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a b s t r a c t

This paper aims to investigate the direct relationship between inflation and inflation
uncertainty by employing a dynamicmethod for themonthly country–region–placeUnited
States data for the timeperiod 1976–2007.While the bulk of previous studies has employed
GARCH models in investigating the link between inflation and inflation uncertainty, in
this study Stochastic Volatility in Mean models are used to capture the shocks to inflation
uncertainty within a dynamic framework. These models allow researchers to assess the
dynamic effects of innovations in inflation as well as inflation volatility on inflation and
inflation volatility over time, by incorporating the unobserved volatility as an explanatory
variable in the mean (inflation) equation. Empirical findings suggest that innovations in
inflation volatility increases inflation. This evidence is robust across various definitions of
inflation and different sub-periods.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The uncertainty about future levels of inflation has been one of the most important costs of inflation, as it clouds
the decision making of economic agents. The relationship between inflation and inflation uncertainty is important for
policymakers because if systematic inflation has any real effects, governments can influence economic performance through
monetary policy. There are two conflicting views concerning the relationship between inflation and inflation uncertainty.3
A number of theoretical models, where monetary policy often plays a prominent role, predict that uncertainty about future
inflation is positively related with inflation. Similar to Refs. [3,4], who highlight the positive relationship between inflation
and inflation uncertainty, Ref. [5] reports that inflation uncertainty will increase at higher rates of inflation due to the
uncertainty concerning futuremonetary policy causes. Refs. [6,2,7] report evidence on this effect. Ref. [8], on the other hand,
argue that an increase in inflation uncertainty leads to an increase in inflation as it provides an incentive to the policymaker
to create an inflation surprise in order to stimulate output growth. Similarly, Ref. [9] claims that another factor contributing
to the positive relationship between inflation and inflation uncertainty is that the timing of the disinflationary policy action
is uncertain.

An alternative explanation for a positive relationship between inflation and inflation uncertainty is provided by
Holland [1]who claims that inflationuncertainty increases at higher rates of expected inflation. In addition to theuncertainty
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of the impact of monetary policy on inflation, the speed with which monetary policy actions are transmitted to inflation
varies over time. Thus, even though the agents have all the information regarding the stance of monetary policy, the
complexity of predicting the magnitude and the speed with which prices will respond to monetary policy creates inflation
uncertainty.

The second view promotes the causation that runs from inflation uncertainty to inflation. Refs. [8,10] argue that if the
money supply process has a stochastic element and the public is uncertain about the objective function of the policymaker,
higher inflation uncertainty raises the optimal inflation rate by increasing the incentive for the policy maker to create
inflation surprise to stimulate real economic activity within the traditional Barro–Gordon framework.

Since the measurement of the inflation uncertainty is subjective, generally proxy variables are employed. Following the
seminal paper of Ref. [11] on Autoregressive Conditional Heteroskedasticity (ARCH)models and the subsequent Generalized
Autoregressive Conditional Heteroscedasticity (GARCH) extension by Bollerslev [12], inflation uncertainty is generally
proxied by the conditional variance of unanticipated shocks as well as the lag values of squared residuals for inflation.4
Generally, empirical studies report mixed evidence regarding the association between inflation and inflation uncertainty
using a variety of methodologies. One of the common features reported in empirical analysis is that these studies usually
examine the inflation–inflation uncertainty relationship at either short run or long-run horizons. However, Ref. [16] argue
that this relationship may differ between short-run and long-run horizons. In order to capture the inflation–inflation
uncertainty relationship within long and short run horizons a dynamic framework should be employed where this
relationship is further assessed with the impulse response analyses. Accordingly, as an alternative to GARCH models that
capture this time-varying autocorrelated volatility process, the Stochastic Volatility (SV) models have been employed to
explain the well documented time varying volatility in empirical research. Unlike ARCH/GARCH models, SV models allow
for a stochastic element in the time series evolution of the conditional variance process.5 Refs. [20,21] provide empirical
evidence supporting the successes of the log-normal SV model relative to GARCH-type models.

This paper aims to investigate the direct relationship between inflation and inflation uncertainty for the United States
over the period 1976–2007 using monthly data. Unlike the existing literature where the inflation uncertainty is generally
proxied by ARCH/GARCH models, inflation uncertainty in this study is modeled by SV model with state space approach
to capture the shocks to inflation volatility and assess the effect of inflation and inflation volatility shocks on inflation and
inflation volatilitywithin a dynamic framework. This paper is organized as follows. Section 2presents themodeling approach
employed in this study. Estimation results are reported in Section 3. Finally, Section 4 concludes.

2. Model

There are two general classes of volatility models that have been employed in the time series literature to capture
uncertainty: the GARCH and the SV models. The GARCH models formulate the conditional variance directly as a function
of observables. Whereas the variance in the SV model is modeled as an unobserved component, it follows some stochastic
process. These might be called latent volatility or SV models. The most general form of mean equation for both models can
be described as follows

πt = µt + σtεt , εt ∼ NID(0, 1) (1)

µt = α0 +

k
i=1

α1ixi,t (2)

where πt is the dependent variable (inflation), µt is the mean, xi,t is a set of regressors at time t , α0 is a constant and
α11, α12, . . . , α1k are regression coefficients. The disturbance term εt is independently and identically normally distributed
with zero mean and unit variance. Accordingly, the mean adjusted series can be defined as white noise with unit variance
multiplied by the volatility process. SV models consider that the unknown volatility changes stochastically over time. They
contain an unobserved variance component, the logarithm of which is modeled directly as a linear stochastic process, such
as an autoregression. This feature of the SV models can be regarded as an alternative to the GARCH models, which have
relied on simultaneous modeling of the first and second moment.

A common notation for the variance equation of the SV class of volatility models is given by

σ 2
t = σ ∗2 exp (ht) (3)

where σ ∗ is a positive scaling factor.
The volatility process σ 2

t is defined as the product of a positive scaling factor σ ∗, and the exponential of the stochastic
process ht . Assume that ht = ln(σ 2

t /σ
∗2) follows an autoregressive model of order one as in

ht = β1ht−1 + σηηt , ηt ∼ NID (0, 1) (4)

4 For surveys on GARCH models please see Refs. [13–15].
5 For surveys of SV models, see among others [17–19].
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for the stationarity of σ 2
t , the persistence parameter (β1) is restricted to be less than one in a absolute value (|β1| < 1).6 It is

assumed that the disturbances εt and ηt are mutually uncorrelated contemporaneously and at all lags. Since the term ln σ ∗2

can be regarded as the constant term in the logarithm of volatility equation (ht ), the logarithm of volatility process does not
include an additional intercept term. SV model can be rewritten as follows:

ln σ 2
t = ln σ ∗2

+ ht

= ln σ ∗2
+ β1


ln σ 2

t−1 − ln σ ∗2
+ σηηt

= (1 − β1) ln σ ∗2
+ β1 ln σ 2

t−1 + σηηt . (5)
SV and GARCH models require simultaneous estimation of the conditional mean and variance equations (see Ref. [22]).

GARCH models are deterministic in the sense that only the mean equation has a disturbance term and that its variance is
modeled conditionally on the information up to and including time t − 1. For the SV model, the deviation of πt from the
mean is captured by a function of two disturbance terms whereas in the GARCH model this deviation is accounted for by a
single disturbance term.

Ref. [23] extended the stochastic volatility model that allows the inclusion of the variance as one of the determinants of
the mean –SV in Mean (SVM) model—where the mean equation is rewritten as follows:

µt = α0 +

k
i=1

α1ixi,t + α2σ
∗2 exp(ht) (6)

where α2 is a risk premium coefficient to capture the volatility-in-mean effect. We model the mean equation of inflation as
an AR process which is parallel to Refs. [7,24] to capture the dynamics of inflation process in our case. Thus, the SVMmodel
is defined in Eqs. (1), (3), (4) and (6) as follows

πt = α0 +

k
i=1

α1iπt−i + α2σ
∗2 exp(ht)+ σ ∗ exp(0.5ht)εt , εt ∼ NID(0, 1)

ht = β1ht−1 + σηηt , ηt ∼ NID(0, 1).

(7)

A variety of estimation procedures have been proposed for the SV models, including the Generalized Method of
Moments [25], the Quasi Maximum Likelihood [26,27], the Efficient Method of Moments [28] and Markov–Chain Monte
Carlo [29,30,21]. In this paper, the parameters of the SVMmodel are estimated by exact maximum likelihoodmethods using
Monte Carlo importance sampling techniques. This method has three important advantages: (1) It exploits the structure of
the specification to improve the speed of the convergence by integrating the Kalman Filter. (2) The dimension of state is
increased by approximating the log likelihood (see Ref. [31], for details). (3) It can be extended to multivariate case by using
multivariate Taylor series expansion. All these properties enable researchers to include explanatory variables in the mean
equation and estimate their coefficients simultaneously with the parameters of the volatility process.

The likelihood function for the SV model can be constructed using simulation methods developed by Shephard and
Pitt [31] and Durbin and Koopman [32]. Consider the standard SVmodel of the equation of the volatility process presented in
Eq. (4). The non-linear relation between log-volatility ht and the observation equation of πt does not allow the computation
of the likelihood by linear methods such as the Kalman filter. The likelihood function for the SV model can be expressed as:

L(Ψ ) = p
 π
Ψ


=


p

π, θ

Ψ


dθ =


p

π

θ,Ψ


p

θ

Ψ


dθ

where ψ = (α, β, ση, σε)
′, θ = (h1, . . . , hT )

′. An efficient way of evaluating such expressions is by using importance
sampling (see Ref. [33]). A simulation device is required to sample from an importance density p̂(π/θ, ψ), which is preferred
to be as close as possible to the true density p(π/θ, ψ). A choice for the importance density is the conditional Gaussian
density since in this case it is relatively straightforward to sample from p̂(π/θ, ψ) = g(π/θ, ψ) using simulation smoothers
such as the ones developed by De Jong and Shephard [34] and Durbin and Koopman [35]. Guidelines for the construction
of an importance model and the likelihood function for the SV model using this model are given by Hol and Koopman [36]
and Asaf [37]. One may also look at Ref. [23] for more explanations. During the estimation process, we extended this model
as p-th order SVM model and added lag variables of volatility-in-mean effect in mean equation, which can be presented as
follows:

πt = α0 +

p
i=1

α1iπt−i +

p
i=1

α2iσ
∗2 exp(ht−i)+ σ ∗ exp(0.5ht)εt , εt ∼ NID(0, 1) (8a)

ht =

p
i=1

β1iht−i +

p
i=1

β2iπt−i + σηηt , ηt ∼ NID(0, 1) (8b)

6 As a part of robustness of the estimates, we also consider alternative stochastic volatility specifications that includes additional lags. However, Schwarz
Bayesian Criteria suggest that the lag length is one.
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Table 1
Estimation results for SVMmodel.

Constant πt−1 σ ∗2 exp(ht−1) exp(0.5ht )εt

πt
0.1049 0.5073 1.0477 0.0177
[−0.1386:0.3485] [0.4974:0.5349] [−0.1002:2.1955] [0.0127:0.0247]

ht−1 πt−1 ηt

ht
0.9248 0.1495 0.2568
[0.9104:0.9370] [0.0821:0.216] [0.1715:0.3844]

lnL: 52.694 AIC: −91.388 SBC: −63.788 HQ: −22.189
Q (12): 0.0517 (0.8201) Q (24): 0.9846 (0.3210)
Normality test statistics of the standardized residuals: 1.073 (0.5847)

Note: Numbers in parentheses and brackets are the p-values and confidence intervals at the 95%, respectively. AIC, SBC and
HQ are calculated, respectively, −2(lnL) + 2q,−2(lnL) + q ln(T ) and −2(lnL) + 2q ln(T ). Where q is the total number of
estimated parameters, T is the total number of observations.
Q(i) reports Wooldridge [39]’s robust LM test for i lag and p-values are reported next to test statistics in parenthesis for ith
lag.

here the lag orders for each variable is set to p to make the model symmetric so that the system resembles to a conventional
VAR model in a nonlinear form. This model is estimated by using SsfPack package written in the Ox language by Koopman
et al. [38].7

3. Empirical results

In this study, seasonally adjusted monthly data of the United States Consumer Price Index for All Urban Consumers are
used. This index series covers the period 1976:01–2007:09.8 Inflation ismeasured by themonthly difference of the logarithm
of the consumer price index for all urban consumers. In order to explore the relationship between inflation and its volatility,
in this study, SVM model as defined in Eqs. (8a) and (8b) are estimated jointly. Schwarz Bayesian Criteria (SBC) is used to
determine the optimal lag lengths of the model; the lag order was one. Thus we took p = 1 for Eqs. (8a) and (8b). The
SVM model estimates are reported in Table 1. The parameters, which govern the mean process are presented in the first
part of Table 1 together with their 95% confidence intervals. The confidence intervals are reported in brackets under the
corresponding parameters. The estimates of the volatility specification parameters, on the other hand, are presented in the
second part. The estimated coefficient for the lagged inflation in the mean equation is statistically significant and both lag
values of inflation and volatility measures are statistically significant in the volatility specification. Volatility persistence
estimation for index series is less than 1 in absolute value (|β1| < 1). Thus, we may claim that ht is stationary.9

Mean (inflation) specification includes lagged values of inflation and volatility of the inflation. Volatility specification
includes the lagged values of the inflation volatility and inflation. The Table 1 suggests that the lagged value of inflation has
an explanatory power for current volatility but the lagged values of volatility do not have statistically significant explanatory
power for the inflation at the 5% level.

With regard to the distributional assumptions for the standardized error term (εt ) in Table 1, the presence of
autocorrelation of the standardized residual is tested by using the LM test suggested by Wooldridge [39] for 12 and 24
periods. The hypothesis that the first 12 and 24 autocorrelation coefficients of εt are equal to zero cannot be rejected at the
5% significance level. Moreover, the Jarque–Berra Normality test statistic is smaller than the critical χ2

2 value at the 5% level
of confidence. Thus, the null hypothesis of normally distributed disturbances cannot be rejected, supporting the validity of
model specification.

Impulse responses
In order to explore the effect of inflation and inflation volatility shocks on inflation volatility and inflation, we calculated

the Generalized Impulse (GI) Responses following to Ref. [40]. Yet calculating these impulse responses is not a straight
forward task for nonlinear models. This section outlines the gathering of these impulse responses.

Let a nonlinear Markov multivariate model of order p be defined as

Yt = F(Yt−1, . . . , Yt−p)+ HtVt (9)

where F(·) is a known function, Yt is aK×1 randomvector,Vt isK×1 vector of IID randomdisturbances,Ht is aK×K random
matrix, and the shocks Vt have zero means and finite variance. In the literature, there are various methods to calculate
the impulse responses. However, we treat the baseline for the impulse response functions which are then defined as the
conditional expectations given only the history. When we report the impulse responses, we report the GI responses for
the case of an arbitrary current shocks, vit , and history, Ωt−1, where impulse responses are insensitive to the ordering of

7 The package is downloadable from http://sites.google.com/site/yyelizyalcin/.
8 The data was obtained from FRED of St Louis Fed: http://research.stlouisfed.org/fred2.
9 Since the system is non-linear, we also use Monte Carlo simulations for the stability of system. None of the forecast values of πt and ht are explosive,

indicating that the system is stable.

http://sites.google.com/site/yyelizyalcin/
http://research.stlouisfed.org/fred2
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Fig. 1. Consumer Price Index for All Urban Consumers (All Items): 1976:01–2007:09.

variables because during the estimation process εt and ηt are mutually contemporaneously uncorrelated error terms at all
lags; hence Ht is diagonal (see Refs. [40,41]). The authors define n period ahead Generalized Impulses to be conditional on
history at given time t − 1 and a vit unit shock that is introduced at time t for variable i.

GIY (n, vit ,Ωt−1) = E [Yt+n|Vit = vit ,Ωt−1] − E [Yt+n|Ωt−1] . (10)

Here E [Yt+n|Vit = vit ,Ωt−1] represents the expectations conditional on the information setΩt−1 that is the set containing
information used to forecast Yt and for a fixed value of the ith variable shock at time t , while averaging out the effects of
the other shocks at time t given its value, vit . Similarly, E [Yt+n|Ωt−1] is the conditional expectation on the information set
Ωt−1 with the latter term capturing the benchmark value where the economy has not been subject to any shocks. Thus, we
compare the two state of the world where we had a shock for only one variable at time t and compare it to the state of the
economy is not subject to any shock.10

As a mean of statistical inference for the impulse response analysis, the 95% confidence intervals based on the bootstrap
simulation with 250 trials are calculated. After estimating the relationship between inflation and inflation volatility, the
impulse responses of inflation and inflation volatilitywhen a unit shock is given for εt and ηt for each four impulse responses
along with 95% confidence intervals for CPI for all urban consumers are plotted out in Fig. 1. The history dependent impulse
responses are reported for 30 periods, as the middle line, representing the median of the draws, and upper and lower
(dotted) lines are for confidence intervals. The upper-left corner of the figure reports the impulse response for the effect
of inflation shock to inflation and lower-right one reports effect of inflation volatility shock to inflation volatility. They
suggest that inflation shocks are not persistent but shock to inflation volatility persist for 30 periods that we consider.
Upper-right part of the Fig. 1 suggests that a shock to inflation increases inflation volatility, however, this effect is not
statistically significant. Lower-left panel suggests that shock to inflation volatility increases inflation. It reaches its peak
at the −0.03297, in the 2nd period but it is always positive and statistically significant for 30 periods.11 Note that the

10 As discussed in Refs. [40,42], multivariate nonlinear models have some problems like history and shock dependence. Thus, the impulse responses are
going to be different for 1970:01 from the ones for 1990:01; the magnitude of a shock may give different results on persistency, or direction of impulse
responses. In order to calculate impulse response; we gave one unit shock to standardized residuals of εt and ηt . We also employ the averaging method of
Ref. [43] for GI Responses. Their method uses the baseline forecasts (that is E [Yt+n|Ωt−1]) that was conditional on information up to time t and mean of
these forecast are taken for the baseline; under stationarity they were unconditional means. When we introduce the unit shock to these two series, then
averages across these histories until 2007:09 are than compared the mean of baseline forecasts.
11 Note that the residual term in the inflation volatility specification has zero mean and unit variance. However, the coefficient of ηt is not necessarily
equal to one. So one unit shock to ηt actually means (depending on ση) one standard deviation shock to σηηt ; 0.2568 unit shock to inflation volatility
increases inflation it reaches its peak at 0.03297 in the 2nd period.
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Fig. 2. CPI for all Urban Consumers (All Items Less Food & Energy): 1976:01–2007:09.

effect of inflation volatility shock on inflation has a hump shape. However, at time t + 1, due to higher inflation and
volatility at time t, πt+1 increases and the accelerating effect of one unit shock on ηt will persist at t + 2 then its effect will
diminish.

After observing the positive effect of inflation volatility shock on inflation, in order to investigate the robustness of
the results, four alternative measures of inflation are used. These alternative measures use (i) Consumers: All Items Less
Food and Energy, (ii) Consumer Price Index Research Series Using Current Methods (CPI-U-RS),12 (iii) Personal Consumption
Expenditures: Chain-type Price Index and (iv) Personal Consumption Expenditures Chain-Type Price Index Less Food and
Energy. Figs. 2–5 report impulse responses similar to one reported in Fig. 1. Even though the effect of inflation shock on
inflation volatility changes signs, it is not statistically significant. However, the effect of inflation volatility to inflation is
robust, thus confirming the basic result from Fig. 1.

As a second set of robustness test, alternative time spans are considered for the benchmark inflation definition: United
States Consumer Price Index for All Urban Consumers. Figs. 6 and 7 report the impulse responses for two different sample
periods. The first sample uses the data for the post Korean War (1955:01–2007:09) and the second sample uses data for
the post Volcker (Greenspan and Bernanke) era (1987:08–2007:09). For the first sub sample, the effect of inflation shock on
inflation volatility is negative (not positive as in the benchmark sample 1976:01–2007:09) but not statistically significant
as in the benchmark sample. Moreover, similar to the estimates on other impulse responses, the estimates on the effect
of inflation volatility on inflation are robust. For the 1987:08–2007:09 sub-samples, evidence on both inflation shock on
inflation volatility and inflation volatility shock on inflation are not statistically significant.

In order to assess the robustness of our inferences, we estimate different SVM specifications for the inflation and inflation
volatility by using different lag orders for different inflation definitions and sub-periods. Among these estimates, various lags
of inflation and its volatility are allowed to enter the mean (inflation) specification as well as the various lags of inflation
and its volatility being allowed to enter the volatility specification. Even if these specifications are not suggested by SBC,
the impulse responses for these specifications are calculated. Some of the impulse responses were explosive; this could
mean that these specifications were not realistic. For the remaining impulse responses, the empirical evidence suggests that
inflation volatility increases inflation, which is parallel to Ref. [8]. These estimates and corresponding impulse responses are
not reported here but are available from the authors upon request.

12 The observations on CPI-RS ends 2006:12 due to data availability.
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Fig. 3. Consumer Price Index Research Series Using Current Methods (CPI-U-RS): 1978:01–2006:12.

Fig. 4. Personal Consumption Expenditures (Chain-Type Price Index): 1976:01–2007:09.
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Fig. 5. PCE Chain-Type Price Index Less Food and Energy: 1976:01–2007:09.

Fig. 6. Consumer Price Index for All Urban Consumers (All Items): 1955:01–2007:09.
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Fig. 7. Consumer Price Index for All Urban Consumers (All Items): 1987:08–2007:09.

The empirical results suggest that the effect of inflation on inflation volatility is unstable (sometimes positive and
sometimes negative) but the effect of inflation volatility on inflation is mostly robust.13

Our model has similar features to Ref. [44] unobserved component trend-cycle with stochastic volatility model (UC-SV).
Theymodel the inflation with two components to allow trend change: permanent and transitory components. Both of these
components have stochastic volatility. On the other hand, in our case we explicitly allow the inflation volatility affect the
inflation (with a lag) and had one stochastic term. Nevertheless, both models suggest that inflation is affected by volatility
changes.

Although ARCH types of models do not allow us to introduce shocks to the volatility, Engle type ARCH models are also
considered in this analysis. Accordingly, volatility is specified as GARCH (1, 1) in mean process where inflation is modeled
with a constant term, its lag and the conditional variance of inflation. Fig. 8 reports both the volatilitymeasures and inflation
series itself. Both volatility measures indicate a low inflation volatility around 1990s, and there has been an increase after
2005. Even if both volatility measures move very closely, Fig. 8 suggests that SV measure lead GARCH (1, 1) specification.14

4. Conclusion

Even though the relationship between inflation and inflation uncertainty has been a topic of considerable interest, there
is not a general agreement about the nature of the relationship at both the theoretical and empirical levels. Moreover, this
relationship may differ between short-run and long-run horizons. However, previous studies on this issue generally have
employed GARCH models without attempting to a dynamic modelling. This paper attempts to investigate the relationship
between inflation and inflation volatility in a dynamic framework by using the United States monthly data from 1976:01 to
2007:09. The stochastic volatility inmeanmodel, where themean ismodeled simultaneously with the volatility equation, is
extended to construct measures of monthly inflation uncertainty. Empirical evidence from the impulse responses suggests
that shock to inflation volatility increases inflation, confirming the findings of Refs. [8,10]. This effect appears to be robust
to various specifications, such as the particular measure of inflation and alternative sample periods.

13 In order tomakemore informative inferences for the impulse responses,we had to calculate the confidence band, however, calculating these confidence
bands with bootstrap method is expensive; 250 iterations take 4–5 days for the post 1976 sample with a Intel (R) Pentium (R) M1.73 GHz. Therefore, we
did not calculate the confidence bands.
14 We also estimate the conditional variance with EGARCH in mean specifications, the basic result was robust.
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Fig. 8. Inflation, and stochastic volatility in mean and GARCH(1, 1) in mean specifications of volatility.
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