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Minimum Probability of Error Receivers
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Abstract—Optimal receiver design is studied for a communica-
tions system in which both detector randomization and stochastic
signaling can be performed. First, it is proven that stochastic sig-
naling without detector randomization cannot achieve a smaller
average probability of error than detector randomization with
deterministic signaling for the same average power constraint
and noise statistics. Then, it is shown that the optimal receiver
design results in a randomization between at most two maximum
a-posteriori probability (MAP) detectors corresponding to two
deterministic signal vectors. Numerical examples are provided
to explain the results.

Index Terms—Probability of error, detector randomization,
stochastic signaling.

I. INTRODUCTION

OVER non-Gaussian communications channels [1], trans-
mitting a stochastic signal for each symbol instead of a

deterministic signal can provide performance improvements
in terms of the average probability of error [2], [3]. It is
shown in [2] that, for a given detector, an optimal stochastic
signal can be represented by a randomization of no more than
three different signal values under second and fourth moment
constraints. In addition, the joint optimal design of stochastic
signals and a detector is studied in [3] under an average power
constraint, and it is proven that the optimal solution results in
stochastic signals with at most two distinct signal values and
the corresponding maximum a-posteriori probability (MAP)
detector.

Another approach to improve performance of communi-
cations systems over non-Gaussian channels is to perform
randomization among multiple detectors [4], [5]. In that case,
different detectors are employed at the receiver with certain
probabilities. In [5], an average power constrained binary
communications system is studied, and randomization between
two deterministic signal pairs and the corresponding MAP
detectors is investigated. It is shown that detector random-
ization can provide significant performance improvements. In
a related work, optimal additive noise components are studied
for variable detectors in the context of stochastic resonance,
and the optimal randomization between detector and additive
noise pairs is investigated [6].

Although the optimal design of stochastic signals and the
corresponding MAP detector is analyzed in [3], and the
optimal detector randomization and the corresponding MAP
detectors are investigated in [5], no studies have considered
the joint optimal design of detectors, stochastic signals, and
detector randomization. Specifically, the study in [3] did
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not consider any detector randomization, and that in [5]
assumed deterministic signals (no stochastic signaling). In this
study, both detector randomization and stochastic signaling are
considered, and the problem of jointly optimizing detectors,
stochastic signals, and detector randomization is investigated.
First, it is proven that stochastic signaling without detector
randomization can never achieve a lower average probability
of error than detector randomization with deterministic sig-
naling for the same average power constraint and channel
statistics. Then, based on this result and some additional
analysis, the solution to the most generic optimization problem
is obtained as a randomization between at most two MAP
detectors corresponding to two deterministic signal vectors.
Two detection examples are provided to compare various
optimal and suboptimal signaling schemes.

II. DETECTOR RANDOMIZATION AND STOCHASTIC

SIGNALING

Consider an M -ary communications system, in which the
receiver acquires N -dimensional observations over an additive
noise channel. The receiver is allowed to randomize or time-
share among at most K different detectors (decision rules) to
improve the detection performance, as shown in Fig. 1. At any
given time, only one of those K detectors can be employed at
the receiver for the recognition of the transmitted symbol. The
transmitter and the receiver are assumed to be synchronized in
the sense that the transmitter knows which detector is currently
in use at the receiver.1 Furthermore, a stochastic signaling
approach is adopted by treating the transmitted signals for each
detector as random vectors. As investigated in [2] and [3] in
the absence of detector randomization, employing stochastic
signaling; that is, modeling signals for different symbols
as random variables instead of deterministic quantities, can
provide performance improvements in some scenarios.

Considering both detector randomization and stochastic
signaling, the noisy observation vector Y received by the ith
detector can be modeled as follows:

Y = S
(i)
j +N , j ∈ {0, 1, . . . ,M − 1} , i ∈ {1, . . . ,K}

(1)

where S
(i)
j represents the transmitted signal vector for symbol

j that is intended for detector i, and N is the noise component
that is independent of S(i)

j . It should be emphasized that S(i)
j is

modeled as a random vector to facilitate stochastic signaling.
Also, the prior probabilities of the symbols, represented by
π0, π1, . . . , πM−1, are assumed to be known. In addition,
although the signal model in (1) is in the form of a simple

1In practice, this can be achieved by employing a communications protocol
that allocates the first Ns,1 symbols in the payload for detector 1, . . . , the last
Ns,K symbols for detector K . The information on the numbers of symbols
for different detectors can be included in the header of a communications
packet.
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Fig. 1. System model for joint stochastic signaling and detector randomiza-
tion.

additive noise channel, it holds for flat-fading channels as well
assuming perfect channel estimation [2].

At the receiver, K generic detectors are utilized to estimate
the symbol specified in (1). That is, for a given observation
vector Y = y, the ith detector φ(i)(y) is described as

φ(i)(y) = j , if y ∈ Γ
(i)
j (2)

for i ∈ {1, . . . ,K} and j ∈ {0, 1, . . . ,M − 1} , where
Γ
(i)
0 ,Γ

(i)
1 , . . . ,Γ

(i)
M−1 are the decision regions for the ith

detector [7]. The receiver can randomize among these K
detectors in any manner in order to optimize its probability
of error performance. Let vi denote the randomization (or
time-sharing) factor for detector φ(i), where

∑K
i=1 vi = 1 and

vi ≥ 0 for i = 1, . . . ,K . Then, out of Ns symbols, viNs of
them are processed by detector φ(i) for i = 1, . . . ,K .2

The aim of this study is to jointly optimize the random-
ization factors, decision regions, and stochastic signals in
order to achieve the minimum average probability of error,
or equivalently, the maximum average probability of correct
decision. The average probability of correct decision can
be expressed as Pc =

∑K
i=1 vi P

(i)
c , where P

(i)
c represents

the corresponding probability of correct decision for the ith
detector under M -ary signaling; i.e.,

P(i)
c =

M−1∑
j=0

πj

∫
Γ
(i)
j

p
(i)
j (y) dy (3)

for i = 1, 2, . . . ,K , with p
(i)
j (y) denoting the conditional

probability density function (PDF) of the observation when the
jth symbol that is to be received by the ith detector is transmit-
ted. Recalling that the signals and the noise are independent,
the conditional PDF of the observation can be calculated as
p
(i)
j (y) =

∫
RN p

S
(i)
j

(x) pN(y − x) dx = E

{
pN

(
y − S

(i)
j

)}
,

where the expectation is over the PDF of S
(i)
j . Then, the

average probability of correct decision can be expressed as

Pc =
K∑
i=1

vi

M−1∑
j=0

∫
Γ
(i)
j

πj E

{
pN

(
y − S

(i)
j

)}
dy . (4)

In practical systems, there is a constraint on the average
power emitted from the transmitter. Under the framework
of stochastic signaling and detector randomization (or time-
sharing), this constraint on the average power can be expressed

2It is assumed that viNs is an integer for i = 1, . . . ,K . If not, the
randomization factors can be achieved approximately. The approximation
accuracy improves for larger Ns.

in the following form [7]:
∑K

i=1 vi
∑M−1

j=0 πj E

{∥∥S(i)
j

∥∥2
2

}
≤

A , where A denotes the average power limit.
The probability of correct decision in (4) should be max-

imized over all possible decision rules (decision regions),
randomization factors, and detector-specific signal PDFs that
satisfy the average power constraint. For a given detector
i and the corresponding signal PDFs, the optimal decision
rule is specified by the MAP rule. The MAP decision rule
selects symbol k if k = arg max

j ∈{0, 1, ... ,M−1}
πj p

(i)
j (y) , and it

maximizes the average probability of correct decision [7].
Therefore, it is not necessary to search over all decision rules;
only the MAP decision rule should be determined for each
detector and its corresponding average probability of correct
decision should be considered [3]. The average probability
of correct decision for a generic decision rule is given in
(3). Using the decision region for the MAP detector; i.e.,
Γ
(i)
j = {y ∈ R

N | πj p
(i)
j (y) ≥ πl p

(i)
l (y) , ∀l �= j}, the

average probability of correct decision for detector i becomes

P
(i)
c,MAP =

∫
RN

max
j ∈{0, 1, ... ,M−1}

{
πj p

(i)
j (y)

}
dy

=

∫
RN

max
j ∈{0, 1, ... ,M−1}

{
πj E

{
pN(y − S

(i)
j )

}}
dy . (5)

Then, the optimal detector randomization and stochastic signal
design problem can be stated as

max
B

K∑
i=1

vi

∫
RN

max
j∈{0,1,...,M−1}

{
πj E

{
pN

(
y − S

(i)
j

)}}
dy

subject to
K∑
i=1

vi

M−1∑
j=0

πj E

{∥∥S(i)
j

∥∥2

2

}
≤ A

K∑
i=1

vi = 1 , v � 0 (6)

where the optimization space is defined as B �{
vi, pS(i)

0
, p

S
(i)
1
, . . . , p

S
(i)
M−1

}K

i=1
and v � 0 means that vi ≥

0, ∀ i ∈ {1, 2, . . . ,K}. Note that there are also implicit
constraints in the optimization problem in (6), since each
p
S

(i)
j

(·) in B represents a PDF. Namely, p
S

(i)
j

(x) ≥ 0 ,

∀x ∈ R
N , and

∫
RN p

S
(i)
j

(x) dx = 1 should also be satisfied

∀ j ∈ {0, 1, . . . ,M −1} and ∀ i ∈ {1, . . . ,K} by the optimal
solution.

The formulation in (6) generalizes the previous studies in
the literature and covers them as special cases. For example,
for K = 1 (i.e., no detector randomization), it reduces to the
problem in [3] (hence, K ≥ 2 is considered in this study).
On the other hand, when deterministic signals are considered;
that is, p

S
(i)
j

(x) = δ(x−s
(i)
j ), ∀i, j, and when M = 2 (binary

modulation), the problem in (6) reduces to that in [5].
The optimization problem in (6) provides a generic formu-

lation that is valid for any noise PDF, and it is difficult to solve
in general as the optimization needs to be performed over a
space of signal PDFs. Let P†

c denote the maximum average
probability of correct decision obtained as the solution of the
optimization problem in (6). To provide a simpler formulation
of this problem, an upper bound on P†

c will be derived first,
and then the achievability of that bound will be investigated.
To that aim, the following proposition is presented first.
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Proposition 1 (Stochastic Signaling vs. Detector Random-
ization): Considering the same average power constraint and
the same statistics for the additive noise, stochastic signaling
(without detector randomization) can never achieve a larger
average probability of correct decision than detector ran-
domization (without stochastic signaling) when optimal MAP
detectors are employed in both cases.

Proof: Consider an M -ary communications system in
which the transmitter employs stochastic signaling and the
receiver uses the corresponding MAP rule for detection (no
detector randomization is performed). Suppose that the trans-
mitted signal for each symbol is characterized with the PDF
pXj (·) , ∀ j ∈ {0, 1, . . . ,M − 1} . From (5), the average
probability of correct decision for this system is given by

Pc,MAP =

∫
RN

max
j∈{0,1,...,M−1}

{πj E {pN(y −Xj)}}dy
(7)

where the expectations are taken with respect to the PDFs
of Xj’s. The transmitted signals for all the M symbols
can be expressed as the elements of a random vector X as
follows: X � [X0 X1 · · ·XM−1] ∈ R

MN , where Xj ’s are
N dimensional row vectors ∀j ∈ {0, 1, . . . ,M − 1} . Then,
the following inequality follows directly from the definitions
of the ‘max’ and ‘expectation’ operations.

max
j ∈{0, 1, ... ,M−1}

{πj E {pN(y −Xj)}} ≤

E

{
max

j ∈{0, 1, ... ,M−1}
{πj pN(y −Xj)}

}
(8)

where the expectation on the right-hand-side is taken with
respect to the PDF of X. From (7) and (8), it is observed that∫

RN

max
j∈{0,1,...,M−1}

{πj E {pN(y −Xj)}} dy ≤

E

{∫
RN

max
j∈{0,1,...,M−1}

{πj pN(y −Xj)} dy
}

� E{F (X)}.
(9)

Looking more closely at (9), it is observed that F (x) rep-
resents the average probability of correct decision when the
deterministic signal vector x is used for the transmission of
M symbols over the additive noise channel and the corre-
sponding MAP detector is employed at the receiver. Then,
E{F (X)} can be interpreted as a randomization (or time-
sharing) among MAP detectors. The exact number of MAP
detectors is determined by the number of distinct values that
the random vector X can take.3 Hence, assuming the same
average power constraint (see (6)), the average probability of
correct decision obtained by stochastic signaling with PDF
pX(·) is always smaller than or equal to that of deterministic
signaling and detector randomization according to the same
PDF. �

Similarly to the proof of Proposition 1, we can express
the transmitted signals for all the M symbols that are to be
received by detector i as the elements of a random vector:

3In fact, a randomization among two MAP detectors is always sufficient in
practice since optimal stochastic signals can be represented by a randomiza-
tion of at most two different signal values under an average power constraint
[3]. In other words, for any stochastic signal PDF, a corresponding discrete
probability distribution with at most two mass points can be obtained, and
the corresponding MAP detector randomization can be performed according
to that distribution.

S(i) �
[
S
(i)
0 S

(i)
1 . . . S

(i)
M−1

]
∈ R

MN , where S
(i)
j ’s are N

dimensional row vectors. Then, the result in Proposition 1
can be employed to obtain a new optimization problem that
provides an upper bound on the problem in (6). Specifically,
instead of stochastic signals, consider detector randomization
among deterministic signal values according to the joint signal
PDF. Then, the inequality in (9) can be applied to the objective
function in (6), and the following optimization problem can
be obtained.

max
{vi, pS(i)}K

i=1

K∑
i=1

vi

× E

{∫
RN

max
j∈{0,1,...,M−1}

{
πj pN

(
y − S

(i)
j

)}
dy

}

subject to
K∑
i=1

vi E

{M−1∑
j=0

πj

∥∥S(i)
j

∥∥2
2

}
≤ A ,

K∑
i=1

vi = 1 , v � 0 (10)

where the expectations are taken with respect to the PDFs
of S(i)’s. Proposition 1 implies that the solution to this
optimization problem provides an upper bound on P†

c, which
denotes the solution to the optimization problem in (6).

In order to achieve further simplification of the prob-
lem in (10), define pS̃(s̃) �

∑K
i=1 vi pS(i)(s̃) , where s̃ �

[ s̃0 s̃1 · · · s̃M−1] ∈ R
MN . Since

∑K
i=1 vi = 1 , vi ≥ 0 ∀i

and pS(i)(·)’s are valid PDFs on R
MN , pS̃(s̃) satisfies the

conditions to be a PDF. Then, the optimization problem in
(10) can be written in the following equivalent form.

max
pS̃

E{G(S̃)} subject to E{H(S̃)} ≤ A (11)

with G(S̃) �
∫
RN max

j ∈{0, 1, ... ,M−1}

{
πj pN(y − S̃j)

}
dy and

H(S̃) �
∑M−1

j=0 πj

∥∥S̃j

∥∥2
2

, where the expectations are taken
with respect to pS̃(·), which denotes the joint PDF of trans-
mitted signals for symbols {0, 1, . . . ,M − 1} . In (11), G(s̃)
represents the average probability of correct decision when
the deterministic signal vector s̃ is used for the transmis-
sion of M symbols over the additive noise channel and the
corresponding MAP detector is employed at the receiver.
Therefore, E{G(S̃)} can be interpreted as a randomization (or
time-sharing) among possibly infinitely many MAP detectors.4

Let P�
c denote the maximum average probability of correct

decision obtained as the solution to the optimization problem
in (11). From Proposition 1, P�

c ≥ P†
c is always satisfied.

Optimization problems similar to (11) have been studied
before, for example in [2], [3], [5], [8]. Assuming that G(s)
in (11) is a continuous function and the components of s reside
in finite closed intervals, the optimal solution of (11) can be
represented by a randomization of at most two signal levels
as a result of Carathéodory’s theorem [9]; that is, popt

S̃
(s̃) =

λ δ(s̃ − s1) + (1 − λ) δ(s̃ − s2). Therefore, the problem in
(11) can be solved over such signal PDFs, resulting in the

4In the sequel, it will be shown that the optimal solution requires a
randomization among at most two MAP detectors.
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following optimization problem:

max
{λ, s1, s2}

λG(s1) + (1− λ)G(s2)

subject to λH(s1) + (1− λ)H(s2) ≤ A , λ ∈ [0, 1] (12)

where

G(sk) =

∫
RN

max
j ∈{0, 1, ... ,M−1}

{πj pN(y − sk,j)} dy ,

H(sk) =

M−1∑
j=0

πj

∥∥sk,j∥∥2

2
,

and sk = [ sk,0 sk,1, · · · sk,M−1] ∈ R
MN , with sk,j being an

N dimensional row vector ∀j ∈ {0, 1, . . . ,M−1} . Therefore,
it is observed that the solution of (11) can be obtained by
optimizing over a significantly reduced optimization space via
(12). Optimization problems in the form of (12) have been
investigated in various studies in the literature, such as [3],
[5], [8], [10]. The main approaches in solving (12) include the
analytical techniques as in [5] and [8], the convex relaxation
technique to obtain an approximate solution in polynomial
time as employed in [10], and the global optimization algo-
rithms such as differential evolution (DE) and particle swarm
optimization (PSO) [10]. In this study, a global optimization
technique based on multistart and patternsearch algorithms
from MATLAB’s Global Optimization Toolbox are used to
obtain the solution of (12).

It should be emphasized that detector randomization be-
comes useful in the presence of the average power constraint
[2], [11], [12]. Without the constraint in (11), an optimal
solution corresponding to the value of S̃ that maximizes
G(S̃) can be obtained, meaning that a single detector can
be employed to achieve the maximum probability of correct
decision.5

Finally, the following proposition states that the maximum
average probabilities of correct decision achieved by the
solutions of the optimization problems in (6) and (12) are
equal.

Proposition 2: The optimization problems in (6) and (12)
result in the same maximum value.

Proof: First consider the optimization problem in (6) when
K = 2 detectors are used and deterministic signaling is
employed for each detector, that is, pS(1)(s(1)) = δ(s(1) − s1)
and pS(2)(s(2)) = δ(s(2) − s2) . In that case, (6) reduces to
the optimization problem in (12); hence, (6) covers (12) as a
special case. Therefore, the maximum value of the objective
function in (6) should be larger than or equal to that of (12);
namely, P†

c ≥ P�
c . On the other hand, Proposition 1 implies

that (11) (equivalently (12)) provides an upper bound on (6);
that is, P†

c ≤ P�
c . Therefore, it is concluded that P†

c = P�
c . �

Proposition 2 implies that the solution of the original
optimization problem in (6), which considers the joint op-
timization of stochastic signals and detector randomization,
can be obtained as the solution of the much simpler op-
timization problem specified in (12). This also means that
when multiple detectors are available for randomization (i.e.,
K ≥ 2), it is sufficient to employ detector randomization
for two deterministic signal vectors; i.e., there is no need to

5In fact, without any power constraints, transmitting at increasingly higher
deterministic power levels for each symbol and using a single MAP detector
at the receiver would be sufficient to bring the average error probability down
to zero.

employ stochastic signaling to achieve the optimal solution.
On the other hand, when there is only one detector (i.e.,
K = 1), the optimal solution may involve stochastic signaling,
as investigated in [3]. All in all, the optimal solution to the
most generic optimization problem in (6) results in either
detector randomization for two deterministic signal values (for
K ≥ 2) or stochastic signaling without detector randomization
(for K = 1).

III. NUMERICAL RESULTS AND CONCLUSIONS

In this section, numerical examples are presented to com-
pare the optimal solution obtained in the previous section
against various signaling techniques investigated in [3] in
terms of probability of error performance. A communica-
tions system specified as in (1) is considered with scalar
observations and equal priors. It is assumed that the re-
ceiver is able to implement multiple detectors (K ≥ 2)
and to randomize among them. Also, a Gaussian mixture
model with equal weights and variances is assumed for the
noise, the PDF of which can be expressed as pN(n) =∑L

i=1 exp{−(n− μi)
2/(2σ2)}/(√2π σL) [1]. Note that the

average power of the noise can be calculated from E{N2} =
σ2+(1/L)

∑L
i=1 μ2

i . In addition, the average power constraint
is denoted as A . Similar to those introduced in [3], three
different signaling schemes can be considered:

Gaussian Solution: Lacking any information about
the noise PDF, the transmitter employs antipodal sig-
nals, {−√

A,
√
A}, for the binary case (Fig. 2), and{

−3
√
A√

5
, −√

A√
5

,
√
A√
5
, 3

√
A√
5

}
for the quaternary case (Fig. 3).

In addition, the MAP decision rule is used at the receiver.
Optimal−Stochastic: In this scheme, no detector random-

ization is employed, and the optimal stochastic signals and the
corresponding MAP detector are designed jointly [3]. In this
case, the optimal signal for each symbol can be characterized
by a discrete random variable with at most two mass points,
and the solution can be obtained from an optimization problem
similar to (9) of [3].

Optimal−Deterministic: This scheme does not employ any
detector randomization or stochastic signaling, and obtains the
optimal deterministic signal levels and the corresponding MAP
detector [3].

In addition to the approaches described above, the following
scheme investigated in the previous section is considered as
the overall optimal solution:

Optimal Detector Randomization with Deterministic
Signaling: This case refers to the solution of the most generic
optimization problem in (6), which can be obtained from (12)
as studied in the previous section.

In Fig. 2, the average error probabilities of the schemes
described above are plotted versus A/σ2 for A = 1, where
the parameters of the Gaussian mixture noise are given by
L = 6 and µ = [−1.08 − 0.81 − 0.27 0.27 0.81 1.08] as
in [3]. However, unlike [3], symmetric signaling assumption
is not employed. From the figure, it is observed that the
Gaussian solution has the worst performance as expected since
it is optimized for zero-mean Gaussian noise. Optimizing
deterministic signal levels improves over the performance
of the Gaussian solution, as observed from the Optimal–
Deterministic curve. Further performance improvements are
obtained when optimal stochastic signals are considered in-
stead of deterministic signals (see Optimal–Stochastic). How-
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TABLE I
OPTIMAL SIGNALS FOR THE SCENARIO IN FIG. 2

Deterministic sig. Stochastic signaling Detector randomization
A/σ2 (dB) s0 s1 β ŝ1,0 ŝ2,0 ŝ1,1 ŝ2,1 λ s1,0 s2,0 s1,1 s2,1

10 -0.9992 1.0008 1 -0.9992 N/A 1.0008 N/A 0.0386 -0.6441 -1.0119 0.6441 1.0119
15 -0.9997 1.0003 0.7212 -1.1417 -0.5766 0.9835 0.9836 0.4878 -0.7752 -1.1755 0.7752 1.1755
20 -1.3302 0.2552 0.3927 -1.4543 -0.6388 0.9600 0.9600 0.5417 -0.7756 -1.2127 0.7756 1.2127
25 -0.7622 0.7552 0.4594 -1.4135 -0.5590 0.9556 0.9556 0.4980 -1.1951 -0.7586 1.1951 0.7586
30 -0.8191 0.6761 0.5099 -0.8934 -0.8934 0.6014 1.4408 0.4644 -0.7488 -1.1763 0.7488 1.1763
35 -0.4886 0.9996 0.4892 -1.0150 -1.0150 0.4731 1.2977 0.4399 -0.7456 -1.1513 0.7456 1.1513

10 15 20 25 30 35
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Fig. 2. Average probability of error versus A/σ2 for various approaches.

ever, the best probability of error performance is achieved
by the optimal solution of the most generic optimization
problem investigated in the previous section, which performs
optimal detector randomization among two MAP detectors
corresponding to two deterministic signal pairs (see Optimal–
Detector Randomization). In accordance with Proposition 1,
stochastic signaling without detector randomization cannot
perform better than detector randomization with deterministic
signaling.

In Table I, some optimal signals are presented for
the Optimal–Deterministic, Optimal–Stochastic and Optimal–
Detector Randomization schemes in Fig. 2. For optimal deter-
ministic signaling, s0 and s1 denote the optimal deterministic
signal levels for symbol 0 and symbol 1, respectively. On
the other hand, the optimal signal for symbol i ∈ {0, 1}
has the PDF in the form of pS(s) = β δ(s − ŝ1,i) + (1 −
β) δ(s − ŝ2,i) for optimal stochastic signaling. Finally, the
optimal solution obtained in the previous section (Optimal–
Detector Randomization) employs the signal pair [s1,0 s1,1]
and the corresponding MAP detector with probability λ,
and the signal pair [s2,0 s2,1] and the corresponding MAP
detector with probability 1−λ . It is observed that all optimal
signaling schemes get close to deterministic signaling for
small A/σ2, which is also verified from Fig. 2. However,
the signaling schemes behave differently as A/σ2 increases
from 10 dB, which results in differences in probability of error
performance.

Another example is provided to investigate the benefits
that can be obtained via detector randomization in M -ary
communication systems when M > 2. For this purpose, a
quaternary communications system (M = 4) with symmetric
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Fig. 3. Average probability of error versus A/σ2 for various approaches.

signaling is considered, that is, s2 = −s0 and s3 = −s1. The
parameters of the Gaussian mixture noise are given by L = 6
and µ = [−0.432 − 0.324 − 0.108 0.108 0.324 0.432]. In
Fig. 3, the average error probabilities of the schemes described
previously are plotted versus A/σ2 for A = 1. An important
observation is that optimal stochastic signaling approach does
not improve upon optimal deterministic signaling in this
specific example. This is possibly due to the fact that signal
space is overcrowded with the PDFs of four distinct symbols
(each with six Gaussian mixture components) and there is no
room left for any performance improvement via signal ran-
domization after the optimal allocation of deterministic signal
values. It is also evident from the figure that optimal detector
randomization with deterministic signals achieves the best
probability of error performance. Performance improvements
among different signaling schemes deteriorate as A/σ2 drops
below 20 dB. The corresponding optimal signals are given in
Table II. Note that the results only for symbols 0 and 1 are
listed in the table, and the results for symbols 2 and 3 are
the negatives of them respectively since symmetric signaling
is considered.

The results in this study can also be applied to coded
communications systems that employ hard-decision decoding
at the receiver [13]. As the average error probability of the
hard symbol detection is reduced via detector randomization
or stochastic signaling, the overall error performance can be
improved. On the other hand, when a soft-decision decoding
unit is used at the receiver, the results of this study cannot be
directly employed, and an updated formulation of the problem,
which considers the average probability of error at the output
of the decoding unit, may be required.
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TABLE II
OPTIMAL SIGNALS FOR THE SCENARIO IN FIG. 3

Deterministic signaling Detector randomization
A/σ2 (dB) s0 s1 λ s1,0 s2,0 s1,1 s2,1

12 0.3762 1.3633 1 0.3762 N/A 1.3633 N/A
16 0.3957 1.3571 1 0.3957 N/A 1.3571 N/A
20 0.3066 1.3806 0.5058 0.2323 0.4659 1.2609 1.4654
24 0.3180 1.3780 0.2622 0.4836 0.3081 1.4854 1.3224
28 0.3154 1.3785 0.6570 0.4889 0.0720 1.4814 1.0790
32 0.3051 1.3809 0.7143 0.4826 0.0758 1.4547 1.0553
36 0.3002 1.3820 0.2206 0.0790 0.4745 1.0356 1.4268
40 0.2983 1.3553 0.1720 0.0802 0.4684 1.0204 1.4066
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