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a b s t r a c t

We consider the one-dimensional ferromagnetic Ising model with very long-range inter-
action under a periodic, biased and weak external field and prove that at sufficiently low
temperatures the model has a unique limiting Gibbs state.
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1. Introduction

Over the last few decades numerous rigorous mathematical theories of ferromagnetic behavior have evolved. These
theories serve to provide a better understanding of seemingly curious properties of ferromagnetic systems, and their scalar
behavior and hysteresis phenomena. The simplestmodels used to describe such systems are Ising spinswith a ferromagnetic
pair interaction potential of dipole type. The Ising model has been used to archetype a variety of interacting systems
exhibiting cooperative phenomena ranging from ferromagnetism to rather complicated spin glasses. One-dimensional
systemswith finite range or rapidly decreasing interaction naturally do not exhibit phase transitions at all finite temperature
values [1–3]: in the absence of an external field the behavior of spins is dominated by spin waves or magnons. In contrast, in
the case of a sufficiently strong pair potential at temperatures below the Curie temperature the phenomenon of spontaneous
breaking of global symmetry occurs and two ordered spin states appear in the absence of an additional external field [4,5].
As physically expected, under an identically oriented external field the phenomenon of spontaneous symmetry breaking
disappears [6,7]. In the present paper the ferromagnetic model under a less dominant biased and differently oriented
external field is explored. It is shown that if the absolute value of the external field is sufficiently weak then, along with
the fading out of the local behavior of the field variables, the cooperative activities arising exterminate the spontaneous
magnetization.

Let us consider the one-dimensional ferromagnetic Ising model with long-range interaction:

H0(φ) = −


x,y∈Z1;x>y

U(x − y)φ(x)φ(y) (1)

where the spin variables φ(x) associated with the one-dimensional lattice sites x take the values −1 and +1 and the pair
potential U(x − y) = (x − y)−γ , 1 < γ ≤ 2. The condition γ > 1 provides the existence of the thermodynamical limit and
if γ ≤ 2 does not hold,


x∈Z1,x>0 xU(x) < ∞ and the model (1) has a unique Gibbs state at all temperatures [1–3]. It is well
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known that at sufficiently low temperatures there are extremal Gibbs states P+ and P− corresponding to the ground states
φ = +1 and φ = −1 (see Refs. [4,5] for the case 1 < γ < 2 and [8] for the borderline case γ = 2). These sophisticated
results are related to the phenomenon of ‘‘surface tension’’ in one dimension. Other profound advances including results
on the relation between Fortuin–Kasteleyn percolation and magnetization were obtained for the borderline case γ = 2
[9,10] (for a detailed approach to the random cluster models, see Refs. [11,12]). An alternative approach to the investigation
of ferromagnetic systems based on detailed investigation of the geometry of spin configurations is given in Ref. [13]
(for 1.5 ≤ γ ≤ 2).

Consider a model (1) under an additional periodic external field:

H(φ) = H0(φ) +


x∈Z1

hxφ(x). (2)

Let VN be an interval with the center at the origin and with the length of 2N . We denote the set of all configurations
φ(VN) by Φ(N). We denote the concatenation of the configurations φ(VN) and φi(Z1

− VN) by χ : χ(x) = φ(x) if x ∈ VN and
χ(x) = φi(x) if x ∈ Z1

− VN . Define

HN(φ|φi) =


x,y∈Z1,x>y,{x,y}∩VN ≠∅

U(x − y)(χ(x) − χ(y)) +


x∈Z1,x∈VN

hxχ(x).

The finite-volume Gibbs distribution corresponding to the boundary conditions φi is

Pi
N(φ|φi) =

exp(−βHN(φ|φi))

Ξ(N, φi)

where β is the inverse temperature and the partition functionΞ(N, φi) =


φ∈VN
exp(−βHN(φ|φi)). A probabilitymeasure

P on the configuration space {−1, 1}Z
1
is said to be an infinite-volume Gibbs state if for each N and for P almost all φi in

{−1, 1}Z
1
we have

P(φ(VN) = ϕ(VN)|φ(Z1
− VN) = φi(Z1

− VN)) = Pi
N(ϕ|φi).

Below, we investigate the set of all infinite-volume Gibbs states of the model (2). Naturally, in the following known
cases the very biased external field exterminates the long-range interaction, the dependence on the boundary conditions
disappears at infinity and the model has a unique Gibbs state.

Case 1. The values of the external field at all lattice points are aligned [6,7]. In this case the infinite-volume Gibbs state
is unique at all values of the temperature. This result follows from the ferromagnetic nature of the interaction and uses
Fortuin–Ginibre–Kasteleyn or Griffiths–Hurst–Sherman inequalities.

Case 2. The absolute value of the external field is sufficiently big [14]:

Theorem 1. At any fixed value of the inverse temperature β there exists a constant h0 such that for all realizations of the external
field {hx, x ∈ Z1

} satisfying |hx| > h0, x ∈ Z1, the model (2) has a unique infinite-volume Gibbs state.

Case 3. The value of the external field is small but the field is ‘‘very ordered’’. Let us consider the periodic external field
constituted by alternating (+) and (−) blocks: hx = hr

x is a periodic function of period 2r; hr
x = hx+2rk for all integer values

of k and for some fixed positive ϵ,

hr
x =


+ϵ if x = 1, . . . , r
−ϵ x = r + 1, . . . , 2r.

Theorem 2 ([15]). Let ϵ be an arbitrary positive fixed number not exceeding some constant h1. There exist natural numbers
R1 = R1(ϵ) and R2 = R2(ϵ), R1 ≤ R2, such that at all sufficiently small temperatures the model (3) has at least two limiting Gibbs
states for all r ≤ R1 and a unique infinite-volume Gibbs state for all r > R2.

Case 4. The external field is a periodic biased external field. Let hx = hL
x be a periodic function of period 3L: for all integer

values of k and n,

hL
x =


ϵ if x = 3kL or x = (3k + 1)L
−ϵ if x = (3k + 2)L
0 x ≠ nL

(3)

where L is a positive constant and 0 < ϵ < U(1).

Theorem 3. For any values of the positive constants ϵ and L at sufficiently small values of the temperature, the model (2) with
external field (3) has a unique infinite-volume Gibbs state.
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In general, the additional nonsymmetric external field hL
x breaks the symmetry between (+) and (−) phases and leads to

a unique zero-temperature phase; the statement of Theorem 3 is physically to be expected. But in general the uniqueness
of the zero-temperature phase cannot guarantee the uniqueness at nonzero temperatures [16].

In this paper we consider a periodic biased external field. Let L be a positive constant, hx = hx+L for all x ∈ Z1 and
x∈Z1,0<x≤L hx ≠ 0.

Theorem 4. There exists a constant h0 depending on the potential function U(·) and L such that for all realizations of the external
field {hx, x ∈ Z1

} satisfying |hx| < h0, hx = hx+L and


x∈Z1,0<x≤L hx ≠ 0, for all x ∈ Z1, the model (2) has a unique infinite-
volume Gibbs state at all sufficiently small values of the temperature.

Most likely, the condition |hx| < h0 is essential:

Lemma 1 ([15]). Let h′ be any fixed positive number and the restriction of the external field to [1, L] be a constant configuration:
hx([1, L]) = h′. A natural number L0 exists such that if L > L0, the restriction of any ground state φgr of the model to [1, L] is a
constant configuration: φgr([1, L]) = h′.

Let the value of h0 be fixed. Consider the model (2) with the following periodic external field with period 8L: hx = hx+8L
and

hL
x =


−h0 if 0 < x ≤ L and x ≠ L/2
h0 if x = L/2
(−1)xh0 if L < x ≤ 4L
h0 if 4L < x ≤ 5L
(−1)x+1h0 if 5L < x ≤ 8L.

(4)

It can be readily seen that by Lemma 1, at sufficiently large values of L the model has the following two ground states
φgr,+ and φgr,−:

φgr,+
=


−h0 if 0 < x ≤ L
h0 if L < x ≤ 8L

φgr,−
=


−h0 if 0 < x ≤ 4L or 5L < x ≤ 8L
h0 if 4L < x ≤ 5L.

Most likely, at large temperatures these ground states generate two extreme limiting Gibbs states as in Refs. [4,5]. But
the rigorous proof seems to be technically very complicated. Thus, if we consider the model (2) with external field (4) and
change the value of h0, then the model has unique Gibbs states for sufficiently big and sufficiently small values of h0 while
it has at least two extreme Gibbs states at intermediate values of h0.

2. Proof of the uniqueness

We prove the uniqueness of Gibbs states by using a method employing the close relationship between phase transitions
and some special kind of combined percolation in models with a unique ground state [17]. The method uses the trick of
‘‘coupling’’ two independent partition functions and is based on the method used in Ref. [18]. Similar ‘‘coupling’’ arguments
were used in the disagreement percolation approach to the Gibbs states uniqueness problem [19,20].

Let P1 and P2 be two extreme limiting Gibbs states corresponding to the fixed boundary conditions φ1 and φ2. It is well
known that P1 and P2 are singular with respect to each other or coincide [21,22]. Thus, in order to prove the uniqueness of
the limiting Gibbs states we show non-singularity of P1 and P2.

If the expression |HN(φ|φi)| expressing the energy of the configuration φ(VN) at fixed boundary conditions φi(Z1
− VN)

is uniformly bounded with respect to N , φ and φi, then the non-singularity of P1 and P2 follows directly. This idea was used
in Ref. [3] for the proof of the absence of a phase transition in one-dimensional models with long-range interaction. But in
our case |HN(φ|φi)| and we employ a more detailed approach.

Let φmin
N be the configuration with minimal energy at fixed N and boundary conditions φ̄:

min
φ∈Φ(N)

HN(φ|φ̄) = HN(φ
min,i
N |φ̄).

HN(φ|φi, φmin
N ) denotes the relative energy of a configuration φ (with respect to φmin

N ):

HN(φ|φi, φmin
N ) = HN(φ|φi) − HN(φmin

N |φi).

Let Pi
N be Gibbs distributions on Φ(N) corresponding to the boundary conditions φi, i = 1, 2, defined by using relative

energies of configurations and Pi
Nφ′(VM) be the probability of the event that the restriction of the configuration φ(VN) to

VM coincides with φ′(VM) for M < N . Using the uniqueness of φmin
N we construct one contour model for both boundary

conditions φi, i = 1, 2, and after that we come to clusters that are ‘‘noninteracting’’ at distance [23] (a cluster is a collection
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of contours connected by interaction bonds). The cornerstone of the method is the evaluation of the dependence of the
expression P1

N(φ(VM))/P2
N(φ(VM)) on the boundary conditions φ1 and φ2 in terms of the statistical weights of long clusters

connecting the cube VM with the boundary. At low temperatures the application of this theory to one-dimensional models
produces a uniqueness criterion [17] which is given below (Theorem 5). A ground state φgr satisfies the Peierls stability
condition with a positive constant τ if for any finite set, A ⊂ Z1 H(φ′) − H(φgr) ≥ τ |A|, where |A| denotes the number of
sites of A and φ′ is a perturbation of φgr on the set A.

Condition 1. The model has a unique ground state satisfying the Peierls stability condition.

Condition 2. A constant α < 1 exists such that for any number L and any interval I = [a, b] with the length n and for any
configuration φ(I),

B⊂Z1;B∩I≠∅,B∩(Z1−[a−L,b+L])≠∅

|U(B)| ≤ const nαLα−1.

Theorem 5 ([17]). Suppose that a one-dimensional model with a finite spin space and with the translationally invariant
Hamiltonian

H(φ) =


B⊂Z1

U(φ(B))

where


B⊂Z1;x∈B |U(B)| < const satisfies Conditions 1 and 2. Then a value of the inverse temperature β1 exists such that if
β > β1 then the model has a unique limiting Gibbs state.

Without loss of generality we suppose that


x∈Z1,0<x≤L hx > 0. We can treat the model (2) with an external field with
period L as a translationally invariant model: if we partition the lattice into disjoint intervals [kL + 1, (k + 1)L] and replace
the spin space {1, −1} by {1, −1}[1,L] including 2L elements, then the model transforms from being translationally periodic
with period L to a translationally invariant model. Thus, for the employing of Theorem 5, we have to control the validity of
Condition 1.

Lemma 2. Suppose that a periodic external field {hx, x ∈ Z1
}; hx = ±h0, satisfying


x∈Z1,0<x≤L hx > 0 is fixed. There exists a

positive constant c0 such that for all values of h0 < c0 the constant configuration φ+
= +1 is the unique ground state of the

model (2) and this configuration satisfies the Peierls stability condition.

Proof. We omit the detailed proof of the lemma: it can be readily shown that c0 =
U(1)
2L satisfies all conditions.

Condition 2 is readily shown to hold for a pair potential U(x − y) = (x − y)−γ (1 < γ ≤ 2) of the model (2). Now the
model (2) satisfies Condition 1, and Theorem 4 follows from Theorem 5. �

3. Concluding remarks

Theorem 4 has a straightforward generalization to periodic external fields taking more than two values.
Theorem 4 states that the cooperative effect of a biased weak periodic external field exterminates the existence of

Gibbs states corresponding to two pure ground states. It is noteworthy that when we increase the absolute value of this
external field, while maintaining unchanged cooperativeness, local effects of the external field arise and this may lead to
the regeneration of two extreme Gibbs states (see example (4)).
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