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FUSION SYSTEMS AND GROUP ACTIONS WITH ABELIAN
ISOTROPY SUBGROUPS

OZGUN UNLU AND ERGUN YALCIN

ABSTRACT. We prove that if a finite group G acts smoothly on a manifold M so that all
the isotropy subgroups are abelian groups with rank < k, then G acts freely and smoothly
on M x S™ x ---x S"™ for some positive integers ni,...,ng. We construct these actions
using a recursive method, introduced in an earlier paper, that involves abstract fusion
systems on finite groups. As another application of this method, we prove that every
finite solvable group acts freely and smoothly on some product of spheres with trivial
action on homology.

1. INTRODUCTION AND STATEMENT OF RESULTS

Madsen-Thomas-Wall [7] proved that a finite group G acts freely on a sphere if (i) G
has no subgroup isomorphic to the elementary abelian group Z/p x Z/p for any prime
number p and (ii) has no subgroup isomorphic to the dihedral group Dy, of order 2p for
any odd prime number p. At that time the necessity of these conditions were already
known: P. A. Smith [I2] proved that the condition (i) is necessary and Milnor [§] showed
the necessity of the condition (ii).

As a generalization of the above problem we are interested in the problem of character-
izing those finite groups which can act freely and smoothly on a product of k£ spheres for
a given positive integer k. In the case k£ = 1, Madsen-Thomas-Wall uses surgery theory
and considers the unit spheres of linear representations of subgroups to show that certain
surgery obstructions vanish. In the case k > 2, one might hope for the same method to
work. However one would need to construct free actions for certain families of groups
where the surgery obstructions could be detected when they are reduced to subgroups in
these families. Some general methods which can be used to do constructions for some of
these families are given in [I], [14], and [I5]. Our goal in this paper is to improve the
methods used in [I5] and as a result obtain some new actions.

In the case k = 2, Heller [3] showed that if a finite group G acts freely on a product of
two spheres, then G must have rk(G) < 2 where rk(G), rank of GG, denotes the maximum
rank of elementary abelian subgroups (Z/p)" in G. In [15] we showed that this result has
a converse for finite p-groups, more precisely, we proved that a finite p-group G acts freely
and smoothly on a product of two spheres if and only if rk(G) < 2. In [I5] we also proved
that if a finite group G acts smoothly on a manifold M so that all the isotropy subgroups
of M are elementary abelian groups with rank < k, then G acts freely and smoothly on
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M x S™ x ---x S™ for some positive integers ny, ..., n,. This, in particular, implies that
every extra-special p-group of rank £ acts freely and smoothly on a product of k spheres.

To prove the results mentioned above, in [I5] we introduced a recursive method for
constructing group actions on products of spheres. The main idea of this recursive method
is to start with an action of a group G on a manifold M and obtain a new action of G
on M x SV for some positive integer N by gluing unit spheres of CG,-modules V,, over
x € M where G, denotes the isotropy subgroup of G at x. In the construction we use
a theorem of Liick-Oliver [6] on equivariant vector bundles. To apply the Liick-Oliver
theorem, one needs to find a finite group I' which has a complex representation V' such
that the representations V, of isotropy subgroups G, can be obtained from V' by pulling
back via a compatible family of homomorphisms «, : G, — I' (see Section 2 for more
details).

In [I5] we introduced a systematic way of constructing a finite group I' satisfying the
properties above using abstract fusion systems. The idea is the following: we first map
all the isotropy groups into a finite group S, then we study the fusion system F on S
that comes from the conjugations in G and different choices of embeddings into S (see
Definition for a definition of a fusion system). Then, we use a theorem of S. Park [10]
to find I" as the automorphism group of a left F-stable S-S-biset (see Definition 2.4]).

In this paper, we improve the method described above by proving a result that allows
us to construct left F-stable bisets using strongly F-closed subgroups of S (see Definition
B0 and Proposition B.2]). This result is particularly useful when S is an abelian group.
As a consequence, we obtain the following:

Theorem 1.1. Let G be a finite group acting smoothly on a manifold M. If all the
isotropy subgroups of M are abelian groups with rank < k, then G acts freely and smoothly
on M x S™ x ---x S™ for some positive integers ny,...,ny.

A similar result has been proved recently in the homotopy category by Michele Klaus
[5] using G-fibrations. This new tool for constructing F-stable S-S-bisets also makes it
possible to tackle the following problem:

Problem 1.2. Does every finite group act freely on some product of spheres with trivial
action on homology?

It is known that every finite group can act freely on some product of spheres. This
follows from a general construction given in [9, page 547] (which is attributed to J. Torne-
have by Oliver). However, in this construction the free action is obtained by permuting
the spheres, so the induced action on homology is not trivial. To find a free homologically
trivial action of a finite group G on a product of spheres, one may try to take the product
of unit spheres S(V') over some family of complex representations V' of G. Actions that
are obtained in this way are called linear actions on products of spheres. By construction
linear actions are homologically trivial but not every finite group has a free linear action
on a product of spheres. In fact, Urmie Ray [I1] shows that finite groups that have such
actions are rather special: If a finite group G has a free linear action on a product of
spheres, then all the nonabelian simple sections of GG are isomorphic to A5 or Ag.
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Note that even solvable groups may not have free linear actions on a product of spheres.
For example, the alternating group A4 does not act freely on any product of equal dimen-
sional spheres with trivial action on homology (see [9, Theorem 1]). So, it can not act
freely on a product of linear spheres. On the other hand, it is easy to construct homo-
logically trivial actions on products of spheres for supersolvable groups and many other
groups with small rank and fixity (see [11] and [14]).

To construct a free homologically trivial action on a product of spheres, one can start
with an action on some product of spheres, say on a product of all linear spheres, then
apply the fusion system methods described above to obtain an action on M x S¥ for some
N so that the total size of isotropy subgroups is smaller. Continuing this way, one can
inductively construct a free homologically trivial action on a product of spheres as long
as at each step a compatible family of representations coming from a representation of a
finite group I' can be found. So far, we could do this only for solvable groups:

Theorem 1.3. Any finite solvable group can act freely on some product of spheres with
trivial action on homology.

The proof follows from special properties of maximal fusion systems on abelian groups.
To extend the proof to all finite groups, one would need to study the conditions on a
fusion system F that would imply the existence of a left F-stable biset with large isotropy
subgroups. We plan to study this in a future paper.

The paper is organized as follows: In Section 2 we recall the recursive method for
constructing smooth actions that was introduced in [I5]. Theorem [T]is proved in Section
and Theorem [[.3] is proved in Section [l

2. CONSTRUCTIONS OF SMOOTH ACTIONS

In this section, we summarize the recursive method that was introduced in [I5] for
constructing free smooth actions on products of spheres. The main result of this section
is Proposition Z7lwhich is proved in Section 2Dl Most of the results in this section already
appear in [15], but our presentation here is slightly different. We also introduce some new
terminology which is used in the rest of the paper.

Let G be a finite group and M be a finite dimensional smooth manifold with a smooth
G-action. Let H denote the family of isotropy subgroups of the G-action on M. Let I" be
a finite group and

A = (an)nen € lim Rep(H,T)
HecH
be a compatible family of representations. This means that for every map ¢, : H — K
induced by conjugation with g € GG, there exists a v € I' such that the following diagram
commutes:

H-22.r
Cg Cy
K 25T,

We sometimes write (ay) instead of (ay)pey to simplify the notation. We have the
following geometric result which is the starting point for our constructions.
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Proposition 2.1 (Corollary 4.4 in [15]). Let G, M, I', and A = (ay) be as above. Given
a unitary representation p : I' — U(n), there exist a positive integer N and a smooth
G-action on M x SN such that for every x € M, the G -action on the sphere {x} x SV is
diffeomorphic to the linear G -action on S(VE*) where V = poag, and k is some positive
nteger.

As discussed in [I5], there is a way to describe compatible representations using the
terminology of fusion systems. Here we again consider fusion systems on any group (not
necessarily a p-group, in fact, not necessarily a finite group).

Definition 2.2. Let S be a group. A fusion system F on S is a category whose objects
are subgroups of S and whose morphisms are injective group homomorphisms where the
composition of morphisms in F is the usual composition of group homomorphisms and
where for every P, () < S, the morphism set Homz(P, () satisfies the following:
(i) Homg(P, Q) € Homz(P, Q) where Homg(P, Q) is the set of all conjugation ho-
momorphisms induced by elements in S.
(ii) For every morphism ¢ € Homxz(P, @), the induced isomorphism P — ¢(P) and
its inverse are also morphisms in F.

If S is a subgroup of a group I', then an obvious example of a fusion system is the
fusion system Fg(I') on S for which the set of morphisms Homz(P, (Q)) is defined as the
set of all conjugations ¢, (h) = yhy~! where y € I.

2A. Compatible homomorphisms. We now discuss another way to describe compat-
ible representations using fusion systems. Let G be a finite group and H be a family of
subgroups of G closed under conjugation. Let I be any group and (ay)pey be a family
of homomorphisms ay : H — I'. Assume that S is the subgroup of I' generated by the
union
U{ag(H)|H € H}.
Let {¢y: H— S| H € H} be a family of maps such that oy is equal to the composition
HX S T,

Suppose that there is a fusion system JF on S such that for every map ¢, : H — K induced
by conjugation between subgroups in H, there is a monomorphism f € F such that the
following diagram commutes

H "5 oy (H)

W
K —— 1k (K).

Assume that F is the smallest fusion system with these properties. Then one sees that
the family (ay)mey is a compatible family of representations if and only if F C Fg(I).

Before we continue our summary of the construction that we used in [15], we introduce
a new terminology to give a common name to families of homomorphisms that satisfy
properties like the families (ay) and (1) do satisfy. We consider them as homomorphisms
between families of subgroups in fusions systems.
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Definition 2.3. Let H be a family of objects in a fusion system Fg on a group G and
Fs be a fusion system on a group S. For each H € H, let 1y : H — S be a group
homomorphism. Then we say A = (1) oy 18 a compatible family of homomorphisms
from Fg to Fs (supported by H) if for every H, K € H, and every morphism f : H — K

in F¢ there exists a morphism f : tg(H) — tx(K) in Fg such that the following diagram
H - 04(H)

bl
K~ 1x(K)

commutes.

In particular, a compatible family of representations (ay : H — I') gy is a compatible
family of homomorphisms from Fg(G) to Fr(I') supported by H.

2B. Construction of I'. This construction is the same as the construction given by
Park [I0] for saturated fusion systems. Let S be a finite group and 2 be an S-S-biset.
Let I' denote the group of automorphisms of the set € preserving the right S-action. In
other words,
Foa={f:Q—Q|Vse S VeeQ f(xs) = f(x)s}.

Define ¢ : S — I'g as the homomorphism satisfying ¢(s)(z) = sz for all € Q. If the
left S-action on € is free and €2 is non-empty, then ¢ is a monomorphism, hence we can
consider S as a subgroup of I'g.

We now introduce some terminology about bisets. Let {2 be an S-S-biset, () be a
subgroup of S, and ¢ : ) — S be a monomorphism. Then, we write €2 to denote the
()-S-biset obtained from (2 by restricting the left S-action to () and we write 2 to denote
the Q-S-biset obtained from €2 where the left Q-action is induced by ¢. A key lemma
that we used in our previous paper [15] is the following:

Lemma 2.4. [10, Theorem 3| Let §2 be an S-S-biset with a free left S-action and let () be
a subgroup of S and ¢ : QQ — S be a monomorphism. Then, ) and o) are isomorphic
as Q-S-bisets if and only if v is a morphism in the fusion system Fg(L'q).

We make the following definition for the situation considered in Lemma 241

Definition 2.5. Let F be a fusion system on a finite group S. Then, a left free S-S-biset
Q is called left F-stable if for every subgroup @) < S and ¢ € Homz(Q, S), the Q-S-bisets
0f2 and £} are isomorphic.

Hence, by Lemma [2.4] we have the following:

Proposition 2.6. Let F be a fusion system on a finite group S. If € is a left F-stable
S-S-biset, then F C Fs(T'q).

In [I0], S. Park actually proves that F is a full subcategory of F(I'g), i.e., F = Fg(I'q)
when I' is a characteristic biset for the fusion system F.

We now discuss a particular construction of a representation for I'g which comes from
a representation of S.
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2C. Construction of a representation for I'. Let V be a left CS-module and €2 be
an S-S-biset. We define the CI'g-module Vg as follows

Vo = CQ ®Rcs V

where CQ2 denotes the permutation CS-CS-bimodule with basis given by 2. The left
['g-action on Cf2 is given by evaluation of the bijections in I'g at the elements of 2 and
Vq is considered as a left CI'g-module via this action.

Note that every transitive S-S-biset is of the form S xS for some A < § x S, where
S xa S is the set of equivalence classes of pairs (s1,$2) where (s1t1,82) ~ (s1,t2892) if
and only if (¢1,t3) € A. The left and right S-actions are given by the usual left and
right multiplication in S. An S-S-biset is called bifree if both left and right S-actions are
free. It is clear from the above description and from Goursat’s lemma that a transitive
S-S-biset S xS is bifree if and only if A is a graph of an injective map ¢ : ) — S where
@ < S. In this case, we denote A by

A(p) ={(s,9(s)) | s € Q}.
So, a bifree S-S-biset (2 is a disjoint union of bisets of the form S x () S where ¢ : ) — 5
is a monomorphism. We define Isot(£2), the isotropy of €2, as the following set:

Isot(Q) = {¢: Q — S} S X a(g) S is isomorphic to a transitive summand of Q} .

Every transitive biset can be written as a product of five basic bisets (see [2, Lemma
2.3.26]). Since € is bifree, only three of these basic bisets, namely restriction, isogation,
and induction, are needed to express the transitive summands of () as a composition of
basic bisets. By writing each transitive summand of €2 as a composition of the three basic
bisets, we can express ResgQ Vo =CQ ®cs V as a direct sum of CS-modules of the form

Indg Iso* () Resi(Q) Vv

where ¢ : Q — S is in Isot(§2). Note that Iso™(y) is the contravariant isogation defined
by Iso*(¢)(M) = ¢*(M) where M is a p(Q)-module.

2D. Construction of group actions. Let V' be a left CS-module, 2 be a bifree S-S5-
biset, and let Vj, be the CI'g-module constructed above. Then, for every H < S, the
CH-module Resl;j,Q Vo is a direct sum of modules in the form

IndgﬂQz Iso* (¢ o ¢,) Resi(meQ) V

where z € S and ¢ : Q — S is in Isot(€2) (see [15, Proposition 5.8]). Now, we state the
main result of this section.

Proposition 2.7. Let G be a finite group, M be a finite dimensional smooth manifold
with a smooth G-action, and H denote the family of isotropy subgroups of the G-action
on M. Let F be a fusion system on a finite group S and ) be a left F-stable S-S-biset.

Then, given a compatible family of homomorphisms (tr) ey, from Fa(G) to F sup-
ported by H and a CS-module V, we can construct a smooth G-action on M x SN for
some positive integer N so that a subgroup K < G fizes a point on M x SV if and only if
there exists H € H, x € S, and p : ) — S in Isot($2) such that K < H and Resi(wmQ) 1%
has a trivial summand where L = 1y (K).
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Proof. By Proposition 1], there exists a G-action on M x SV for some N so that for
every ¢ € M the G,-action on S is diffeomorphic to the linear action coming from the
representation Vi, of I'. Assume K < @ fixes a point on M x S¥. Then K < H for some
H € H. Let L = 15(K). Then, the CL-module Res;® V4, is a direct sum of modules in
the form

Indmex Iso* (¢ o ¢,) Resi(me) 1%

where z € S and ¢ : Q — S is in Isot(Q2). Hence as a CK-module, (t7)" (ReszQ Vo) is a
direct sum of modules of the form

(1) Infg/J Iso*(tp) Indme,c Iso* (¢ o ¢,;) Resi(me) Vv

where J = ker(ty) N K, z € S, and ¢ : Q — S is in Isot(2). A CK-module of the form
() has a trivial summand if and only if Resi(zmQ) V has a trivial summand. Therefore
K < G fixes a point on M x SV if and only if there exists H € H, z € S, and p : Q — S
in Isot(Q2) such that K < H and Resi(zmQ) V has a trivial summand. O

3. CONSTRUCTING F-STABLE BISETS

In the previous section we summarized the method for constructing smooth actions
using fusion systems. The main result of this method is stated as Proposition .71 This
proposition suggests that to construct new smooth actions on products of spheres, we need
to understand how to construct left F-stable bisets with large isotropy subgroups. Note
that for a fusion system JF on a finite group S, the S-S-biset S x S is a left F-stable biset.
However it is clear that this biset will not be very useful for constructing free actions.

In this section, we prove a proposition that is very useful for constructing left F-stable
bisets with large isotropy. We start with a definition.

Definition 3.1. Let F be a fusion system on a finite group S. Then we say K is a strongly
F-closed subgroup of S if for any subgroup L < K and for any morphism ¢ : L — S in
F we have (L) < K

Note that if K is a strongly F-closed subgroup of S, then the fusion system JF restricts
to a fusion system on K. We denote this fusion system by F|x. Now we are ready to
state our main result in this section.

Proposition 3.2. Let F be a fusion system on a finite group S and K be a strongly
F-closed subgroup of S. Let Q' be a left F|k-stable K-K-biset. Then, the S-S-biset

D=8 xgQ xS

is left F-stable. Moreover, if ¢ : QQ — S is in Isot(Q2), then ¢ can be expressed as a
composition

Q5K S
for some ¢’ : Q — K in Isot(£Y).
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Proof. Note that the biset €2 is defined as a composition of three bisets, so we can write
Q = Ind} ' Resy, where Indj. denotes the S-K-biset §Si and Resy denotes the K-S-
biset xSg. Given a morphism ¢ : ) — S in F, we have

o1 = Iso"(p) Resi(Q) Q = Iso*(p) Resi(Q) Ind3- ' Resy- .

Applying the Mackey formula to Resg(Q) Ind}q{, we get

S = H Iso*(¢) Indigggmm Is0" (c,) Rest, o)k € Resi
P(Q)zKep(Q\S/K
— H Indgw,l(m) Iso* () Iso*(cy) Resﬁfp(Q)ﬂK Q' Resy-

p(Q)rKep(Q)\S/K

where the second equality comes from the commutativity of isogation and induction. Now,
since ' is a left F|g-stable K-K-biset and K is a strongly F-closed subgroup, we obtain

s
= IT Indg 1 ey ReSSrg1 (i) ¥ Resi
P(Q)zKep(Q\S/K
= H IndgnK Resgyn € Resj .

P(Q)zKep(Q)\S/K

Notice that in the disjoint union above we are taking a disjoint union of S-S-bisets
which do not depend on the double coset p(Q)xK. So we can write

o =n, Ind?20 « Restyn € Resjy

where n, = |¢(Q)\S/K|. Note that this computation holds for any ¢ : Q@ — S, in
particular, for the inclusion map inc : @) < S. So, to prove that , = o) as ()-S-bisets
it is enough to prove the equality |p(Q)\S/K| = |Q\S/K].

Since K is strongly F-closed, K is normal in S. So, the number of double cosets
lp(Q)\S/K | is equal to |S/¢(Q)K|. Therefore to prove the above equality, it is enough to
show |p(Q) N K| = |Q N K]|. Note that ¢|gnx : QN K — S is a morphism in F and K is
strongly F-closed, so the image of p|gnx must lie in K. This gives p(QNK) < p(Q)NK,
thus |Q N K| < |p(Q) N K|. For the inverse inequality, apply the same argument to
01 p(Q) — S. This completes the proof of the first part of the proposition.

For the second part, observe that 2’ can be expressed as a disjoint union of bisets of
the form

Indg Iso*(¢') Resl )
where the union is over morphisms ¢’ : @) — K in Isot(§?) (see [2] Lemma 2.3.26]). Since
Q = Ind}; ' Resj., we obtain that

Q = Indj, Indgj Iso™(¢) Resly ) Res = Indg) Iso* (') Res( )

using the composition properties of restriction and induction bisets. So, we can conclude
that every ¢ € Isot(Q) can be expressed as a composition ¢ : Q ~+ K < S for some
¢ Q — K in Isot(€). O

Now Theorem [LI] follows from a recursive application of the following proposition.
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Proposition 3.3. Let k > 1 be an integer and G be a finite group acting smoothly on a
manifold M. If all the isotropy subgroups of M are abelian groups with rank < k, then G
acts freely and smoothly on M x S™ for some positive integer n such that all the isotropy
subgroups of M x S™ are abelian groups with rank <k —1 .

Proof. Let GG be a finite group acting smoothly on a manifold M. Let H denote the family
of isotropy subgroups of the G-action on M. Assume that all the subgroups H € H are
abelian with rank < k. Then there exists a finite abelian group S of rank & such that for
every H € H there is a monomorphism ¢ty : H — S. Take F to be the largest possible
fusion system on S. Let K be the subgroup of S defined as follows

K = {x € S|order of z is a square free product of primes} .

It is clear that K is a strongly F-closed subgroup of S. This allows us to restrict the
fusion system F to K. Let Fx denote the restriction of F to K.

We claim that K is also F-characteristic [15 Definition 6.2], i.e., for any L < K and
for any morphism ¢ : L — K in Fg, there exists a morphism ¢ : K — K in Fg
such that ¢(l) = ¢(I) for all [ € L. To see this, note that K is a direct product of
elementary abelian p-subgroups, so for any L < K, there are direct sum decompositions
K=L&J=¢(L)®J where J, J' < K. Since J = J', we can choose an isomorphism
¢ :J — J and define ¢ : K — K as the map ¢(l,j) = (¢(l),%(j)) for every | € L and
7 € J. So, K is F-characteristic.

Now, since K is F-characteristic, the K-K-biset

O = H K X A(p) K

is left Fx-stable (see [I5, Lemma 6.3]). Using Proposition we conclude that the
S-S-biset
=S XK o XK S
is left F-stable.
Let V be a one-dimensional CS-module which is not trivial when it is restricted to any

Sylow p-subgroup of K. By Proposition 27 G acts smoothly on M x SV for some N so
that if U < G fixes a point M x SV, then U < H for some H € H and

o S
W =Res ), ne) V

is trivial for some ¢ : @ — S in Isot(2). By Proposition 3.2, every morphism ¢ : Q — S
in Isot(Q2) is of the form ¢ : K — K < S, in particular, () = K. If U has rank equal
to k, then ¢(ty(U) N K) includes a Sylow p-subgroup of K, so W is not trivial for such
subgroups. This completes the proof. (]

4. FREE ACTIONS OF SOLVABLE GROUPS

We now consider the problem stated in the introduction which asks whether or not every
finite group can act freely on some product of spheres with trivial action on homology.
We first introduce some terminology which we believe is useful for studying this problem
and then we prove Theorem which solves the problem for finite solvable groups.
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Let I'; be a group for « = 1,2 and JFr, be a fusion system on the group I'; for 2 = 1,2. Let
A = (ag) ey be a compatible family of homomorphisms from F¢(G) to Fr, supported
by H and B = (Bk)xer be a compatible family of homomorphisms from Fr, to Jr,
supported by K. If for every H € H, we have ay(H) € K, then we can compose A with
B and obtain

BoA = (5O¢H(H) © O‘H)HeH
which is a compatible family of homomorphisms from Fg(G) to Fr, supported by H.

Note that if p : 'y — I’y is a group homomorphism, then p induces a compatible family
of homomorphism from Fr, (I'y) to Fr,(I'2). So, now we can give the following definition.

Definition 4.1. Let V = (Vy)pey be a compatible family of unitary representations.
We say V factors through a group I if there exists a homomorphism p : I' — U(n) and a
compatible family of homomorphisms A from Fg(G) to Fr(I') such that V.=po A

Now we can rephrase Proposition 2.1l in the following way.

Proposition 4.2. Let G be a finite group and M be a finite dimensional smooth manifold
with a smooth G-action. Let H denote the family of isotropy subgroups of the G-action
on M. Let V.= (Vig)gen be a compatible family of unitary representations. If 'V factors
through a finite group, then there exists a smooth G-action on M x SN for some N such
that for every x € M, the G-action on the sphere {x} x SN is given by the linear G-
action on S(VG@f) for some k. Moreover if the G-action on M is homologically trivial,
then there exists an N such that the G-action on M x SY is also homologically trivial.

Proof. We only need to prove the last statement. The first part is already proved in
Proposition Il Note that the G-space M x SV is constructed as the total space of a
sphere bundle of a G-equivariant orientable vector bundle p : E — M. So, we need to
show that there is an N > 0 such that the G-action on the homology of SE is trivial
where SE denotes the total space of the sphere bundle of p. We will show this using the
Gysin sequence which relates the homology of M to the homology of SE. Recall that the
Gysin sequence for a sphere bundle is obtained from the long exact sequence of the pair
(DE,SE) where DE denotes the total space of the disk bundle of p. In particular, we
have the following diagram

...—— H,(SE) — H,(DE) — H,(DE,SE) —2> H,_(DE) — . ..

%p* %@

HH(M) Hn—N—l(M)

where the homomorphism ® is defined by ®(2) = p.(U, N 2) for every z € H,(DE,SE).
Here U, € Hy1(D(FE), S(E)) denotes the Thom class of p (see [13, pg. 260]). Note that
if the Thom class is invariant under the G-action, then we can conclude that the Gysin
sequence is a sequence of ZG-modules since the rest of the above diagram is formed by
ZG-modules.

The G-action on the Thom class may be nontrivial in general, but for every g € G,
we always have gU, = £U,. The Thom class of the Whitney sum of two vector bundles
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is the cup product of Thom classes of corresponding bundles (see [4, Thm. 2]). So,
by taking the Whitney sum of p with itself, we can assume that the G-action on the
Thom class is trivial. This means that we can assume that the Thom isomorphism
¢: H,(DE,SE)— H,_n_1(M) is an isomorphism of ZG-modules and hence the Gysin
sequence is a sequence of ZG-modules.

By taking further Whitney sums if necessary, we can also assume that N > dim M.
Then, we will have H,(SE) = H,(M) for all n < N and H,(SE) = H,_n(M) for all
n > N. These isomorphisms are isomorphisms of ZG-modules and since it is assumed
that the G-action on the homology of M is trivial, we can conclude that the G-action on
the homology of SE is trivial. O

Note that in the above proposition, if H is a maximal group in A and if V5 has no
trivial summands, then no point on M x SV will be fixed by H. Hence the total size of
isotropy subgroups of the G-action on M x S would be smaller.

Definition 4.3. Let H; and H, be two families of subgroups in a group G which are
closed under conjugation and taking subgroups. Let F be a fusion system on the group
G. Then we say Hs is reducible to H; if there exists a compatible family of unitary
representations V. = (V) gey of Ha such that V factors through a finite group and H;
is equal to the family of all subgroups of isotropy groups of the G-action on the disjoint
union of the left G-sets G x g S(Vy) over all H € H.,.

Let H; and Hy be two families of subgroups of G which are closed under conjugation
and taking subgroups. Then we write H; < H, if every subgroup in H; is contained in
some subgroup in Hs. Note that if Hs is reducible to H; then H; < Hs. Moreover we
write Hi < Ho if H1 < Hy and Hy # Ho. In particular, this means that there exists a
maximal subgroup in H; which is not maximal in H,.

Definition 4.4. Let F be a fusion system on a group G. A sequence
K=Ho<Hi1<---<H,=H

of families of subgroups in G closed under conjugation and taking subgroup is called a
reduction sequence of length n from H to K if the family H; is reducible to H;_; for all
i€{1,2,...,n}. Moreover in this case we say H is reducible to K in n steps.

If there is a reduction sequence in F from H to I = {1}, then we say the family H is
reducible. If H is the family of all subgroups of GG, then we say the fusion system F is
reducible. If F = Fg(G) is a reducible fusion system, we say the group G is reducible.
The smallest number of steps required to reduce a family H, a fusion system F, or a
group G are denoted by ny, nr, and ng, respectively.

Proposition 4.5. Let G be a finite group. If G is a reducible group then G can act freely,
smoothly, and homologically trivially on a product of ng spheres.

Proof. Let G be reducible. Take a reduction sequence

{1}:H0<H1<"'<%n:%
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of families of subgroups in G such that n = ng and H is the family of all subgroups in G.
Note that G acts on M = pt smoothly and homologically trivially with isotropy subgroups
in H. Now assume that G acts smoothly on some smooth manifold M homologically
trivially with isotropy subgroups in H; for some 0 < i < n. By Definition [4.3] there exists
a compatible family of unitary representations (Vy)pyey, such that subgroups that fixes
a point in G Xy S(Vy) are in H;_; for every H € H;. Now by Proposition L2 we obtain
a smooth G-action on M x SV for some N with trivial action on homology such that all
the isotropy subgroups are in H;_;. Continuing this way, we get a smooth free action on
a product of n spheres with trivial action on homology. OJ

To prove Theorem we will show that all solvable groups are reducible. The proof
follows from a construction that is similar to the construction used in the previous section.

Proposition 4.6. Let G be a finite solvable group. Then, G is reducible.

Proof. Let G be a finite solvable group and G = G and GtV = [G® GW] for i > 0.
Let H be a family of subgroups in GG closed under conjugation and taking subgroups.
Assume that H # {1} and n is the largest integer such that H < G™ for every H € H.
Let

r = max {tk(HG® Y /Gy | e )

and let S = (Z/m)" where m is equal to the exponent of G™ /G"+1). For each H € H,
choose a map jy : HG" ) /G — S and define 1y : H — S as the composition

H — H/H NG =~ G+ /gn+) Jn, g

for every H € H. Let Fg denote the largest possible fusion system on S. Then, (tg)gen
is a compatible family of homomorphisms from Fg(G) to Fg supported by H. Using
the biset and the representation constructed in Proposition B.3], we can reduce H to H’
so that every H € H' satisfies tk(HG™+D /G"D) < — 1. In particular, H’ is strictly
smaller than H. This shows that G is reducible. 0

This completes the proof of Theorem [[.3] It is clear from the above proof that if we can
find ways to construct F-stable bisets with large isotropy subgroups then we can prove
more general theorems on constructions of free actions and possibly solve Problem
completely. In a future work we will investigate which conditions on a fusion system F
guarantee the existence of a left F-stable biset with relatively large isotropy subgroups.

Acknowledgement. We thank the referee for a careful reading of the paper and for
many corrections and helpful comments.
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