmax denotes theweight of themaximallyweightedpart,
Wavg denotes the part weight under perfect balance, and W (V)
denotes the total vertex weight without replication.

4. Replicated FM (rFM)

We propose an extended FM heuristic which we call replicated
FM (rFM) to address theReplicatedUndirectedHypergraph Partition-
ing problem.

4.1. Definitions

In a two-way covering subset ΠR
= {VA, VB} of V , a vertex can

belong toVA, VB, or both of them if it is replicated, and hence it can
be in one of three states, A, B, and AB:

State (vi) =

A if vi ∈ VA and vi ∉ VB,
B if vi ∈ VB and vi ∉ VA,
AB if vi ∈ VA and vi ∈ VB.

Herein, a covering subsetΠR ofV will be referred to as a replicated
partition of V , and subsets of ΠR will be referred to as parts of ΠR.
Each instance of a replicated vertex is referred to as a replica. The
number of non-replicated vertices in state A and connected by nj is
denoted as σA(nj). The number of non-replicated vertices in state B
and connected by nj is denoted as σB(nj). Similarly, the number of
replicated vertices (not the number of replicas) that are connected
by nj is denoted as σAB(nj). Note that, according to the definitions,

|Vertices(nj)| = σA(nj)+ σB(nj)+ σAB(nj).

A net nj in a two-way replicated partition is said to be cut if both
σA(nj) > 0 and σB(nj) > 0. The cut-state of a net is used to describe
whether that net is cut or not. A net nj is said to be internal to VA if
σB(nj) = 0 and it is said to be internal to VB if σA(nj) = 0. A net nj
can be considered internal to eitherVA orVB ifσA(nj) = 0, σB(nj) =
0 and σAB(nj) > 0.

rFM is an iterative-improvement heuristic that tries to improve
the cutsize of a given two-way replicated partition by move,
replication, and unreplication operations performed on vertices.
The move and replication operations can only be performed on
non-replicated vertices, whereas the unreplication operation can
only be performed on replicated vertices. A non-replicated vertex
has two gains, which are move and replication gains. Similarly, a
replicated vertex also has two gains, which are unreplication from
VA and unreplication from VB gains. The gain definitions are as
follows.

• Themove gain, gm(vi), of a non-replicated vertex vi is defined as
the reduction in the cutsize if vi were to be moved to the other
part. The move gain of vi is equal to the difference between the
sum of the costs of the nets saved from the cut and the sum of
the costs of the internal nets that are brought to the cut. Fig. 4(b)
and (a) display the move of v1 from VA to VB. Moving v1 from
VA to VB brings net n1 into the cut while saving net n2 from the
cut. Hence, gm(v1) = c(n2) − c(n1). After the move operation,
v1 is locked. The locked vertices in the examples are illustrated
by gray color.
• The replication gain, gr(vi), is defined as the reduction in the
cutsize if vertex vi were to be replicated to the other part. The
replication gain of vi is equal to the sum of the costs of the
nets saved from the cut. When a vertex is replicated, it cannot
bring any internal net to the cut and thus cannot increase the
cutsize. This forms the basic difference between the move and
replication operations. Consequently, for any vertex vi, we have
gr(vi) ≥ 0 and gr(vi) ≥ gm(vi). Fig. 4(b) and (c) show the
replication of v1 from VA to VB. The replication of v1 saves net
n2 from the cut as the move of v1 does; however, net n1 still
remains as an internal net, as opposed to the move operation
on the same vertex. Hence, gr(v1) = c(n2). In the examples,
if a net is internal to a part and connects a replicated vertex,
we illustrate this by putting a pin to the replica that is in the
part of the internal net and omit the pin to the other replica. In
contrast, if an external net connects a replicated vertex, the pins
to the replicas of the replicated vertex connected by that net are
displayed by dashed lines.
• The unreplication gain, gu,A(vi) or gu,B(vi), is defined as the

reduction in the cutsize if a replica of the replicated vertex vi
were to be unreplicated from its part. Since unreplication of a
replica cannot improve the cutsize, themaximumunreplication
gain of a replica is zero. Thus, for any replicated vertex vi,
gu,A(vi) ≤ 0 and gu,B(vi) ≤ 0. A replica with an unreplication
gain of zero implies that this replica is unnecessary and its
removal will not change the cutsize. On the other hand, if the
unreplication gain of a replica is negative, this implies that the
replica is necessary and its unreplication will bring internal
net(s) to the cut. Fig. 5 shows the unreplication of a necessary
and an unnecessary replica. Initially, there are two replicas of v1
in the bipartition in Fig. 5(b). The replica in VA is necessary, and
its unreplication causes the internal net n1 to be cut, as seen in
Fig. 5(a). On the other hand, the replica inVB is unnecessary, and
its unreplication does not change the cut set, as seen in Fig. 5(c).
Hence, gu,A(v1) = −c(n1) and gu,B(v1) = 0.

4.2. Overall rFM algorithm

Replicated FM performs a predetermined number of passes
considered on all vertices, where each pass comprises a sequence
of operations (Algorithm 1). First, we compute the two possible
gains for each vertex and initialize the pin distributions of the nets
(line 1). At the beginning of each pass, we unlock all vertices to be
able to perform operations on them (line 3). Then the algorithm
enters the inner while loop (lines 4–7). In this loop, we first select
a vertex and an operation (move, replication, or unreplication)
to be performed on the selected vertex (line 5) according to the
operation selection criteria described below. Then we perform the
selected operation if it does not violate the size constraints on
the weights of the parts (line 6). After the selected operation is
performed on the vertex, the selected vertex is locked and the gain
values of its unlocked neighbors and the pin distributions of the
nets that connect this vertex are updated (line 7). A pass terminates
when there are no more valid operations. At the end of a pass, a

552 R. Oguz Selvitopi et al. / J. Parallel Distrib. Comput. 72 (2012) 547–563
a b c

Fig. 5. Unreplication of instances of a replicated vertex. (b) Initial bipartition, (a) after unreplicating the replica of v1 from VA , and (c) after unreplicating the replica of v1
from VB .
rollback procedure is applied to the point where the bipartition
with the minimum cutsize is seen (line 8).

The size constraint check performed during the operation
selection is done as follows. (i) If the selected operation is amove or
a replication, the newweight of the destination part if the selected
operationwere to be performed is computed, and, if it exceeds (1+
ϵ)Wavg, this operation is discarded, and (ii) if the selected operation
is unreplication, it is checked if the weight of the part on which
unreplication were to be performed drops below (1− ϵ)Wavg, and,
if it does, it is discarded. Furthermore, if the selected operation is
replication, it is only performed if the total amount of replication
performed up to that point plus the weight of the selected vertex
does not exceed the allowed replication amount ρW (V).

Algorithm 1: Basic steps of rFM.
Input: H = (V, N), ΠR

= {VA, VB}

Initialize pin distributions, gains, and priority queues.1
while there are passes to perform do2

Unlock all vertices.3
while there is any valid operation do4

(v, op)← Select the vertex and the operation to perform on5
it.
Perform op on v, store the reduction in the cutsize, and lock6
v.
Update the gains of unlocked neighbors of v and the pin7
distributions of the nets in Nets(v).

Rollback to the point when minimum cutsize is seen.8

Operation selection:We use a priority-based selection approach
for determining the current operation and disallow some opera-
tions that do not satisfy certain conditions. The selection strategy
is based on principles such as minimizing the number of unneces-
sary replicas, limiting the replication amount, and improving the
balance. We give the highest priority to the elimination of unnec-
essary replicas. We do not perform unreplication operations with
negative gains simply because such operations will degrade the
cutsize. If there are no unnecessary replicas, we make a choice be-
tween move and replication by selecting the operation with the
higher gain. Ties between the gains of the selectedmove and repli-
cation operations are broken in favor of the move operations. Any
replication with a gain value of zero is disallowed since such oper-
ations will produce unnecessary replicas. However, the zero-gain
moves that improve the balance are retained. Since, for any ver-
tex vi, gr(vi) ≥ gm(vi), in a single pass, the number of replica-
tion operations tends to outweigh the number of move operations.
This issue can be addressed by the gradient methodology, which we
discuss below.

Gradient methodology: The gradient methodology is used in
FM heuristics that are capable of replication for directed graph
models [34] to obtain partitions with better cutsize. The basic
idea of the gradient methodology is to introduce the replication
in the later iterations of a pass, especially when the improvement
achieved in the cutsize by performing only move operations drops
below a certain threshold. As mentioned in [16], early replication
can have a negative effect on the final partition by limiting the
algorithm’s ability to change the current partition. Furthermore,
by using the replication in the later iterations, the algorithm can
climb out of the local minima reached by the move operations. In
rFM, we adopt and modify the gradient methodology by allowing
only move and unreplication operations until the improvement in
the cutsize drops below a certain threshold, and then we allow
replication operations.

Early exit: We use the early-exit scheme [18] to improve the
run-time performance of rFM. In this scheme, if there are no
improvements in the cutsize for a predetermined number of
successive iterations, the current pass of the FM algorithm is
terminated since it is unlikely to further improve the cutsize.

Locking: In conventional move-based FM algorithms, after
moving a vertex, it is locked to avoid thrashing [17]. Similarly, in
rFM, we also lock the operated vertex after performing a move,
replication, or unreplication operation on that vertex.

Data structures: We maintain six priority queues keyed
according to the gain values of the vertices with respect to type
of operation. The heaps are implemented as binary heaps. For
each part, we have three heaps for storing the move, replication,
and unreplication gains. The two gains associated with a non-
replicated vertex are stored in the move and replication heaps
of the part that the vertex belongs to. Similarly, the two gains
associated with the replicas of a replicated vertex have their
unreplication gains stored in the unreplication heap of their
respective parts.

4.3. Net criticality

The main power of rFM, like all FM-based algorithms, lies in its
efficient linear-time gain update operations [17]. In this section,
we present net criticality definitions that trigger updates onmove,
replication, and unreplication gains.

A net nj is said to be critical to part Vk, if an operation performed
on a vertex vi ∈ Vk can change the cut-state of nj. Whenever
an operation is performed on a vertex vi, we check the criticality
conditions of the nets that connect vi. If the criticality condition
of a net nj that connects vi changes, the other vertices that
are connected by nj are checked for gain updates. Each type of
operation imposes different pin distributions for the criticality
of nets; thus the criticality definition of a net is classified as
move criticality, replication criticality, andunreplication criticality,
according to the type of operation that causes a change in the cut-
state of the respective net.

For a net to be move critical, it must connect at least two non-
replicated vertices (σA(nj) + σB(nj) > 1), and it must either be an
internal net or an external net with a single pin in one of the two
parts. As seen in Table 1, a net nj ismove critical toVA if (σA(nj) = 1
and σB(nj) > 0) or (σB(nj) = 0 and σA(nj) > 1), and to VB if
(σA(nj) = 0 and σB(nj) > 1) or (σB(nj) = 1 and σA(nj) > 0).

For a net to be replication critical, it must connect at least two
non-replicated vertices (σA(nj) + σB(nj) > 1), and it must be an

R. Oguz Selvitopi et al. / J. Parallel Distrib. Comput. 72 (2012) 547–563 553
Table 1
Criticality definitions for a net nj to VA and VB . For example, nj is replication critical to VA if σA(nj) = 1 and σB(nj) > 0.

nj is Move critical Replication critical Unreplication critical

To VA if
(σA(nj) = 1 and σB(nj) > 0) σA(nj) = 1 and σB(nj) > 0
or
(σB(nj) = 0 and σA(nj) > 1) σB(nj) = 0 and σA(nj) > 0 and σAB(nj) > 0

To VB if
(σA(nj) = 0 and σB(nj) > 1) σA(nj) = 0 and σB(nj) > 0 and σAB(nj) > 0
or
(σB(nj) = 1 and σA(nj) > 0) σB(nj) = 1 and σA(nj) > 0
external net with a single pin in one of the two parts. As seen in
Table 1, a net nj is replication critical to VA if (σA(nj) = 1 and
σB(nj) > 0), and to VB if (σB(nj) = 1 and σA(nj) > 0). Note
that the internal nets which are always move critical are never
replication critical, since the replication of a vertex connected by an
internal net cannot change the cut-state of that net. This difference
is indicated in Table 1, where the conditions (σB(nj) = 0 and
σA(nj) > 1) and (σA(nj) = 0 and σB(nj) > 1), which exist in
the move-critical column, do not appear in the replication-critical
column.

For a net to be unreplication critical, it must be an internal net
that connects at least one non-replicated and one replicated vertex
(σA(nj) + σB(nj) > 0 and σAB(nj) > 0). As seen in Table 1, a net
nj is unreplication critical to VA if (σB(nj) = 0 and σA(nj) > 0
and σAB(nj) > 0), and to VB if (σA(nj) = 0 and σB(nj) > 0
and σAB(nj) > 0). Note that external nets that connect a single
non-replicated vertex in only one of the two parts, which are
move critical, are never unreplication critical, since unreplication
of a vertex connected by an external net cannot change the cut-
state of that net. This difference is indicated in Table 1, where the
conditions (σA(nj) = 1 and σB(nj) > 0) and (σB(nj) = 1 and
σA(nj) > 0), which are shown in the move-critical column do not
appear in unreplication-critical column.

4.4. rFM algorithm details

In this section, we present detailed explanations of some of the
non-trivial concepts and algorithms used in rFM. The examples
respect the basics of the operation selection criteria mentioned in
Section 4.2. For the sake of simplicity, we assume that each net
has unit cost, and we also overlook the balance constraints on part
weights in the examples.
Initial gain computation. The initial gain computation, which is
performed at the beginning of each pass of rFM, is given in
Algorithm 2 and consists of two main loops. The first loop resets
the initial gain values by traversing vertices (lines 1–7) and the
second loop completes the initialization of gains by traversing all
pins (lines 8–18). The move and replication gains are computed
according to the external and critical nets that connect these
vertices, whereas the unreplication gains are modified according
to the internal and critical nets that connect these vertices.

The move and replication gains of the non-replicated vertices
are initially set to their minimum possible values (lines 3–4). If
a net nj is external and move critical or replication critical, the
move and replication gains of the vertices connected by nj must
be incremented by c(nj) (lines 12–13), since it can be saved from
the cut with either one of these operations. In contrast to move
and replication gains, unreplication gains are initially set to their
maximumpossible values (lines 6–7). If a net nj is internal and thus
unreplication critical, the unreplication gains of the replicas of the
replicated vertices connected by nj may need to be updated. The
unreplication gains of the replicas that are in the same part with
this internal net need to be decremented by c(nj) if nj connects at
least one non-replicated vertex that is in the same part with this
net (lines 14–18).
Algorithm 2: Initial move, replication, and unreplication gain
computation.
Input: H = (V, N), ΠR

= {VA, VB}

foreach vi ∈ V do1
if State(vi) ≠ AB then2

gm(vi)←−c(InternalNets(vi))3
gr (vi)← 04

else5
gu,A(vi)← 06
gu,B(vi)← 07

foreach nj ∈ N do8
foreach vi ∈ Vertices(nj) do9

if State(vi) ≠ AB and nj is external then10
if (σA(nj) = 1 and State(vi) = A) or (σB(nj) = 1 and11
State(vi) = B) then ◃ nj is critical to VA or VB

gm(vi)← gm(vi)+ c(nj)12
gr (vi)← gr (vi)+ c(nj)13

else if State(vi) = AB and nj is internal then14
if σA(nj) > 0 and σB(nj) = 0 then ◃ nj is critical to VA15

gu,A(vi)← gu,A(vi)− c(nj)16
else if σB(nj) > 0 and σA(nj) = 0 then ◃ nj is critical to17
VB

gu,B(vi)← gu,B(vi)− c(nj)18

Fig. 6(a) shows the pin distributions of the nets and the gain
values of the vertices for a sample bipartition after Algorithm 2 is
run on this sample. Nets n4, n5, and n6 are cut; thus the cutsize of
the bipartition in Fig. 6(a) is three. We use the notation σ(nj) =
(σA(nj) : σB(nj) : σAB(nj)) to denote the pin distribution of nj.
Gain updates after a move operation. Algorithm 3 shows the pro-
cedure for performing gain updates after moving a given vertex v∗

from VA to VB. The algorithm includes updating fields of v∗ (lines
1–2), the pin distributions of Nets (v∗) (lines 4 and 16), and the
gain values of neighbors of v∗ (lines 5–15 and 17–27). The neces-
sary field updates on v∗ are performed by updating the state and
locked fields of v∗ to reflect the move operation. The pin distri-
bution of each net nj ∈ Nets (v∗) needs to be updated by decre-
menting σA(nj) by 1 and incrementing σB(nj) by 1. When the pin
distribution of nj changes, its criticality may change with respect
to the operation type. The change in the criticality of nj may re-
quire various gain updates on the unlocked vertices connected
by nj.

After decrementing the number of vertices of nj in VA (line 4),
we check the value ofσA(nj) to see if the criticality ofnj has changed
(lines 5 and 11). If σA(nj) = 0, nj becomes internal to VB by
becomingmove critical and unreplication critical to this part, and if
σA(nj) = 1, nj becomes move critical and replication critical to VA.
Similarly, after incrementing the number of vertices connected by
nj inVB (line 16), we check the value ofσB(nj) to see if the criticality
of nj has changed (lines 17 and 23). If σB(nj) = 1, it means that nj
was internal and hencewasmove critical and unreplication critical
to VA, and if σB(nj) = 2, it means that nj was move critical and
replication critical to VB. Under these conditions for nj, the gains
of the vertices connected by nj should be checked for any update
with respect to the corresponding part.

554 R. Oguz Selvitopi et al. / J. Parallel Distrib. Comput. 72 (2012) 547–563
a b

c d

Fig. 6. Pin distributions of nets, gain values of vertices, and cutsize for a given bipartition. (a) Initial bipartition, (b) after moving v4 , (c) after replicating v6 , and (d) after
unreplicating v1 from VB . Gray vertices indicate locked vertices.
In Fig. 6(a), whenwe consider the selection criteria, the selected
operation is going to be the move of v4 whose gain is one. Fig. 6(b)
shows the bipartition after running Algorithm 3 with the selected
vertex v4. After the move of v4, n5 is saved from the cut, and the
cutsize of the bipartition becomes two.
Gain updates after a replication operation. Algorithm 4 shows the
procedure for performing gain updates after replicating a given
vertex v∗ from VA to VB. The procedure starts with changing the
state of v∗ to AB and locking both replicas of v∗ (lines 1–2). Then,
for each net nj that connects v∗, the pin distributions of nj are
updated and checked for criticality condition changes (lines 6 and
17). Since v∗ was in VA before replication, σA(nj) is decremented
by 1 and σAB(nj) is incremented by 1 to reflect that v∗ is now a
replicated vertex (lines 4–5). The replication of v∗ fromVA does not
change the σB(nj) value of any nj ∈ Nets (v∗); thus the criticality
conditions that include σB(nj) need not be checked.

After the value of σA(nj) is decremented (line 4), nj must be
checked for criticality condition changes to see if there are any
necessary gain updates for the neighbors of v∗ (lines 6 and 17). If
σA(nj) = 0, nj becomes move critical and unreplication critical to
VB. In this condition, the move gains of the unlocked vertices and
the unreplication gains of the unlocked replicas that are connected
by nj need to be decremented by c(nj) since nj is internal now,
and the move of any vertex or the unreplication of any replica
connected by nj would bring it to cut. If σA(nj) = 1, nj becomes
move critical and replication critical to VA. The move or the
replication of the only non-replicated vertex vi connected by nj in
VA can now save nj from the cut, and thus themove and replication
gains of this vertex must be incremented by c(nj).

After moving v4, nowwe are to select another vertex to operate
on in Fig. 6(b). There are two operations with the highest gain,
which are the replication of v5 and the replication of v6, and the
gain values of these operations are one. We select to replicate v6.
Fig. 6(c) shows the bipartition after running Algorithm 4 with v6.
After replication of v6, we observe that n4 is now uncut, and the
cutsize becomes one.
Gain updates after an unreplication operation. Algorithm 5 shows
the procedure for performing updates after unreplication of a given
replica v∗ from VA. The procedure starts with changing the state of
v∗ to B and locking it (lines 1–2). Then, for each net nj that connects
v∗, the pin distributions ofnj are updated and checked for criticality
condition changes (lines 6 and 17). Since v∗ was a replicated
vertex before unreplication from VA, σB(nj) is incremented by 1
and σAB(nj) is decremented by 1 to reflect that v∗ is now a non-
replicated vertex inVB (lines 4–5). The unreplication of v∗ fromVA
does not change the σA(nj) value of any nj ∈ Nets (v∗); thus the
criticality conditions that include σA(nj) need not be checked.

After the value of σB(nj) is incremented (line 4), nj must be
checked for criticality condition changes to see if there are any
necessary gain updates for the neighbors of v∗ (lines 6 and 17). If
σB(nj) = 1, it means that nj was move critical and unreplication
critical to VA. In this case, the move and replication gains of the
unlocked vertices and replicas that are in VA and connected by nj
are incremented by c(nj), since nj is not an internal net anymore.

R. Oguz Selvitopi et al. / J. Parallel Distrib. Comput. 72 (2012) 547–563 555
Algorithm 3: Gain updates after moving v∗ from VA to VB.
Input: H = (V, N), ΠR

= {VA, VB}, v
∗
∈ VA

State(v∗)← B1
Lock v∗2
foreach nj ∈ Nets(v∗) do3

σA(nj)← σA(nj)− 14
if σA(nj) = 0 then ◃ nj becomes critical to VB5

foreach unlocked vi ∈ Vertices(nj) do6
if State(vi) = B then7

gm(vi)← gm(vi)− c(nj)8
else if State(vi) = AB then9

gu,B(vi)← gu,B(vi)− c(nj)10
else if σA(nj) = 1 then ◃ nj becomes critical to VA11

foreach unlocked vi ∈ Vertices(nj) do12
if State(vi) = A then13

gm(vi)← gm(vi)+ c(nj)14
gr (vi)← gr (vi)+ c(nj)15

σB(nj)← σB(nj)+ 116
if σB(nj) = 1 then ◃ nj was critical to VA17

foreach unlocked vi ∈ Vertices(nj) do18
if State(vi) = A then19

gm(vi)← gm(vi)+ c(nj)20
else if State(vi) = AB then21

gu,A(vi)← gu,A(vi)+ c(nj)22
else if σB(nj) = 2 then ◃ nj was critical to VB23

foreach unlocked vi ∈ Vertices(nj) do24
if State(vi) = B then25

gm(vi)← gm(vi)− c(nj)26
gr (vi)← gr (vi)− c(nj)27

Algorithm 4: Gain updates after replicating v∗ from VA to VB.
Input: H = (V, N), ΠR

= {VA, VB}, v
∗
∈ VA

State(v∗)← AB1
Lock v∗2
foreach nj ∈ Nets(v∗) do3

σA(nj)← σA(nj)− 14
σAB(nj)← σAB(nj)+ 15
if σA(nj) = 0 then ◃ nj becomes critical to VB6

foreach unlocked vi ∈ Vertices(nj) do7
if State(vi) = B then8

gm(vi)← gm(vi)− c(nj)9
if σB(nj) = 1 then10

gr (vi)← gr (vi)− c(nj)11
else if State(vi) = AB then12

if σB(nj) = 0 then13
gu,A(vi)← gu,A(vi)+ c(nj)14

else if σB(nj) > 0 then15
gu,B(vi)← gu,B(vi)− c(nj)16

else if σA(nj) = 1 then ◃ nj becomes critical to VA17
foreach unlocked vi ∈ Vertices(nj) do18

if State(vi) = A then19
gm(vi)← gm(vi)+ c(nj)20
if σB(nj) > 0 then21

gr (vi)← gr (vi)+ c(nj)22

If σB(nj) = 2, it means that nj was move critical and replication
critical to VB. The net nj connects two vertices in VB and one of
them, v∗, is already locked, and thus themove and replication gains
of the other vertex, vi, need to be decremented by c(nj), since this
vertex can no longer save nj from the cut.

In Fig. 6(c), after the replication of v6, there is an unnecessary
replica in VB with an unreplication gain of zero. According to the
selection criteria, the selected operation is the unreplication of the
replica of v1 in VB. Fig. 6(d) shows the bipartition after running
Algorithm 5. The unreplication of an unnecessary replica cannot
change the cutsize; thus, after the unreplication of the replica v1 ∈

VB, the cutsize is still one.
Algorithm 5: Gain updates after unreplicating v∗ from VA.
Input: H = (V, N), ΠR

= {VA, VB}, v
∗
∈ VA

State(v∗)← B1
Lock v∗2
foreach nj ∈ Nets(v∗) do3

σB(nj)← σB(nj)+ 14
σAB(nj)← σAB(nj)− 15
if σB(nj) = 1 then ◃ nj was critical to VA6

foreach unlocked vi ∈ Vertices(nj) do7
if State(vi) = A then8

gm(vi)← gm(vi)+ c(nj)9
if σA(nj) = 1 then10

gr (vi)← gr (vi)+ c(nj)11
else if State(vi) = AB then12

if σA(nj) = 0 then13
gu,B(vi)← gu,B(vi)− c(nj)14

else if σA(nj) > 0 then15
gu,A(vi)← gu,A(vi)+ c(nj)16

else if σB(nj) = 2 then ◃ nj was critical to VB17
foreach unlocked vi ∈ Vertices(nj) do18

if State(vi) = B then19
gm(vi)← gm(vi)− c(nj)20
if σA(nj) > 0 then21

gr (vi)← gr (vi)− c(nj)22

4.5. Complexity analysis of rFM

Consider a single pass of rFM to be performed on an initial
bipartition ΠR

= {VA, VB} of a hypergraph H = (V, N) with
V = |V| vertices and P pins. Let Vr be the number of replicated
vertices and Vs be the number of non-replicated vertices. Clearly,
V = Vr + Vs. The initial gain computation takes O(P) time
since the vertices connected by each net are traversed as seen in
Algorithm 2. After the initial gain computation is completed, these
gain values are stored in six heaps. For each heap, it is required
to perform a build-heap operation. The build-heap operations on
two heaps storing move gains take a total of O(Vs) time. Similarly,
the build-heap operations on two heaps storing replication gains
take a total of O(Vs) time. This is because the total number of
vertices in two heaps storing move gains and in two heaps storing
replication gains are both equal to Vs. The build-heap operation
on the heap storing unreplication gains of the replicas in VA
takes O(Vr) time, and similarly the build-heap operation on the
heap storing unreplication gains of the replicas in VB takes O(Vr)
time, since each heap possesses Vr elements. Thus, the total time
required for building heaps is equal to O(Vr + Vr + Vs + Vs) =
O(2V) = O(V).

The selection procedure consists of checking maximum gain
values in six heaps, which takes O(1) time. After selecting the gain
value from one of the heaps with respect to the selection criteria,
we perform an extract-max operation on the selected heap and
a delete operation on another heap for the other gain value of
the selected vertex (Section 4.2). Regardless of the selected heap,
the extract-max and delete operations on the heaps are bounded
by the number of total vertices, since the maximum number of
elements in a single heap can be at most V . Thus, a single selection
operation takes O(1)+O(2 log V) = O(log V) time. In a single pass
of rFM where all vertices are exhausted, we can make at most V
selections. Consequently, the cost of selection in a single pass of
rFM is equal to O(V log V).

As proved in the original FM heuristic [17], during an FM pass,
the criticality state of a net changes at most three times due to the
vertex locking mechanism adopted, which limits the number of
gain updates by a constant factor. For our algorithm, Table 1 reveals
that the criticality of a net nj depends on its pin distributions,σA(nj)
and σB(nj). More specifically, after an operation is performed, the

556 R. Oguz Selvitopi et al. / J. Parallel Distrib. Comput. 72 (2012) 547–563
criticality of nj changes if σA(nj) or σB(nj) observes the following
changes:

σA(nj) from 2→ 1 or 1→ 0 or 0→ 1 or 1→ 2,
σB(nj) from 2→ 1 or 1→ 0 or 0→ 1 or 1→ 2.

Consider a vertex vi connected by a net nj. Recall that move of vi
from VA to VB will decrease σA(nj) by one and increase σB(nj) by
one. Similarly, replication of vi from VA to VB will decrease σA(nj)
by one and unreplication of vi from VA will increase σB(nj) by
one. Since replication of vi will decrease σA(nj) or σB(nj) by one,
replication of vertices connected by nj can change the cut state of
that net at most four times. Note that, when there are two vertices
connected by nj that are locked in two parts of a bipartition, that
netwill always be cut during that pass, and hence further criticality
analysis will not be necessary for it. Also observe that a move to
a part locks the moved vertex to that part and unreplication of a
vertex from a part locks the other replica of that vertex in the other
part. It is easy to see that the number of criticality changes that
can be achieved by any combination of move and unreplication
operations is at most five (the criticality of nj can change at most
four times for one part and one time for the other part). If we add
criticality changes that can be achieved by replication as well, we
can surmise that the criticality state of a net can change at most
nine times during a pass. In fact, a more careful analysis reveals
that the criticality state of a net can change at most seven times,
since some changes either overlap with each other or cancel each
other in the sense that, when one of themoccurs for a net, the other
cannot. Thus, in rFM, the number of criticality state changes for
a net, and hence the number of gain updates for vertices is also
bounded by a constant factor.

In rFM, since each vertex possesses two gains, in theworst case,
both of these gain values may need to be updated, which doubles
the number of gain updates for any vertex compared to FM. Each
gain update requires an increase-key or decrease-key operation
on the corresponding heap. Consequently, the complexity of gain
updates in rFM is O(2P log V) = O(P log V).

Given these complexity values, the complexity of a single pass
of rFM is O(P + V + V log V + P log V) = O(P log V), since P ≥ V .

4.6. rFM and multilevel framework

We utilize the rFM heuristic in a multilevel framework. In our
multilevel approach we use the coarsening and initial partitioning
phases of the conventional multilevel approach as is, and redesign
the uncoarsening phase from scratch so that we can perform
replication in this phase.

At each level of the uncoarsening phase, we perform multiple
passes to refine the current bipartition. At the end of each level
l, the bipartition ΠR

l on the coarser hypergraph Hl is projected
back to the bipartition ΠR

l−1 on the finer hypergraph Hl−1. The
projection includes the decomposition of each super-vertex in Hl
to its constituent vertices in Hl−1. The decomposition of a non-
replicated super-vertex in Hl results in multiple non-replicated
vertices inHl−1. Similarly, the decomposition of a replicated super-
vertex in Hl results in multiple replicated vertices in Hl−1. The
existence of replicated vertices does not disturb the projection
process. Clearly, the decomposition of a replicated super-vertex to
its constituent replicated vertices will not change the cut-state of
the nets this replicated super-vertex is connected by.

Unnecessary replicas tend to occur excessively at the beginning
of each uncoarsening level due to the increase in the degrees
of freedom after the projection of a coarser hypergraph to
a finer hypergraph. Such replicas hamper the quality of the
refinement and partitioning process if they are not removed,
since (i) they consume the given replication amount needlessly,
which may prevent the positive gain replications from being
performed, and (ii) in the construction of the new hypergraphs
for further levels of the RB, they can cause the new hypergraphs
to become unnecessarily bigger. In operation selection, we give
the unreplication of unnecessary replicas the highest priority
(Section 4.2). This way, the majority of the unnecessary replicas
are eliminated at the beginning of each uncoarsening level.

5. Recursive bipartitioning

To obtain K -way replicated partitions, we utilize rFM in
a recursive bipartitioning framework, which requires cut-net
removal and cut-net splitting techniques to be altered to support
replication. In the RB framework, after each bipartitioning of H =
(V, N), two subhypergraphs H ′ = (V ′, N ′) and H ′′ = (V ′′, N ′′)
are constructed from ΠR

= {VA, VB}. In replicated or non-
replicated HP, regardless of the underlying cost scheme (e.g., cut-
net, connectivity), the vertex sets of H ′ and H ′′ are equivalent to
VA and VB, respectively. That is,
V ′ = VA and V ′′ = VB.

Recall that, in replicated HP, VA and VB include the replicated
vertices by definition (Section 4.1). In the construction of H ′ and
H ′′, the replicas of the replicated vertices of ΠR become non-
replicated vertices of both H ′ and H ′′, and the necessary pins are
placed for these vertices. Consequently, the numbers of vertices
and pins of the resulting hypergraphs are greater when compared
to non-replicated HP.

In the following two subsections, for RB-based replicated HP,
we show how to extend the cut-net removal and cut-net splitting
schemes to capture the cut-net (Eq. (2)) and connectivity (Eq. (3))
cutsize metrics, respectively.

5.1. Cut-net removal

In the cut-net removal scheme for RB-based non-replicated HP,
the internal net sets of VA and VB constitute the net sets of H ′ and
H ′′, respectively. Vertices connected by those internal nets will
again be connected by the same nets in the new subhypergraphs.
All cut-nets are discarded since they contribute to the cutsize only
once.

In the cut-net removal scheme for RB-based replicated HP, the
cut-nets are also discarded, since the definition of a cut-net in
replicated HP does not take replicated vertices into account (a net
nj is cut if σA(nj) > 0 and σB(nj) > 0). Internal nets are kept for
further bipartitionings as in non-replicated HP. The net sets of H ′

and H ′′ are defined as follows:

N ′ =

n′j with Vertices(n′j) = Vertices(nj) s.t.

nj ∈ N and σB(nj) = 0

,

N ′′ =

n′′j with Vertices(n′′j) = Vertices(nj) s.t.

nj ∈ N , σA(nj) = 0 and σB(nj) > 0

.

In the construction of the new net sets, there is a subtle difference
(indicated with σB(nj) > 0) due to the nets that connect only
replicated vertices. In this case, since such nets may be considered
to be internal either to VA or VB, we assumed them to be internal
to VA, and added the necessary pins accordingly and discarded the
pins to the replicas in VB. However, a more intelligent scheme can
be devised to decide on which part these nets are considered to be
internal. Fig. 7(a) shows an example of a cut-net removal scheme,
where the cut-net nk is removed while the internal nets ni and nj
are preserved as n′i and n′′j for further bipartitionings.

5.2. Cut-net splitting

In the cut-net splitting scheme for RB-based non-replicated HP,
the internal net sets of VA and VB will be in the net sets of H ′

R. Oguz Selvitopi et al. / J. Parallel Distrib. Comput. 72 (2012) 547–563 557
a

b

Fig. 7. (a) Cut-net removal. Cut-net nk is removed while internal nets ni and nj are
preserved for further bipartitionings. (b) Cut-net splitting. Cut-net nj is split into
two new nets n′j and n′′j .

and H ′′, respectively. Furthermore, each cut-net nj ∈ ΠR is split
into two nets, n′j and n′′j , where Vertices(n′j) = Vertices(nj) ∩ VA

and Vertices(n′′j) = Vertices(nj) ∩ VB. Then, n′j is added to N ′

if σA(n′j) > 1 and n′′j is added to the N ′′ if σB(n′′j) > 1. Clearly,
σB(n′j) = 0 and σA(n′′j) = 0.

In the cut-net splitting scheme for RB-based replicated HP,
we need to add pins to the replicas of the replicated vertices in
order to preserve the flexibility of performing move or replication
operations on them in the newly constructed hypergraphs. The
internal nets are kept for further bipartitionings as in non-
replicated HP. The net sets of H ′ and H ′′ are defined as follows:

N ′ =

n′j with Vertices(n′j) = Vertices(nj) ∩ VA s. t.

nj ∈ N , σA(nj)+ σAB(nj) > 1

,

N ′′ =

n′′j with Vertices(n′′j) = Vertices(nj) ∩ VB s. t.

nj ∈ N , σB(nj)+ σAB(nj) > 1 and σB(nj) > 0

.

Notice that the new net definitions encompass both the internal
nets and the external nets that are split. Similar to the cut-
net removal scheme, there is a subtle difference (indicated with
σB(nj) > 0) due to the nets that connect only replicated vertices.
Such nets are handled in the same way as they are handled in cut-
net removal scheme. Fig. 7(b) shows the splitting of nj into two
distinct nets n′j and n′′j and the addition of necessary pins for these
nets for further bipartitionings. Note that a pin is added for each of
the replicas of the replicated vertex vr .
5.3. Replication amount distribution

The RB scheme consists of multiple bipartitions. The replication
amount used in each bipartitioning can have an effect on the final
cutsize. We consider two different replication amount distribution
schemes in this work. (i) In the level-wise replication scheme, first,
the total replication amount is divided by log K , the number of
levels of the recursion tree of RB, and then, for each specific
level, the assigned replication amount is evenly distributed among
the bipartitions in that level. (ii) In the bisection-wise replication
scheme, the total replication amount is divided by K − 1, the
number of bipartitionings in a K -way partitioning, and then
distributed evenly among these bipartitionings.

6. Pin selection

After achieving a K -way replicated partition, in order to
compute the cutsizewe have to select the pins to the replicas of the
replicated vertices connected by a net. The replication of a vertex
vi brings the problem of selecting replicas of vi for each net it is
connected by. If a net nj connects replicated vertices, we need to
decide which replicas of these replicated vertices will be ‘‘used’’ by
nj. This is required for a couple of reasons: (i) the cutsize of the final
partition can only be computed after deciding fromwhich part the
replicas will be used, and (ii) the investigated real-world problem
may enforce the nets to make a choice from which parts their
replicas will be used. We propose a simple pin selection technique
whose basic motivation is not to increase the cutsize with careless
pin selection.

Fig. 8 shows two pin selection alternatives for a net nj which
connects three vertices vr , vs, and vn in a three-way partition given
in Fig. 8(a). The vertices vr and vs are replicated, each having three
replicas, and vn is non-replicated. In the examples for pin selection,
after a selection is performed for a pin, this pin is indicated by
a thick line. A selection alternative for nj is seen in Fig. 8(b)
where vr and vs are selected from V1 and V2, respectively and
λ(nj) = 3. Amore careful selection alternative is shown in Fig. 8(c),
where both vr and vs are selected from V2 and λ(nj) = 1. This
example illustrates how pin selection can be crucial in computing
the cutsize of a given partition.

Let nr(nj, k) and r(nj, k) respectively denote the number non-
replicated and replicated vertices that are connected by nj in Vk.
Consider a net nj that connects a replicated vertex vi which has t
replicas. We are to make a decision for nj to select one of these
replicas within the considerations mentioned above. Our replica
selection algorithm is based on a greedy heuristic that consists of
two stages.

The first stage of the algorithm is based on the following
observation. Consider a cut-net nj that connects at least one non-
replicated vertex in Vk (i.e., nr(nj, k) > 0). If r(nj, k) > 0 too,
then the pins of nj to the replicas in Vk can be safely selected
a b c

Fig. 8. Pin selection alternatives for net nj . (a) Initial partition before selection, (b) after the first selection alternative, λ(nj) = 3, and (c) after the second selection alternative,
λ(nj) = 1.

558 R. Oguz Selvitopi et al. / J. Parallel Distrib. Comput. 72 (2012) 547–563
a b c

Fig. 9. (a) Initial partition before selection. (b) After the first stage of the pin selection algorithm. (c) After the second stage of the pin selection algorithm.
without degrading the cutsize. Using this observation, for each
net nj, the algorithm traverses nj’s pins to the vertices in Λ(nj)
and selects the currently unselected pins to the replicas in Vk if
nr(nj, k) > 0. If a pin (nj, v

k
i) is selected for the replicated vertex

vi during this process, all other pins (nj, v
ℓ
i), where ℓ ≠ k, are

deselected. Here, vk
i denotes the replica of the replicated vertex

vi in Vk. After the selection of pin (nj, v
k
i) for nj, the r(nj, k) value

is decremented by one for each Vk that a replica of vi resides in.
At the end of the first stage, for each net nj, nj’s pins to the non-
replicated vertices are selected by default, since these are the only
candidates for those pins. After the selection of pin (nj, vi) for nj,
where vi ∈ Vk is non-replicated, the nr(nj, k) value is decremented
by one. Fig. 9 illustrates our selection heuristic. In Fig. 9(a), there
are two non-replicated (va and vb) and four replicated (vr , vs, vt ,
and vu) vertices. Fig. 9(b) shows the resulting pins after the first
stage of the pin selection algorithm is run. The selected pins
((nj, vb), (nk, vb), (nk, v

3
u), (nk, v

2
r), (nk, va)) are shown with thick

lines. Note that deselected pins ((nk, v
4
u), (nk, v

1
r)) are removed.

At the beginning of the second stage of the algorithm, all
nr(nj, k) values are equal to zero. For a net nj, if r(nj, k) > 0 for
at least one Vk, the pin selection problem for nj can be reduced
to the set cover problem. This case can be seen in Fig. 9(b) for the
pin selection process for nj. In the example, our sets are S1 =

{vr , vs, vt}, S2 = {vr} and S3 = {vs, vt}, and we try to find
a set cover of the ground set S = {vr , vs, vt}. Since the set
cover problem is NP-hard [25], we adopt a simple greedy heuristic
that has an approximation ratio of ln(n) + 1 [24], where n is
the number of total elements. Basically, in each iteration, this
greedy heuristic selects the set that covers the largest number of
uncovered elements so far and then removes the currently covered
elements from remaining sets. When this algorithm is run for nj
in the example in Fig. 9(b), S1 will be selected as the covering
subset which is illustrated in Fig. 9(c). According to this selection
process, the pins (nj, v

1
r), (nj, v

1
s), (nj, v

1
t) are selectedwhereas the

pins (nj, v
2
r), (nj, v

4
s), (nj, v

4
t) are deselected.

7. Experiments

7.1. Experimental setup

The proposed replication scheme is integrated into the
multilevel HP tool PaToH [2]. We call this modified version
of PaToH rpPaToH. In the experiments, we used the same
parameters for PaToH and rpPaToH in the coarsening and the
initial partitioning phases. We used agglomerative clustering
(absorption clustering using pins) and greedy hypergraph growing
algorithms in the coarsening and the initial partitioning phases,
respectively. For both PaToH and rpPaToH, the imbalance ratio
is set to ϵ = 0.10 in all experiments. The boundary FM (BFM)
refinement heuristic option is selected for PaToH, whereas the
Table 2
Dataset properties.

Dataset Number of Average
Vertices Nets Pins Net degree

CG 43,244 200,000 800,034 4.0
VG 146,742 500,000 1,999,540 4.0
WP 442,063 1,000,000 3,997,741 4.0
FB 2,880,004 4,000,000 16,001,754 4.0

AOL 1,339,596 11,867,848 38,907,550 3.3

proposed rFM heuristic is used for rpPaToH. The number of passes
for the refinement algorithms used is set to three for both tools. For
the early-exit feature, the number of allowed operations which do
not improve the cutsize is set to 100 for both PaToH and rpPaToH.
We report results for five different K (16, 32, 64, 128, 256) and
five differentρ (0.05, 0.10, 0.15, 0.20, 0.25) values. The results for
K = 16 are omitted in Tables 3 and 5 due to lack of space.

All algorithms are implemented in C and compiled in gcc with
the -O3 flag. Due to the randomized nature of PaToH, all of
the partitioning results reported are the averages of ten runs. In
the experiments, a six-core AMD Opteron with 2.1 GHz of clock
frequency and 32 GB of main memory is used.

The performance of the proposed replication scheme and the
replicated HP tool rpPaToH developed is evaluated on term-based
partitioning of inverted indices for the parallel query processing
application discussed in Section 1.2. The datasets are separated
into two as realistic and semi-synthetic datasets. The realistic
dataset used in the experiments is the AOL dataset [39], which
consists of about 12 million queries and 1.3 million terms. We
used synthetic datasets due to the difficulties in obtaining real-
world query sets for IR. The synthetic datasets are in fact semi-
synthetic in the sense that they are generated from real-world
crawls downloaded from the Stanford WebBase Project [21]. The
CG dataset is composed of pages collected from sites related to
the California governor election on 09/30/2003. The FB dataset
is composed of pages collected from Facebook on 09/08/2008.
The WP dataset is composed of pages collected from Wikipedia
in May 2006. The VG dataset is composed of pages collected
from sites related with the Virginia Tech shooting on 04/23/2007.
We generated query sets from each dataset consisting of queries
between two to six terms, since 90% of Web search queries have
between one and six terms [39]. Queries with single terms are
not included in the datasets since they induce nets with single
pins, and such nets do not incur any cost to the cutsize. In
order to imitate real-world query sets, documents are randomly
selected from these datasets, and then, from these selected
documents, query terms are formed so that the query term
frequencies follow a Zipfian distribution. Utilizing these query
sets, we generated hypergraphs as described in [28] except the
vertex weighting schema. Since vertex replication does not incur
redundant computation due to the pin selection scheme described

R. Oguz Selvitopi et al. / J. Parallel Distrib. Comput. 72 (2012) 547–563 559
Table 3
Percentage load imbalance (%LI) and percentage replication utilization (%RU) for PaToH+ MF and rpPaToH.

Dataset ρ K = 32 K = 64 K = 128 K = 256
PaToH+MF rpPaToH PaToH+MF rpPaToH PaToH+MF rpPaToH PaToH+MF rpPaToH

%LI %LI %RU %LI %LI %RU %LI %LI %RU %LI %LI %RU

CG

0.05 5.97 9.73 79 5.73 9.66 72 6.78 9.38 66 7.23 8.81 65
0.10 5.17 9.52 88 5.63 9.38 85 5.89 9.01 79 6.99 8.76 74
0.15 4.38 9.39 92 5.26 9.26 87 5.53 9.13 84 6.66 8.62 80
0.20 4.06 9.21 93 4.31 9.17 91 5.08 8.78 86 6.16 8.53 83
0.25 3.56 9.10 94 4.56 9.04 91 4.69 8.69 90 5.80 8.45 85

VG

0.05 6.82 8.79 79 6.57 9.10 76 6.61 9.07 72 6.57 8.98 68
0.10 6.03 8.82 89 6.03 8.67 84 6.40 8.61 78 6.50 8.67 74
0.15 5.23 7.85 93 5.68 8.31 89 6.20 8.19 85 6.01 8.37 80
0.20 4.78 8.02 95 5.41 8.08 91 5.78 8.21 87 5.78 8.25 83
0.25 4.05 7.44 96 4.81 7.97 92 5.05 8.18 89 5.72 8.06 85

WP

0.05 6.81 8.90 67 6.61 9.28 64 7.37 9.52 61 7.79 9.64 58
0.10 6.15 9.44 73 5.87 9.44 70 6.68 8.78 65 7.66 8.50 62
0.15 5.44 9.40 74 5.37 9.41 72 5.60 9.37 69 6.79 9.32 65
0.20 4.47 9.19 75 5.18 9.21 73 5.35 9.18 70 5.83 9.16 67
0.25 4.30 7.23 76 4.69 9.00 73 5.26 8.99 71 5.30 8.98 68

FB

0.05 9.00 5.74 70 9.11 5.87 69 8.91 6.90 68 8.49 6.96 66
0.10 8.48 3.56 58 8.62 4.86 62 8.46 6.10 65 8.11 6.82 66
0.15 7.89 1.66 51 8.18 3.52 55 8.14 4.84 59 7.73 5.74 61
0.20 7.49 0.00 49 7.78 1.92 53 7.83 3.50 56 7.47 4.21 57
0.25 6.84 0.00 44 7.36 0.77 50 7.48 2.76 53 6.90 3.63 55

AOL

0.05 5.74 9.19 99 6.47 8.99 97 6.56 9.54 95 7.22 9.46 92
0.10 4.75 7.75 98 5.34 8.27 98 5.76 8.65 96 6.09 8.83 94
0.15 4.15 6.65 98 4.79 7.78 97 5.11 8.06 97 5.57 8.43 95
0.20 3.80 6.10 96 4.51 7.13 97 4.85 7.77 96 5.22 8.13 96
0.25 3.69 4.44 91 4.03 6.39 95 4.60 6.73 96 4.88 7.52 95
Table 4
Cutsize averages of all datasets for four different schemes of rpPaToH normalized
with respect to those of the bis+ nor scheme.

ρ Scheme K
16 32 64 128 256

0.05 bis+ nor 1.00 1.00 1.00 1.00 1.00
bis+ gra 0.88 0.91 0.89 0.93 0.93
lev+ nor 0.90 0.90 0.91 0.89 0.87
lev+ gra 0.81 0.81 0.81 0.83 0.84

0.10 bis+ nor 1.00 1.00 1.00 1.00 1.00
bis+ gra 0.90 0.92 0.92 0.95 0.97
lev+ nor 0.91 0.90 0.88 0.87 0.86
lev+ gra 0.84 0.83 0.81 0.82 0.84

0.15 bis+ nor 1.00 1.00 1.00 1.00 1.00
bis+ gra 0.93 0.93 0.96 0.96 0.96
lev+ nor 0.94 0.89 0.89 0.85 0.83
lev+ gra 0.87 0.83 0.83 0.82 0.82

0.20 bis+ nor 1.00 1.00 1.00 1.00 1.00
bis+ gra 0.95 0.94 0.95 0.98 0.99
lev+ nor 0.89 0.87 0.86 0.84 0.82
lev+ gra 0.84 0.82 0.82 0.82 0.80

0.25 bis+ nor 1.00 1.00 1.00 1.00 1.00
bis+ gra 0.95 0.95 0.95 1.00 1.00
lev+ nor 0.89 0.84 0.84 0.83 0.80
lev+ gra 0.84 0.81 0.80 0.81 0.79

in Section 6, the balance constraint is interpreted as balancing
the number of terms assigned to each processor by using unit
vertex weights in these hypergraphs. The characteristics of the
hypergraphs generated from these datasets are given in Table 2.

7.2. Performance evaluations

In this section, we provide a thorough performance analysis of
rpPaToH in terms of imbalance, replication utilization, and cutsize
improvement.
Table 4 compares the performances of four different schemes
utilized in rpPaToH in terms of cutsize averages for all datasets
normalized with respect to those of bis+ nor scheme. In the table,
‘‘lev’’ and ‘‘bis’’ respectively stand for the level-wise replication
amount distribution scheme and the bisection-wise replication
amount distribution scheme. The gradient methodology is in-
dicated with ‘‘gra’’, whereas ‘‘nor’’ indicates that the gradient
methodology is not used. For example, bis + gra means rpPaToH
utilizes the bisection-wise scheme and gradient methodology.
When the level-wise scheme is compared with the bisection-wise
scheme (see the rows bis + nor and lev + nor, or bis + gra and
lev + gra for a specific ρ value), the level-wise scheme achieves
better cutsize values than the bisection-wise scheme. This may be
due to the fact that the level-wise scheme distributes the given
replication amount among bipartitionings proportional to the to-
tal vertex weights of the corresponding hypergraphs, whereas the
bisection-wise scheme distributes the given replication amount
evenly among bipartitionings, thus favoring the bipartitionings of
(relatively) smaller hypergraphs at the deeper levels of the recur-
sion tree of the RB scheme. As seen from the table, the gradient
methodology performs better than its counterpart (see the rows
bis+ nor and bis+ gra, or lev+ nor and lev+ gra for a specific ρ
value). The reasons for this were explained in detail in Section 4.2.
Henceforth, the results of rpPaToH with the level-wise scheme
and gradient methodology are reported in subsequent tables and
figures.

In parallel IR, one of the most commonly used replicated
partitioning schemes is based on first hash-based partitioning of
the inverted index and then replication of the posting lists of
the most frequently occurring terms across all parts [37]. We
call this scheme Hash+ MF. The recently proposed HP-based
index partitioning scheme, which is summarized in Section 1.2,
is reported to reduce the parallel query processing overhead
significantly compared to hash-based partitioning. So, we replaced
the hash-based partitioning in Hash+ MF with PaToH to obtain
a more effective replicated inverted index partitioning scheme,
which is referred here as PaToH+ MF. In our implementation

560 R. Oguz Selvitopi et al. / J. Parallel Distrib. Comput. 72 (2012) 547–563
Table 5
Cutsize (×103) values for PaToH+ MF and rpPaToH.

Dataset ρ K = 32 K = 64 K = 128 K = 256
PaToH+MF rpPaToH PaToH+MF rpPaToH PaToH+MF rpPaToH PaToH+MF rpPaToH

CG

0.05 359 220 412 300 445 362 468 410
0.10 330 206 392 286 433 345 461 395
0.15 305 194 373 267 422 329 453 380
0.20 286 180 358 255 411 315 448 367
0.25 266 168 344 241 401 303 441 354

VG

0.05 601 287 733 420 840 562 924 693
0.10 539 267 672 395 790 539 887 660
0.15 496 247 634 375 753 510 854 629
0.20 458 226 605 349 724 485 832 603
0.25 425 209 577 328 702 466 810 578

WP

0.05 657 355 867 494 1134 660 1406 855
0.10 495 308 705 443 915 609 1176 780
0.15 414 270 605 403 809 562 1034 724
0.20 356 240 530 372 736 524 946 685
0.25 312 212 477 336 675 492 882 649

FB

0.05 685 490 916 728 1183 1004 1518 1275
0.10 512 306 740 511 963 761 1228 1032
0.15 421 208 625 388 855 617 1090 879
0.20 371 137 548 294 772 499 998 743
0.25 337 97 492 221 710 412 934 651

AOL

0.05 3774 1254 6109 2005 8765 3363 11313 5235
0.10 2161 780 4134 1495 6651 2620 9319 4305
0.15 1451 551 3027 1180 5239 2177 7928 3518
0.20 1073 427 2329 892 4333 1892 6905 3080
0.25 820 299 1879 756 3692 1545 6122 2714

Averages of normalized cutsize values of PaToH+MF and rpPaToH with respect to PaToH+MF

0.05 1.00 0.54 1.00 0.60 1.00 0.66 1.00 0.71
0.10 1.00 0.54 1.00 0.60 1.00 0.67 1.00 0.71
0.15 1.00 0.53 1.00 0.60 1.00 0.66 1.00 0.71
0.20 1.00 0.51 1.00 0.58 1.00 0.65 1.00 0.69
0.25 1.00 0.49 1.00 0.56 1.00 0.63 1.00 0.68
of PaToH+ MF, first we obtain a K -way partition using PaToH.
Then, we sort the vertices in non-increasing order with respect
to their degrees and replicate them to each part in this order
while respecting the given replication amount. This corresponds
to replicating the most frequent terms and their inverted lists on
the partition given by PaToH.

Table 3 displays the percentage load imbalance (%LI) and
the percentage replication utilization (%RU) values obtained by
PaToH+ MF and rpPaToH. These values are computed as follows:

%LI =
Wmax −Wavg

Wavg
× 100,

%RU =

K
k=1

W (Vk)−W (V)

ρW (V)
× 100.

As seen in the table, both algorithms provide replicated partitions
within the allowed imbalance values. The balancing performance
of both algorithms is comparable, and there is no clear winner in
this performance metric. Apart from that, it can be said that, as the
given replication amount increases, the balance of the partitions
obtained gets better. This is because replication can also be used to
improve the balance of the partitions obtained.

The replication utilization values for thePaToH+MF replication
scheme are not presented in Table 3 since PaToH+ MF always
utilizes 100% of the given replication amount. As seen in Table 3,
rpPaToH does not fully utilize the given replication amount. This
is because (i) replication operations with zero gain value are not
allowed, which may prevent the replication operations from being
performed even though the cutsize may be greater than zero and
there is still a remaining replication amount to be used in the
corresponding bipartitioning, and (ii) the gradient methodology
usesmoremove operations, which limits the amount of replication
performed in a pass of rFM. The remaining replication amount can
be utilized by a post-processing step to rpPaToH such as MF or any
other replication scheme to further improve the cutsize. However,
the main purpose of the experiments in this section is to test the
validity of RB-based replicated HP. Hence, the results with such
post-processing enhancements are not reported here.

Table 5 displays the cutsize values obtained using PaToH+
MF and rpPaToH. Without any exceptions, rpPaToH performs
significantly better than PaToH+MF in all experiments. In both
schemes, as expected, the cutsize value decreases with increasing
replication amount. The bottom of Table 5 displays the averages
of normalized cutsize values of PaToH+ MF and rpPaToH with
respect to those of PaToH+MF. As K increases for a fixed ρ, the
average performance gap between rpPaToH and PaToH+ MF
decreases. However, even for the highest K value of 256, rpPaToH
reduces the cutsize by 29%, 29%, 29%, 31%, and 32% for the ρ values
0.05, 0.10, 0.15, 0.20, and 0.25, respectively. As ρ increases for
a fixed K , the average performance gap between rpPaToH and
PaToH+ MF increases gradually.

Figs. 10 and 11 are introduced for better illustration of relative
cutsize performance comparisons of PaToH+ MF and rpPaToH
with increasing K and ρ values, respectively. As seen in Fig. 10,
with increasing K , the performance gap between PaToH+ MF and
rpPaToH decreases for the CG, VG, and FB datasets and increases
for the WP and AOL datasets. As seen in Fig. 11, with increasing ρ,
the performance gap between PaToH+ MF and rpPaToH increases
for FB, decreases for WP and AOL, and remains almost the same for
the CG and VG datasets.

Table 6 displays the averages of the percentage reduction
in cutsize values of rpPaToH over PaToH for all datasets. As
expected, the percentage improvement of rpPaToH over PaToH
increases with increasing ρ for a fixed K value. For a fixed
replication amount, the percentage improvement ofrpPaToH over

R. Oguz Selvitopi et al. / J. Parallel Distrib. Comput. 72 (2012) 547–563 561
Fig. 10. Cutsize values of PaToH+ MF and rpPaToH with increasing K for
ρ = 0.15.

Table 6
The averages of the percentage reduction in cutsize values of all datasets for
rpPaToH over PaToH.

ρ K = 16 K = 32 K = 64 K = 128 K = 256

0.05 76.76 68.28 60.69 52.47 44.64
0.10 81.01 72.75 65.02 56.87 49.36
0.15 83.98 75.80 68.30 60.32 53.11
0.20 86.19 78.43 71.02 63.06 55.95
0.25 87.69 80.55 73.42 65.42 58.37

PaToH decreases with increasing K . This experimental finding
can be attributed to the fact that, with increasing K , the cutsize
increases, and thus the ratio of the reduction in the cutsize due to
fixed replication decreases.

Table 7 shows the run-time averages of all datasets for
rpPaToH normalized with respect to those of PaToH. For a fixed
Fig. 11. Cutsize values of PaToH+ MF and rpPaToH with increasing ρ for K = 64.

K value, the run-time performance of rpPaToH degrades with
respect to PaToH as ρ increases, since replication introduces new
vertices and pins during the partitioning process. For a fixed
ρ value, the run-time difference between PaToH and rpPaToH
increases in favor of PaToH for increasing K . Our analysis reveals
that this ismainly due to the run-timedifferences in the coarsening
and the initial partitioning phases of PaToH and rpPaToH. Note
that, after each bipartitioning in rpPaToH, the further coarsening
and initial partitioning phases generally have to work on larger
hypergraphs than those in PaToH. The larger the K , the greater the
number of times these larger hypergraphs have to be bipartitioned,
and hence the difference between PaToH and rpPaToH grows
with increasing K . However, even for the largest ρ = 0.25 and
K = 256 values, rpPaToH is only 2.78 times slower than PaToH
on the average.

8. Conclusions and future work

A vertex replication scheme is proposed for undirectional HP
models. The proposed scheme achieves replication during the
partitioning process. Replication is performed using an extended
version of the FM iterative-improvement heuristic (rFM) that
operates on two-way partitions and is capable of replication

562 R. Oguz Selvitopi et al. / J. Parallel Distrib. Comput. 72 (2012) 547–563
Table 7
Run-time averages of all datasets for rpPaToH normalizedwith respect to those for
PaToH.

ρ K = 16 K = 32 K = 64 K = 128 K = 256

0.05 1.76 1.90 2.03 2.20 2.40
0.10 1.78 1.94 2.17 2.37 2.55
0.15 1.83 1.97 2.28 2.41 2.58
0.20 1.82 1.99 2.36 2.55 2.70
0.25 1.91 2.03 2.42 2.55 2.78

and unreplication in addition to move of vertices. This two-way
replicated partitioning scheme is used in a recursive bipartitioning
framework to obtain K -way replicated partitions. Regarding the
replicated vertices in a K -way replicated partition, a simple
pin selection algorithm is proposed for the nets that connect
replicated vertices. We developed a multilevel replicated HP tool,
referred to as rpPaToH, by embedding our replication scheme
into the uncoarsening phase of the multilevel HP tool PaToH.
The validity of the proposed replication scheme is tested on one
realistic and four semi-synthetic information retrieval datasets.
rpPaToH is compared with a state-of-the-art replication scheme
that replicates the most frequent terms to all parts to show that
rpPaToH achieves better improvements in the cutsize within
the allowed imbalance values with relatively low replication
utilization. This work shows that vertex replication can be very
effective in reducing the cutsize of the partitions obtained using
HP by using little amount of replication.

As future research, we consider various ideas that can further
improve the quality of the partitions. (i) Different operation selec-
tion strategies can be tested for rFM such as allowing zero gain
replication or negative gain unreplication operations. (ii) The re-
maining replication amount can be used in a clever K -way repli-
cation heuristic to further improve the cutsize. Alternative ways of
distributing the given replication amount between rpPaToH and
this K -way replication heuristic can further be investigated.

References

[1] C.J. Alpert, A.B. Kahng, Recent directions in netlist partitioning: a survey, Integr.
VLSI J. 19 (1995) 1–81.

[2] U.V. Çatalyürek, C. Aykanat, PaToH: partitioning tool for hypergraphs,
Technical Report, Department of Computer Engineering, Bilkent University,
1999.

[3] C. Aykanat, B.B. Cambazoglu, B. Uçar, Multi-level direct k-way hypergraph
partitioning with multiple constraints and fixed vertices, J. Parallel Distrib.
Comput. 68 (2008) 609–625.

[4] C. Aykanat, A. Pinar, U.V. Çatalyürek, Permuting sparse rectangular matrices
into block-diagonal form, SIAM J. Sci. Comput. 25 (2004) 1860–1879.

[5] L.A. Barroso, J. Dean, U. Hölzle, Web search for a planet: the Google cluster
architecture, IEEE Micro 23 (2003) 22–28.

[6] T.N. Bui, C. Jones, A heuristic for reducing fill-in sparsematrix factorization, in:
PPSC, pp. 445–452.

[7] B. Cahoon, K.S. McKinley, Performance evaluation of a distributed architecture
for information retrieval, in: SIGIR’96: Proceedings of the 19th Annual
International ACM SIGIR Conference on Research and Development in
Information Retrieval, ACM, New York, NY, USA, 1996, pp. 110–118.

[8] B.B. Cambazoglu, C. Aykanat, A term-based inverted index organization
for communication-efficient parallel query processing, in: IFIP International
Conference on Network and Parallel Computing, 2006.

[9] B.B. Cambazoglu, C. Aykanat, Hypergraph-partitioning-based remapping
models for image-space-parallel direct volume rendering of unstructured
grids, IEEE Trans. Parallel Distrib. Syst. 18 (2007) 3–16.

[10] B.B. Cambazoglu, F.P. Junqueira, V. Plachouras, S. Banachowski, B. Cui, S. Lim,
B. Bridge, A refreshing perspective of search engine caching, in: Proceedings of
the 19th International Conference onWorld WideWeb, WWW’10, ACM, New
York, NY, USA, 2010, pp. 181–190.

[11] U. Catalyurek, C. Aykanat, Hypergraph-partitioning-based decomposition for
parallel sparse-matrix vector multiplication, IEEE Trans. Parallel Distrib. Syst.
10 (1999) 673–693.
[12] E. Demir, C. Aykanat, Efficient successor retrieval operations for aggregate
query processing on clustered road networks, Inform. Sci. 180 (2010)
2743–2762.

[13] E. Demir, C. Aykanat, B.B. Cambazoglu, A link-based storage scheme for
efficient aggregate query processing on clustered road networks, Inf. Syst. 35
(2010) 75–93.

[14] K. Devine, E. Boman, R. Heapby, B. Hendrickson, C. Vaughan, Zoltan data
management service for parallel dynamic applications, Comput. Sci. Eng. 4
(2002) 90–97.

[15] N.J. Dingle, P.G. Harrison, W.J. Knottenbelt, Uniformization and hypergraph
partitioning for the distributed computation of response time densities in very
large Markov models, J. Parallel Distrib. Comput. 64 (2004) 908–920.

[16] M. Enos, S. Hauck, M. Sarrafzadeh, Evaluation and optimization of replication
algorithms for logic bipartitioning, IEEE Trans. Comput.-Aided Des. Integr.
Circuits Syst. 18 (1999) 1237–1248.

[17] C.M. Fiduccia, R.M. Mattheyses, A linear-time heuristic for improving network
partitions, in: Proceedings of the 19th Design Automation Conference, DAC’82,
IEEE Press, Piscataway, NJ, USA, 1982, pp. 175–181.

[18] J.R. Gilbert, E. Zmijewski, A parallel graph partitioning algorithm for a
message-passing multiprocessor, Int. J. Parallel Program. 16 (1987) 427–449.

[19] M.K. Goldberg, M. Burnstein, Heuristic improvement technique for bisection
of VLSI networks, in: Proceedings of the IEEE International Conference of
Computer Design, pp. 122–125.

[20] B. Hendrickson, R. Leland, A multilevel algorithm for partitioning graphs,
in: Proceedings of the 1995 ACM/IEEE Conference on Supercomputing
(CDROM), Supercomputing’95, ACM, New York, NY, USA, 1995.

[21] J. Hirai, S. Raghavan, H. Garcia-Molina, A. Paepcke, Webbase: a repository of
web pages, in: In Proceedings of the Ninth International World Wide Web
Conference, pp. 277–293.

[22] J. Hwang, A. El Gamal, Optimal replication for min-cut partitioning,
in: Proceedings of the 1992 IEEE/ACM International Conference on Computer-
Aided Design, ICCAD’92, IEEE Computer Society Press, Los Alamitos, CA, USA,
1992, pp. 432–435.

[23] B.-S. Jeong, E. Omiecinski, Inverted file partitioning schemes in multiple disk
systems, IEEE Trans. Parallel Distrib. Syst. 6 (1995) 142–153.

[24] D.S. Johnson, Approximation algorithms for combinatorial problems, in: Pro-
ceedings of the Fifth Annual ACM Symposium on Theory of Computing,
STOC’73, ACM, New York, NY, USA, 1973, pp. 38–49.

[25] R. Karp, Reducibility among combinatorial problems, in: R. Miller, J. Thatcher
(Eds.), Complexity of Computer Computations, Plenum Press, 1972,
pp. 85–103.

[26] G. Karypis, R. Aggarwal, V. Kumar, S. Shekhar, Multilevel hypergraph
partitioning: applications in VLSI domain, IEEE Trans. Very Large Scale Integr.
7 (1999) 69–79.

[27] G. Karypis, V. Kumar, Multilevel k-way hypergraph partitioning, in: Proceed-
ings of the 36th Annual ACM/IEEE Design Automation Conference, DAC’99,
ACM, New York, NY, USA, 1999, pp. 343–348.

[28] E. Kayaaslan, C. Aykanat, Efficient query processing on term-based-
partitioned inverted indexes, Technical Report BU-CE-1102, Bilkent
University, Computer Engineering Department, 2011. Also available at:
http://www.cs.bilkent.edu.tr/tech-reports/2011.

[29] B. Kernighan, S. Lin, An efficient heuristic procedure for partitioning graphs,
Bell Syst. Tech. J. 49 (1970) 291–307.

[30] C. Kring, A. Newton, A cell-replicating approach to minicut-based circuit
partitioning, in: IEEE International Conference on, Computer-Aided Design,
1991, ICCAD-91, Digest of Technical Papers, 1991, pp. 2–5.

[31] R. Kužnar, F. Brglez, B. Zajc, Multi-way netlist partitioning into heterogeneous
FPGAs andminimization of total device cost and interconnect, in: Proceedings
of the 31st Annual Design Automation Conference, DAC’94, ACM, New York,
NY, USA, 1994, pp. 238–243.

[32] T. Lengauer, Combinatorial Algorithms for Integrated Circuit Layout, John
Wiley & Sons, Inc., New York, NY, USA, 1990.

[33] L.-T. Liu, M.-T. Kuo, C.-K. Cheng, T. Hu, A replication cut for two-way
partitioning, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 14 (1995)
623–630.

[34] L.-T. Liu, M.-T. Kuo, S.-C. Huang, C.-K. Cheng, A gradient method on the
initial partition of Fiduccia–Mattheyses algorithm, in: Proceedings of the 1995
IEEE/ACM International Conference on Computer-Aided Design, ICCAD’95,
IEEE Computer Society, Washington, DC, USA, 1995, pp. 229–234.

[35] C. Lucchese, S. Orlando, R. Perego, F. Silvestri, Mining query logs to optimize
index partitioning in parallel web search engines, in: Proceedings of the 2nd
International Conference on Scalable Information Systems, InfoScale’07, ICST,
Institute for Computer Sciences, Social-Informatics and Telecommunications
Engineering, ICST, Brussels, Belgium, Belgium, 2007, pp. 43:1–43:9.

[36] A. MacFarlane, J.A. McCann, S.E. Robertson, Parallel search using partitioned
inverted files, in: Proceedings of the Seventh International Symposium on
String Processing Information Retrieval (SPIRE’00), IEEE Computer Society,
Washington, DC, USA, 2000, pp. 209–220.

[37] A. Moffat, W. Webber, J. Zobel, Load balancing for term-distributed parallel
retrieval, in: Proceedings of the 29th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, SIGIR’06,
ACM, New York, NY, USA, 2006, pp. 348–355.

[38] A. Moffat, W. Webber, J. Zobel, R. Baeza-Yates, A pipelined architecture for
distributed text query evaluation, Inf. Retr. 10 (2007) 205–231.

http://www.cs.bilkent.edu.tr/tech-reports/2011

R. Oguz Selvitopi et al. / J. Parallel Distrib. Comput. 72 (2012) 547–563 563
[39] G. Pass, A. Chowdhury, C. Torgeson, A picture of search, in: Proceedings of the
1st International Conference on Scalable Information Systems, InfoScale’06,
ACM, New York, NY, USA, 2006.

[40] S. Shekhar, C.-T. Lu, S. Chawla, S. Ravada, Efficient join-index-based spatial-
join processing: a clustering approach, IEEE Trans. Knowl. Data Eng. 14 (2002)
1400–1421.

[41] A. Tomasic, H. Garcia-Molina, Performance of inverted indices in shared-
nothing distributed text document information retrieval systems, in: Pro-
ceedings of the Second International Conference on Parallel and Distributed
Information Systems, PDIS’93, IEEE Computer Society Press, Los Alamitos, CA,
USA, 1993, pp. 8–17.

[42] A. Tomasic, H. Garcia-Molina, Performance issues in distributed shared-
nothing information-retrieval systems, Inf. Process. Manage. 32 (1996)
647–665.

[43] A. Trifunović, W.J. Knottenbelt, Parallel multilevel algorithms for hypergraph
partitioning, J. Parallel Distrib. Comput. 68 (2008) 563–581.

[44] B. Uçar, C. Aykanat, Revisiting hypergraph models for sparse matrix
partitioning, SIAM Rev. 49 (2007) 595–603.

[45] B. Vastenhouw, R.H. Bisseling, A two-dimensional data distribution method
for parallel sparse matrix–vector multiplication, SIAM Rev. 47 (2005) 67–95.

R. Oguz Selvitopi received his M.Sc. degree in Computer
Engineering from Bilkent University, Turkey, in 2010. He
is currently a Ph.D. candidate at Bilkent University. His
research interests are parallel and distributed systems,
scientific computing, and algorithms.
Ata Turk received his B.Sc. and M.Sc. degrees from the
Computer Engineering Department of Bilkent University,
Turkey, in 2002 and 2004, respectively. He is currently
working towards a Ph.D. degree at Bilkent University. His
research interests include parallel information retrieval
and algorithms.

Cevdet Aykanat received his B.S. and M.S. degrees from
Middle East Technical University, Ankara, Turkey, both
in Electrical Engineering, and his Ph.D. degree from Ohio
State University, Columbus, US, in Electrical and Computer
Engineering. He was a Fulbright scholar during his Ph.D.
studies. He worked at the Intel Supercomputer Systems
Division, Beaverton, Oregon, US, as a research associate.
Since 1989, he has been affiliated with the Department of
Computer Engineering, BilkentUniversity, Ankara, Turkey,
where he is currently a professor. His research interests
mainly include parallel computing, parallel scientific

computing and its combinatorial aspects, parallel computer graphics applications,
parallel data mining, graph and hypergraph theoretic models for load balancing,
high performance information retrieval systems, parallel and distributed databases,
and grid computing. He has (co)authored about 60 technical papers published in
academic journals indexed in the ISI, and his publications have received about
500 citations in ISI indexes. He is the recipient of the 1995 Young Investigator
Award of The Scientific and Technological Research Council of Turkey and 2007
Parlar Science Award. He was appointed a member of IFIP Working Group 10.3
(Concurrent System Technology) in April 2004, a member of the EU-INTAS Council
of Scientists in June 2005, and an Associate Editor of IEEE Transactions of Parallel
and Distributed Systems in December 2008.

	Replicated partitioning for undirected hypergraphs
	Introduction
	Related work in directional HP models
	Application
	Contributions

	Background and problem definition
	Definitions and hypergraph partitioning problem
	Iterative improvement heuristics for two-way HP
	Recursive bipartitioning and multilevel frameworks

	Replication in directional versus undirectional HP models
	Replicated FM (rFM)
	Definitions
	Overall rFM algorithm
	Net criticality
	rFM algorithm details
	Complexity analysis of rFM
	rFM and multilevel framework

	Recursive bipartitioning
	Cut-net removal
	Cut-net splitting
	Replication amount distribution

	Pin selection
	Experiments
	Experimental setup
	Performance evaluations

	Conclusions and future work
	References

