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We introduce a restriction morphism, called the Boltje morphism,
from a given ordinary representation functor to a given monomial
Burnside functor. In the case of a sufficiently large fibre group,
this is Robert Boltje’s splitting of the linearization morphism. By
considering a monomial Lefschetz invariant associated with real
representation spheres, we show that, in the case of the real
representation ring and the fibre group {±1}, the image of a
modulo 2 reduction of the Boltje morphism is contained in a group
of units associated with the idempotents of the 2-local Burnside
ring. We deduce a relation on the dimensions of the subgroup-
fixed subspaces of a real representation.
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1. Introduction

We shall be making a study of some restriction morphisms which, at one extreme, express Bolt-
je’s canonical induction formula [Bol90] while, at the other extreme, they generalize a construction
initiated by tom Dieck [Die79, 5.5.9], namely, the tom Dieck morphism associated with spheres of
real representations. A connection between canonical induction and the tom Dieck morphism has ap-
peared before, in Symonds [Sym91], where the integrality property of Boltje’s restriction morphism
was proved by using the natural fibration of complex projective space as a monomial analogue of the
sphere.

Generally, our concern will be with finite-dimensional representations of a finite group G over
a field K of characteristic zero. A little more specifically, our concern will be with the old idea of
trying to synthesize information about KG-modules from information about certain 1-dimensional
KI-modules where I runs over some or all of the subgroups of G . Throughout, we let C be a torsion
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0021-8693/$ – see front matter © 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.jalgebra.2011.12.009

https://core.ac.uk/display/52923989?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.jalgebra.2011.12.009
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jalgebra
mailto:ipek@fen.bilkent.edu.tr
http://dx.doi.org/10.1016/j.jalgebra.2011.12.009
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subgroup of the unit group K× = K−{0}. The 1-dimensional KI-modules to which we shall be paying
especial attention will be those upon which each element of I acts as multiplication by an element
of C . Some of the results below are specific to the case where K = R and C = {±1}, and some of
them are also specific to the case where G is a 2-group.

Fixing C , we write O C (G), or just O (G), to denote the smallest normal subgroup of G such that the
quotient group G/O (G) is abelian and every element of G/O (G) has the same order as some element
of C . In other words, O (G) is intersection of the kernels of the group homomorphisms G → C .

Consider a KG-module M , finite-dimensional as we deem all KG-modules to be. Given a subgroup
I � G , then the O (I)-fixed subspace M O (I) of M is the sum of those 1-dimensional KI-submodules
of M that are inflated from I/O (I). For elements c ∈ C and i ∈ I , we write M I,i

c to denote the c-
eigenspace of the action of i on M O (I) . By Maschke’s Theorem,

M O (I) =
⊕
c∈C

M I,i
c , dim

(
M O (I)) =

∑
c∈C

dim
(
M I,i

c

)
.

We shall introduce a restriction morphism, denoted dimc , whereby the isomorphism class [M] of M
is associated with the function

(I, i) �→ dim
(
M I,i

c

)
.

We shall define the Boltje morphism to be the restriction morphism

bolK,C =
∑
c∈C

c dimc .

This morphism is usually considered only in the case where C is sufficiently large in the sense that
each element of G has the same order as some element of C . In that case, the field K splits for G ,
the Boltje morphism is a splitting for linearization and we have a canonical induction formula. At the
other extreme though, when C = {1}, the monomial dimension morphism dim1 is closely related to
the tom Dieck morphism die(), both of those morphisms associating the isomorphism class [M] with
the function

I �→ dimR

(
M I).

The vague comments that we have just made are intended merely to convey an impression of the
constructions. In Section 2, we shall give details and, in particular, we shall be elucidating those two
extremal cases.

For the rest of this introductory section, let us confine our discussion to the case where we have
the most to say, the case K = R. Here, the only possibilities for C are C = {1} and C = {±1}. We shall
be examining the modulo 2 reductions of the morphisms dimc and bolR,C . We shall be making use of
the following topological construction. Given an RG-module M , we let S(M) denote the unit sphere
of M with respect to any G-invariant inner product on M . Up to homotopy, S(M) can be regarded as
the homotopy G-sphere obtained from M by removing the zero vector.

Let us make some brief comments concerning the case C = {1}. The reduced tom Dieck morphism
die is so-called because it can be regarded as a modulo 2 reduction of the tom Dieck morphism die().
Via die, the isomorphism class [M] is associated with the function

I �→ par
(
dim

(
M I))

where par(n) = (−1)n for n ∈ Z. We can view die as a morphism of biset functors
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die : AR → β×

where the coordinate module AR(G) is the real representation ring of G and the coordinate module
β×(G) is the unit group of the ghost ring β(G) associated with the Burnside ring B(G) of G . But we
shall be changing the codomain. A result of tom Dieck asserts that the image of the coordinate map
dieG : AR(G) → β×(G) is contained in the unit group B×(G) of B(G). His proof makes use of the fact
that the function I �→ par(dim(M I )) is determined by the Lefschetz invariant of S(M). Hence, we can
regard the reduced tom Dieck morphism as a morphism of biset functors

die : AR → B×.

The main substance of this paper concerns the case C = {±1}, still with K = R. We now replace
the ordinary Burnside ring B(G) with the real Burnside ring BR(G) = B{±1}(G), we mean to say, the
monomial Burnside ring with fibre group {±1}. For the rest of this section, we assume that C =
{±1}. Thus, the group O (G) = O C (G) is the smallest normal subgroup of G such that G/O (G) is an
elementary abelian 2-group. We write O 2(G) to denote the smallest normal subgroup of G such that
G/O 2(G) is a 2-group.

In a moment, we shall define a restriction morphism bol, called the reduced Boltje morphism,
whereby [M] is associated with the function

I �→ par
(
dim

(
M O (I))).

Some more notation is needed. Recall that the algebra maps QB(G) → Q are the maps
εG

I : QB(G) → Q, indexed by representatives I of the conjugacy classes of subgroups of G , where
εG

I [Ω] = |Ω I |, the notation indicating that the isomorphism class [Ω] of a G-set Ω is sent to the
number of I-fixed elements of Ω . Also recall that any element x of QB(G) has coordinate decompo-
sition

x =
∑

I

εG
I (x)eG

I

where each eG
I is the unique primitive idempotent of QB(G) such that εG

I (eG
I ) �= 0. The ghost ring

β(G) is defined to be the set consisting of those elements x such that each εG
I (x) ∈ Z. Evidently, the

unit group β×(G) of β(G) consists of those elements x such that each εG
I (x) ∈ {±1}. In particular,

β×(G) is an elementary abelian 2-group, and it can be regarded as a vector space over the field of or-
der 2. Our notation follows [Bar10, Section 3], where fuller details of these well-known constructions
are given. We define bolG : AR(G) → β×(G) to be the Q-linear map such that

bolG [M] =
∑

I

par
(
dim

(
M O (I)))eG

I .

Evidently, we can view bol as a morphism of restriction functors AR → β× . Extending to the ring Z(2)

of 2-local integers, we can view bol as a morphism of restriction functors Z(2) AR → β× .
Let β×

(2) denote the restriction subfunctor of β× such that β×
(2)(G) consists of those units in β×(G)

which can be written in the form 1 − 2y, where y is an idempotent of Z(2)B(G). In analogy with the
above result of tom Dieck, we shall prove the following result in Section 3.

Theorem 1.1. The image of the map bolG : Z(2) AR(G) → β×(G) is contained in β×
(2)(G). Hence, bol can be

regarded as a restriction morphism bol : Z(2) AR → β×
(2) .

In Section 4, using Theorem 1.1 together with a characterization of idempotents due to Dress, we
shall obtain the following result. We write ≡2 to denote congruence modulo 2.
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Theorem 1.2. Given an RG-module M, then dim(M O (I)) ≡2 dim(M O 2(I)) for all I � G.

Specializing to the case of a finite 2-group, and using a theorem of Tornehave, we shall deduce
the next result, which expresses a constraint on the units of the Burnside ring of a finite 2-group. We
shall also give a more direct alternative proof, using the same theorem of Tornehave and also using
an extension in [Bar06] of Bouc’s theory [Bou10, Chapter 9] of genetic sections.

Theorem 1.3. Suppose that G is a 2-group. Then, for all I � G and all units x ∈ B×(G), we have εG
O (I)(x) =

εG
1 (x).

2. Boltje morphisms

For an arbitrary field K with characteristic zero, an arbitrary torsion subgroup C of the unit group
K× and an arbitrary element c ∈ C , we shall define a restriction morphism dimc , called the monomial
dimension morphism for eigenvalue c, and we shall define a restriction morphism bolC,K , called the
Boltje morphism for C and K. In this section, we shall explain how, in one extremal case, bolC,K is
associated with canonical induction while, in another extremal case, bolC,K is associated with dimen-
sion functions on real representation spheres.

We shall be considering three kinds of group functors, namely, restriction functors, Mackey func-
tors, biset functors. All of our group functors are understood to be defined on the class of all finite
groups, except when we confine attention to the class of all finite 2-groups. For any group functor L,
we write L(G) for the coordinate module at G . For any morphism of group functors θ : L → L′ , we
write θG : L(G) → L′(G) for the coordinate map at G . Any group isomorphism G → G ′ , gives rise
to an isogation map (sometimes awkwardly called an isomorphism map) L(G) → L(G ′), which is to
be interpreted as transport of structure. Restriction functors are equipped with isogation maps and
restriction maps. Mackey functors are further equipped with induction maps, biset functors are yet
further equipped with inflation and deflation maps. A good starting-point for a study of these briefly
indicated notions is Bouc [Bou10].

Recall that the representation ring of the group algebra KG coincides with the character ring
of KG . Denoted AK(G), it is a free Z-module with basis Irr(KG), the set of isomorphism classes
of simple KG-modules, which we identify with the set of irreducible KG-characters. The sum and
product on AK(G) are given by direct sum and tensor product. We can understand AK to be a biset
functor for the class of all finite groups, equipped with isogation, restriction, induction, inflation,
deflation maps. Actually, the inflation and deflation maps will be of no concern to us in this paper,
and we can just as well regard AK(G) as a Mackey functor, equipped only with isogation, restriction
and induction maps.

The monomial Burnside ring of G with fibre group C , denoted BC (G), is defined similarly, but with
C-fibred G-sets in place of KG-modules. Recall that a C-fibred G-set is a permutation set Ω for the
group C G = C × G such that C acts freely and the number of C-orbits is finite. A C-orbit of Ω is
called a fibre of Ω . It is well known that BC can be regarded as a biset functor. For our purposes, we
can just as well regard it as a Mackey functor.

Let us briefly indicate two coordinate decompositions that were reviewed in more detail in [Bar04,
Eqs. 1, 2]. Defining a C-subcharacter of G to be a pair (U ,μ) where U � G and μ ∈ Hom(U , C), then
we have a coordinate decomposition

BC (G) =
⊕
(U ,μ)

ZdG
U ,μ

where (U ,μ) runs over representatives of the G-conjugacy classes of C-subcharacters, and dG
U ,μ is the

isomorphism class of a transitive C-fibred G-set such that U is the stabilizer of a fibre and U acts via
μ on that fibre. The other coordinate decomposition concerns the algebra KBC (G) = K ⊗ BC (G). We
define a C-subelement of G to be a pair (I, i O C (I)), where i ∈ I � G . As an abuse of notation, we write
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(I, i) instead of (I, i O C (I)). For each C-subelement (I, i), let εG
I,i be the algebra map KBC (G) → K

associated with (I, i). Recall that, given a C-fibred G-set Ω , then εG
I,i[Ω] = ∑

ω φω , where ω runs

over the fibres stabilized by I and i acts on ω as multiplication by φω . Let eG
I,i be the unique primitive

idempotent of KBC (G) such that εG
I,i(eG

I,i) = 1. Note that we have G-conjugacy (I, i) =G ( J , j) if and

only if εG
I,i = εG

J , j , which is equivalent to the condition eG
I,i = eG

J , j . We have

KBC (G) =
⊕
(I,i)

KeG
I,i

where (I, i) runs over representatives of the G-conjugacy classes of C-subelements. Thus, given an
element x ∈ KBC (G), then

x =
∑
(I,i)

εG
I,i(x)eG

I,i .

Recall that there is an embedding B(G) ↪→ BC (G) such that [�] �→ [C�], where each element ω of
a given G-set � corresponds to a fibre {cω: c ∈ C} of the C-fibred G-set C� = C × �. The embedding
is characterized by an easy remark [Bar04, 7.2], which says that, given x ∈ BC (G), then x ∈ B(G) if and
only if εG

I,i(x) = εG
I,i′ (x) for all i, i′ ∈ I , in which case, εG

I (x) = εG
I,i(x) for all i ∈ I . We shall be needing

the following remark in the next section.

Remark 2.1. Let R be a unital subring of K. Then KB(G) ∩ R BC (G) = R B(G).

Proof. Let πC : BC (G) → B(G) be the projection such that [Ω] �→ [C\Ω], where C\Ω denotes the
G-set of fibres of a given C-fibred G-set Ω . Extending linearly, we obtain projections πC : R BC (G) →
R B(G) and πC : KBC (G) → KB(G). Given x ∈ KB(G) ∩ R BC (G), then x = πC (x) ∈ R B(G). So KB(G) ∩
R BC (G) ⊆ R B(G). The reverse inclusion is obvious. �

We mention that the projection πC : KBC (G) → KB(G) is an algebra map and, since εG
I [C\Ω] =

εG
I,1[Ω], we have πC (eG

I,i) = eG
I if i ∈ O (I) while πC (eG

I,i) = 0 otherwise.
We shall also be making use of the primitive idempotents of KAK(G). Regarding KAK(G) as

the K-vector space of G-invariant functions G → K, then the algebra maps KAK(G) → K are the
maps εG

g , indexed by representatives g of the conjugacy classes of G , where εG
g (χ) = χ(g) for

χ ∈ KAK(G). Letting eG
g be the primitive idempotent such that εG

g (eG
g ) = 1, then

χ =
∑

g

εG
g (χ)eG

g =
∑

g

χ(g)eG
g

where g runs over representatives of the conjugacy classes of G . The linearization morphism

linC,K : KBC → KAK

has coordinate morphisms linC,K
G : KBC (G) → KAK(G) such that

linC,K
G

[
dG

U ,μ

] = indG,U (μ).

Letting Ω be a C-fibred G-set, and letting KΩ = K ⊗C Ω be the evident extension of Ω to a KG-
module, then linC,K

G [Ω] = [KΩ].
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Remark 2.2. Given a primitive idempotent eG
I,i of KBC (G), then linC,K

G (eG
I,i) �= 0 if and only if I is cyclic

with generator i, in which case linC,K
G (eG

I,i) = eG
i .

Proof. It suffices to show that εG
〈i〉,i[Ω] = εG

i [KΩ]. Letting x run over representatives of the fibres
of Ω , then x runs over the elements of a basis for the KG-module KΩ . With respect to that basis,
the action of i on KΩ is represented by a matrix which has exactly one entry in each row and
likewise for each column. The two sides of the required equation are plainly both equal to the trace
of that matrix. �

Given c ∈ C , we define a K-linear map

dimc
G : KAK(G) → KBC (G)

such that εG
I,i(dimc

G [M]) = dim(M I,i
c ) for a KG-module M . In other words,

dimc
G [M] =

∑
(I,i)

dim
(
M I,i

c

)
eG

I,i .

Since εH
I,i(resH,G(x)) = εG

I,i(x) for all intermediate subgroups I � H � G , the maps dimc
G commute

with restriction. Plainly, the maps dimc
G also commute with isogation. Thus, the maps dimc

G combine
to form a restriction morphism

dimc : KAK → KBC .

Let us define the Boltje morphism to be the restriction morphism

bolC,K =
∑
c∈C

c dimc : KAK → KBC .

The sum makes sense because, for each G , the sum bolC,K
G = ∑

c∈C c dimc
G is finite, indeed, dimc

G
vanishes for all c whose order does not divide |G|. When C is sufficiently large, the Boltje morphism
is a splitting for linearization. We mean to say, if every element of G has the same order as an
element of C , then

linC,K
G ◦bolC,K

G = idKAK(G) .

To see this, first note that, for arbitrary C and K, we have

bolC,K
G [M] =

∑
(I,i)

χI (i)eG
I,i

where χI is the KI-character of the KI-module M O (I) . Using Remark 2.2,

linC,K
G

(
bolC,K

G [M]) =
∑
(I,i)

χI (i) linC,K
G (eI,i) =

∑
i

χ(i)ei

where χ is the KG-character of M and, in the final sum, i runs over representatives of those conju-
gacy classes of elements of G such that the order of i divides |G|. When C is sufficiently large in the



L. Barker, İ. Tuvay / Journal of Algebra 353 (2012) 79–92 85
sense specified above, i runs over representatives of all the conjugacy classes, and
∑

i χ(i)ei = [M],
as required.

Let us confirm that the assertion we have just made is just a reformulation of the splitting re-
sult in Boltje [Bol90]. Suppose, again, that C is sufficiently large. Then, in particular, K is a splitting
field for G . We must now resolve two different notations. Where we write BC (G) and AK(G) and
linC,K

G and dG
U ,μ , Boltje [Bol90] writes R+(G) and R(G) and bG and (U ,μ)G , respectively. Note that,

because of the hypothesis on C , the scenario is essentially independent of C and K. In [Bol90, 2.1],
he shows that there exists a unique restriction morphism a : AK → BC such that aG(φ) = dG

G,φ for all
φ ∈ Hom(G, C). Since

εG
I,i

(
bolC,K

G (φ)
) = φ(i) = εG

I,i

(
dG

G,φ

) = εG
I,i

(
aG(φ)

)

we have bolC,K
G = aG and bolC,K = a. But the splitting property that we have been discussing is just a

preliminary to a deeper result about integrality. Having resolved the two different notations, we can
now interpret Boltje [Bol90, 2.1(b)] as the following theorem, which expresses the integrality property
too.

Theorem 2.3 (Boltje). Suppose that every element of G has the same order as an element of C . Then the
restriction morphism bolC,K : KAK → KBC is the K-linear extension of the unique restriction morphism
bolC,K : AK → BC such that linC,K ◦bolC,K = id.

When the hypothesis on C is relaxed, the splitting property and the integrality property in the
conclusion of the theorem can fail. Nevertheless, as we shall see in the next section, the Boltje mor-
phism bolC,K does appear to be of interest even in the two smallest cases, where C = {1} or C = {±1}.
Let us comment on a connection between the tom Dieck morphism die() and the Boltje morphism
in the case C = {1}. Our notation die() is taken from a presentation in [Bar10, 4.1] of a result of
Bouc–Yalçın [BY07, p. 828]. Letting B∗ denote the dual of the Burnside functor B , then the tom Dieck
morphism die : AK → B∗ is given by

dieG [M] =
∑

I

dim
(
M I)δG

I

where I runs over representatives of the G-conjugacy classes of subgroups of G , and the elements
δG

I comprise a Z-basis for B∗(G) that is dual to the Z-basis of B(G) consisting of the isomorphism
classes of transitive G-sets dG

I = [G/I]. On the other hand, the morphism bol{1},K = dim1 : AK → B is
given by

bol{1},K
G [M] = dim1

G [M] =
∑

I

dim
(
M I)eG

I .

Thus, although die() and bol{1},K have different codomains, their defining formulas are similar.
A closer connection will transpire, however, when we pass to the reduced versions of those two
morphisms in the special case K = R.

3. The reduced Boltje morphism

Still allowing the finite group G to be arbitrary, we now confine our attention to the case K = R.
The only torsion units of R are 1 and −1, so the only possibilities for C are C = {1} and C = {±1}. We
shall be discussing modulo 2 reductions of the tom Dieck morphism die() and the Boltje morphisms
bol{1},R and bol{±1},R , realizing the reductions as morphisms by understanding their images to be
contained in the unit groups B×(G) and β×(G), respectively. Although those unit groups are abelian,
it will be convenient to write their group operations multiplicatively.



86 L. Barker, İ. Tuvay / Journal of Algebra 353 (2012) 79–92
In preparation for a study of the case C = {±1}, we first review the case C = {1}, drawing material
from [Bar10] and Bouc–Yalçın [BY07]. The parity function par : n �→ (−1)n is, of course, modulo 2
reduction of rational integers written multiplicatively (with the codomain C2, the cyclic group with
order 2, taken to be {±1} instead of Z/2Z). Thus, fixing an RG-module M , and letting I run over
representatives of the conjugacy classes of subgroups of G , the function die : I �→ par(dim(M I )) is the
modulo 2 reduction of the function die : I �→ dim(M I ). In Section 2, we realized die() as a morphism
with codomain B∗ . But we shall be realizing die as a morphism with codomain B× . Let us explain the
relationship between those two codomains. Recall that the ghost ring associated with B(G) is defined
to be the Z-span of the primitive idempotents β(G) = ⊕

I ZeG
I . We have B(G) � β(G) < QB(G), and

an element x ∈ QB(G) belongs to β(G) if and only if εG
I (x) ∈ Z for each I � G . We also have an

inclusion of unit groups B×(G) � β×(G), and x ∈ β×(G) if and only if each εG
I (x) ∈ {±1}. We shall be

making use of Yoshida’s characterization [Yos90, 6.5] of B×(G) as a subgroup of β×(G).

Theorem 3.1 (Yoshida’s Criterion). Given an element x ∈ β×(G), then x ∈ B×(G) if and only if, for all I � G,
the function NG(I)/I � g I �→ εG〈I,g〉(x)/εG

I (x) ∈ {±1} is a group homomorphism.

As discussed in [Bar10, Section 10], the modulo 2 reduction of the biset functor B∗ can be identi-
fied with the biset functor β× , and the modulo 2 reduction of the morphism of biset functors die()

from AR to B∗ can be identified with the morphism of biset functors die from AR to β× given by

dieG [M] =
∑

I

par
(
dim

(
M I))eG

I .

A well-known result of tom Dieck asserts that the image dieG(AR(G)) is contained in B×(G). Since
B× is a biset subfunctor of β× , we can regard die as a morphism of biset functors

die : AR → B×.

We call die the reduced tom Dieck morphism. (In [Bar10], the tom Dieck morphism die() was called the
“lifted tom Dieck morphism” for the sake of clear contradistinction.)

Below, our strategy for proving Theorem 1.1 will be to treat it as a monomial analogue of tom
Dieck’s inclusion die(AR) � B× . Just as an interesting aside, let us show how Yoshida’s Criterion yields
a quick direct proof of tom Dieck’s inclusion. Consider an RG-module M and an element g ∈ G .
Let m+(g) and m−(g) be the multiplicities of 1 and −1, respectively, as eigenvalues of the action
of g on M . Let m(g) be the sum of the multiplicities of the non-real eigenvalues. Then dim(M) =
m+(g) + m−(g) + m(g). Since the non-real eigenvalues occur in complex conjugate pairs, m(g) is
even and the determinant of the action of g is

det(g : M) = par
(
m−(g)

) = par
(
m+(g) − dim(M)

) = par(dim(M〈g〉))
par(dim(M))

.

Let x = dieG [M]. Consider a subgroup I � G and an element g I ∈ NG(I)/I . Replacing the RG-module
M with the RNG(I)/I-module M I , we have

det
(

g I : M I) = par(dim(M〈I,g〉))
par(dim(M I ))

= εG〈I,g〉(x)

εG
I (x)

.

By the multiplicative property of determinants, x satisfies the criterion in Theorem 3.1, hence x ∈
B×(G). The direct proof of the inclusion die(AR) � B× is complete.

However, lacking an analogue of Theorem 3.1 for the case C = {±1}, we shall be unable to adapt
the argument that we have just given. Tom Dieck’s original proof of the inclusion die(AR) � B× is
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well known, but let us briefly present it. Let K be an admissible G-equivariant triangulation of the
G-sphere S(M). Thus, K is a G-simplicial complex, admissible in the sense that the stabilizer of any
simplex fixes the simplex, and the geometric realization of K is G-homeomorphic to S(M). Recall that
the Lefschetz invariant of S(M) is

ΛG
(

S(M)
) =

∑
σ∈G K

par
(
�(σ )

)[
OrbG(σ )

]

as an element of B(G), summed over representatives σ of the G-orbits of simplexes in K , where
OrbG(σ ) denotes the G-orbit of σ as a transitive G-set and �(σ ) denotes the dimension of σ . Here, we
are not including any (−1)-simplex. For I � G , the subcomplex K I consisting of the I-fixed simplexes
is a triangulation of the I-fixed sphere S(M)I = S(M I ). Summing over all the simplexes σ in K I , we
have

εG
I

(
ΛG

(
S(M)

)) =
∑
σ∈K I

par
(
�(σ )

) = χ
(

S(M)I) = 1 − par
(
dim

(
M I)) = εG

I

(
1 − dieG [M])

where χ denotes the Euler characteristic, equal to 2 or 0 for even-dimensional or odd-dimensional
spheres, respectively. Therefore dieG [M] = 1−ΛG(S(M)) and, perforce, dieG [M] ∈ B(G). But dieG [M] ∈
β×(G), hence dieG [M] ∈ B×(G). We have again established the inclusion die(AR) � B× .

For the rest of this section, we put C = {±1}. Thus, given a subgroup I � G , then I/O (I) is the
largest quotient group of I such that I/O (I) is an elementary abelian 2-group. We shall prove Theo-
rem 1.1 by adapting the above topological proof of the inclusion die(AR) � B× .

Let M be an RG-module. Allowing C to act multiplicatively on M and on S(M), let K be an
admissible C G-equivariant triangulation of S(M). Thus, the hypothesis on K is stronger than before,
the extra condition being that, when we identify the vertices of K with their corresponding points of
S(M), the vertices occur in pairs, z and −z. More generally, identifying the simplexes of K with their
corresponding subsets of S(M), the simplexes occur in pairs, σ and −σ , the points of any simplex
being the negations of the points of its paired partner. As an element of BC (G), we define the C-
monomial Lefschetz invariant of M to be

ΛC G(M) =
∑
σ

par
(
�(σ )

)[
OrbC G(σ )

]

where σ now runs over representatives of the C G-orbits of simplexes in K , and [OrbC G(σ )] denotes
the isomorphism class of the C G-orbit OrbC G(σ ) as a C-fibred G-set. A similar monomial Lefschetz
invariant, in the context of a sufficiently large fibre group, was considered by Symonds in [Sym91,
Section 2]. To see that ΛC G (M) is an invariant of the C G-homotopy class of S(M), observe that,
regarding M as a C G-module and regarding S(M) as a C G-space, then ΛC G (M) is determined by
the usual Lefschetz invariant ΛC G(S(M)) ∈ B(C G), which is given by the same formula, but with
[OrbC G(σ )] reinterpreted as the isomorphism class of OrbC G(σ ) as a transitive C G-set.

Theorem 3.2. Still assuming that C = {±1} and that M is an RG-module then, for any C-subelement (I, i)
of G, we have

εG
I,i

(
ΛC G(M)

) =
∑

ψ∈IrrM (RI)

ψ(i)

where IrrM(RI) denotes the subset of Irr(RI) consisting of those irreducible RI-characters that have odd mul-
tiplicity in the RI-module M O (I) . In particular, εG

I,i(ΛC G(M)) ≡2 dimR(M O (I)).
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Proof. We have dimR(M O (I)) = ∑
ψ mψ where, for the moment, ψ runs over all the irreducible RI-

characters and mψ is the multiplicity of ψ in the RI-character of M O (I) . If mψ �= 0 then ψ is the
inflation of an irreducible RI/O (I)-character and, in particular, ψ(i) = ±1. Therefore, dimR(M O (I)) ≡2∑

ψ ψ(i), where ψ now runs over those irreducible RI-characters such that mψ is odd. So the rider
will follow from the main equality.

Put Λ = ΛC G(M). Since εG
I,i(Λ) = ε I

I,i(resI,G(Λ)) = ε I
I,i(ΛC I (resI,G(M))), we can replace M with

resI,G(M). In other words, we may assume that I = G . Let K be an admissible C G-equivariant trian-
gulation of the sphere S(M). We have

εG
G,i(Λ) =

∑
σ

par
(
�(σ )

)
εG

G,i

[
OrbC G(σ )

]

where σ runs over representatives of the C G-orbits of simplexes of K . By the definition of εG
G,i ,

contributions to the sum come from only those representatives σ such that the fibre {σ ,−σ } is
stabilized by G , in other words, {σ ,−σ } = OrbC G(σ ). Let A be the set of simplexes ρ of K whose
fibre is stablized by G . Let G = G/O (G), and regard the irreducible RG-characters as irreducible RG-
characters by inflation. For all ρ ∈ A, we have

εG
G,i

[
OrbC G(ρ)

] = εG
G,i

[{ρ,−ρ}] = ψρ(i)

where ψρ is the irreducible RG-character such that iρ = ψρ(i)ρ . Since each C G-orbit in A owns
exactly two simplexes,

2εG
G,i(Λ) =

∑
ρ∈A

ψρ(i)par
(
�(ρ)

)
.

Defining Aψ = {ρ ∈ A: ψρ = ψ}, we have a disjoint union A = ⋃
ψ Aψ where ψ runs over the irre-

ducible RG-characters. So

2εG
G,i(Λ) =

∑
ψ∈Irr(RG)

ψ(i)
∑

ρ∈Aψ

par
(
�(ρ)

)
.

Meanwhile, we have a direct sum of RG-modules M O (G) = ⊕
ψ Mψ , where Mψ is the sum of the

RG-modules with character ψ . We claim that Aψ is a triangulation of S(Mψ). To demonstrate the
claim, we shall make use of the admissibility of K as a C G-complex. We have Mψ = MGψ , where Gψ

be the index 2 subgroup of C G such that if ψ(i) = 1 then i ∈ Gψ /� −i, otherwise i /∈ Gψ � −i. But Aψ

is precisely the set of simplexes in K that are fixed by Gψ . By the admissibility of K as a C G-complex,
Aψ is a triangulation of S(MGψ ). The claim is established. Therefore

∑
ρ∈Aψ

par
(
�(ρ)

) = χ
(

S(Mψ)
) = 1 − par

(
dimR(Mψ)

)
.

We have shown that εG,i
G (Λ) = ∑

ψ∈IrrM (RG) ψ(i), as required. �
We need to introduce a suitable ghost ring. As a subring of QBR(G), we define

βR(G) =
⊕
(I,i)

ZeG
I,i
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where, as usual, (I, i) runs over representatives of the G-conjugacy classes of C-subelements of G .
To distinguish βR(G) from other ghost rings that are sometimes considered in other contexts, let
us call βR(G) the full ghost ring associated with BR(G). We have BR(G) � βR(G) < QBR(G), and an
element x ∈ QBR(G) belongs to βR(G) if and only if each εG

I,i(x) ∈ Z. Let us mention that βR(G) can
be characterized in various other ways: as the Z-span of the primitive idempotents of QBR(G); as
the integral closure of BR(G) in QBR(G); as the unique maximal subring of QBR(G) that is finitely
generated as a Z-module.

Since εH
I,i(resH,G(x)) = εG

I,i(x) for all I � H � G , the rings βR(G) combine to form a restriction
functor βR . Let us mention that, by [Bar04, 5.4, 5.5], βR commutes with induction as well as restric-
tion and isogation, so we can regard βR as a Mackey functor defined on the class of all finite groups.
In fact, some unpublished results of Boltje and Olcay Coşkun imply that βR is a biset functor. Let
β×

R
(G) denote the unit group of βR(G). We have B×

R
(G) � β×

R
(G), and x ∈ β×

R
(G) if and only if each

εG
I,i(x) ∈ C . For the same reason as before, β×

R
is a restriction functor. Actually, part of [Bar04, 9.6]

says that β×
R

is a Mackey functor.

Lemma 3.3. Let x be an element of Z(2)BR(G) such that εG
I,i(x) ≡2 εG

I, j(x) for all I � G and i, j ∈ I . Write

lim(x) to denote the idempotent of β(G) such that εG
I (lim(x)) ≡2 εG

I,i(x). Then lim(x) ∈ Z(2)B(G).

Proof. For any sufficiently large positive integer m, we have 2mZ(2)βR(G) ⊆ Z(2)BR(G). Choose and
fix such m. Let z be the element of Z(2)βR(G) such that lim(x) = x + 2z. Then

lim(x) = lim(x)2n = x2n +
2n∑
j=1

(
2n

j

)
2 j z jx2n− j

for all positive integers n. When n is sufficiently large, 2m divides all the binomial coefficients indexed
by integers j in the range 1 � j � m−1. Choose and fix such n. Then lim(x)−x2n

belongs to the subset
2mZ(2)βR(G) of Z(2)BR(G). Therefore lim(x) ∈ Z(2)BR(G). But lim(x) also belongs to RB(G), and the
required conclusion now follows from Remark 2.1. �

The rationale for the notation lim(x) is that, under the 2-adic topology, lim(x) = limn x2n
.

We now turn to the reduced Boltje morphism bol, which we defined in Section 1. Note that bol
can be regarded as the modulo 2 reduction of bol{±1},R because

εG
I,i

(
bol{±1},R

G [M]) = χI (i) ≡2 dim
(
M O (I))

where χI is the RI-character of M O (I) .

Theorem 3.4. Still putting C = {±1} and letting M be an RG-module, then

bolG [M] = 1 − 2 lim
(
ΛC G(M)

)
.

Furthermore, lim(ΛC G (M)) ∈ Z(2)B(G) and bolG [M] ∈ β×
(2)(G).

Proof. By Theorem 3.2, εG
I,i(ΛC G (M)) ≡2 dimR(M O (I)) for any C-subelement (I, i). So the expression

lim(ΛC G (M)) makes sense and the asserted equality holds. The rider follows from Lemma 3.3. �
The proof of Theorem 1.1 is complete. As an aside, it is worth recording the following description

of dieG [M] in terms of monomial Lefschetz invariants of M and M ⊕ R, where R denotes the trivial
RG-module.
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Corollary 3.5. Still putting C = {±1} and letting M be an RG-module, then

dieG [M] = ΛC G(M ⊕ R) − ΛC G(M).

Proof. Let Λ = ΛC G(M) and Γ = ΛC G (M ⊕ R). In the notation of Theorem 3.2,

εG
I,i(Γ − Λ) =

{
1 if the trivial RI-module has odd multiplicity in (M ⊕ R)O (I),
−1 if the trivial RI-module has odd multiplicity in M O (I)

=
{

1 if the trivial RI-module has odd multiplicity in M ⊕ R,
−1 if the trivial RI-module has odd multiplicity in M

= par
(
dimR

(
M I)) = εG

I

(
die[M]).

Since this is independent of i, we have Γ − Λ ∈ B(G) and εG
I (Γ − Λ) = εG

I (die[M]). �
4. Dimensions of subspaces fixed by subgroups

We shall prove Theorem 1.2, we shall show that Theorem 1.2 implies Theorem 1.3 and we shall
also give a more direct proof of Theorem 1.3.

Let us begin with a direct proof of a special case of Theorem 1.2.

Theorem 4.1. If G is a 2-group, then dim(M O (I)) ≡2 dim(M) for any RG-module M and any subgroup I � G.

Proof. First assume that G has a cyclic subgroup A such that |G : A| � 2. Letting x = dieG [M], then
εG

I (x) = par(dim(M I )), and we are to show that εG
O (I)(x) = εG

1 (x). Our assumption implies that one
of the following holds: G is trivial; O (I) = A < G and G is cyclic; O (I) < A. By dealing with each
of those three possibilities separately, it is easy to see that O (I) is cyclic with generator t2 for some
t ∈ G . A special case of Theorem 3.1 asserts that the function G � g �→ εG〈g〉(x)/εG

1 (x) ∈ {±1} is a group

homomorphism. Therefore εG
O (I)(x)/εG

1 (x) = (εG〈t〉(x)/εG
1 (x))2 = 1. The assertion is now established in

the special case of the assumption.
For the general case, we shall argue by induction on |G|. We may assume that M is simple. Let

us recall some material from [Bar06], restating only those conclusions that we need, and only in
the special cases that we need. A finite 2-group is called a Roquette 2-group provided every normal
abelian subgroup is cyclic. A well-known result of Peter Roquette asserts that those 2-groups are
precisely as follows: the cyclic 2-groups, the generalized quaternion 2-groups with order at least 8,
the dihedral 2-groups with order at least 16, the semidihedral 2-groups with order at least 16. Part of
the Genotype Theorem [Bar06, 1.1] says that the simple RG-module M can be written as an induced
module M = IndG,H (S), where S is a simple RH-module and H/Ker(S) is a Roquette 2-group.

If M is not absolutely simple, then the CG-module C ⊗R M is the sum of two conjugate simple
CG-modules, hence each dim(M O (I)) is even and the required conclusion is trivial. So we may assume
that M is absolutely simple. Then S must be absolutely simple too.

Suppose that H = G . If M is not faithful, then the required conclusion follows from the inductive
hypothesis. If M is faithful, then G is a Roquette 2-group. By Roquette’s classification, every Roquette
2-group has a cyclic subgroup with index at most 2, and we have already dealt with that case.

So we may assume that H < G . Let J be a maximal subgroup of G containing H and let T =
Ind J ,H (S). The R J -module T is absolutely simple because M = IndG, J (T ). Let x ∈ G − J .

Suppose that dim(T ) = 1. Then the kernel N = Ker(T ) has index at most 2 in J , so the kernel N ∩
xN = Ker(M) has index at most 2 in N and at most 8 in G . Moreover, if Ker(M) �= N then G/Ker(M) is
non-abelian. Replacing G with G/Ker(M), we reduce to the case where either |G| = 2 or else |G| = 4
or else G is non-abelian and |G| = 8. Any such G has a cyclic subgroup with index at most 2 and,
again, the argument is complete in this case.



L. Barker, İ. Tuvay / Journal of Algebra 353 (2012) 79–92 91
So we may assume that dim(T ) � 2. We shall deduce that dim(M O (I)) is even for all I � G .
Identifying T with the subspace 1 ⊗ T of M , we have M = T ⊕ xT as a direct sum of two simple
R J -modules. Noting that O (I) � O (G) � J , we have

M O (I) = T O (I) ⊕ (xT )O (I)

as a direct sum of real vector spaces. We are to show that

dim
(
T O (I)) ≡2 dim

(
(xT )O (I)).

If I � J , then dim(T O (I)) ≡2 dim(T ) = dim(xT ) ≡2 dim((xT )O (I)) because, by the inductive hypothesis,
the assertion holds for J . Finally, suppose that I � J , in other words, I J = G . The conjugation action
of x−1 on J induces a transport of structure whereby O (I) is sent to x−1 O (I)x and the isomorphism
class of xT is sent to the isomorphism class of T . Therefore dim((xT )O (I)) = dim(T x−1 O (I)x). But the
element x ∈ G − J was chosen arbitrarily and, since I J = G , we may insist that x ∈ I , whereupon
x−1 O (I)x = O (I) and dim((xT )O (I)) = dim(T O (I)). �

We shall be needing the following result of Tornehave [Tor84]. Another proof of it was given by
Yalçın [Yal05, 1.1].

Theorem 4.2 (Tornehave). Supposing that G is a 2-group, then the reduced tom Dieck map dieG : AR(G) →
B×(G) is surjective.

In view of Theorem 4.2, we see that Theorem 1.3 is equivalent to Theorem 4.1. Our direct proof of
Theorem 1.3 is complete.

We mention another way of expressing Theorem 1.3. Let sgn : B× → β(2) be the unique restriction
morphism such that, for any finite group G , the coordinate map sgnG has image sgnG(B×) = {±1B(G)}.
Thus, εG

I (sgn(x)) = εG
1 (x) for all I � G and x ∈ B×(G). Plainly, Theorem 1.3 can be expressed as fol-

lows.

Theorem 4.3. As restriction functors for the class of finite 2-groups, bol = sgn ◦ die.

We now turn towards the task of proving Theorem 1.2. The following theorem of Andreas Dress
can be found in, for instance, Benson [Ben91, 5.4.8]. Let p be a prime. We write Z(p) for the ring
of p-local integers. We write O p(G) for the largest normal subgroup of G such that G/O p(G) is a
p-group. Recall that G is said to be p-perfect provided G = O p(G).

Theorem 4.4 (Dress). Given a prime p and an idempotent y ∈ QB(G), then y ∈ Z(p)B(G) if and only if
εG

I (y) = εG
O p(I)(y) for all I � G. In particular, the condition εG

H (y) = 1 characterizes a bijective correspon-
dence between the primitive idempotents y of Z(p)B(G) and the conjugacy classes of p-perfect subgroups H
of G.

The next corollary is worth mentioning, although it yields no constraints on the units of B(G) and
it will not be used below.

Corollary 4.5. Given x ∈ Z(2)B(G), then εG
I (x) ≡2 εG

O 2(I)
(x) for all I � G.

Proof. The hypothesis on x implies that εG
I,i(x) = εG

I, j(x) for all I � G and all i, j ∈ I . By Lemma 3.3

and Theorem 4.3, εG
I (x) ≡2 εG

I (lim(x)) = εG
2 (lim(x)) ≡2 εG

2 (x). �

O (I) O (I)
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Putting C = {±1} and letting M be an RG-module, Theorems 3.4 and 4.3 yield

dim
(
M O (I)) ≡2 εG

I

(
ΛC G(M)

) = εG
O 2(I)

(
ΛC G(M)

) ≡2 dim
(
M O (O 2(I))) = dim

(
M O 2(I)).

The proof of Theorem 1.2 is complete.
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