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Abstract In rats, as in humans, normal aging is char-
acterized by a decline in hippocampal-dependent learn-
ing and memory, as well as in glutamatergic function.
Both growth hormone (GH) and insulin-like growth
factor-I (IGF-I) levels have been reported to decrease
with age, and treatment with either GH or IGF-I can
ameliorate age-related cognitive decline. Interestingly,
acute GH and IGF-I treatments enhance glutamatergic
synaptic transmission in the rat hippocampus of juvenile
animals. However, whether this enhancement also

occurs in old rats, when cognitive impairment is ame-
liorated by GH and IGF-I (des-IGF-I), remains to be
determined. To address this issue, we used an in vitro
CA1 hippocampal slice preparation and extracellular
recording techniques to study the effects of acute appli-
cation of GH and IGF-I on compound field excitatory
postsynaptic potentials (fEPSPs), as well as AMPA- and
NMDA-dependent fEPSPs, in young adult (10 months)
and old (28 months) rats. The results indicated that both
GH and IGF-I increased compound-, AMPA-, and
NMDA-dependent fEPSPs to a similar extent in slices
from both age groups and that this augmentation was
likely mediated via a postsynaptic mechanism. Initial
characterization of the signaling cascades underlying
these effects revealed that the GH-induced enhancement
was not mediated by the JAK2 signaling element in
either young adult or old rats but that the IGF-I-
induced enhancement involved a PI3K-mediated mech-
anism in old, but not young adults. The present findings
are consistent with a role for a GH- or IGF-I-induced
enhancement of glutamatergic transmission in mitigat-
ing age-related cognitive impairment in old rats.
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Introduction

It is well-established that both growth hormone (GH)
and insulin-like growth factor-I (IGF-I) have
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important roles in mammalian growth and develop-
ment. These polypeptide hormones play major roles in
the regulation of cellular processes in tissues through-
out the body (Gahete et al. 2009) including, but not
limited to, protein synthesis (Lo and Ney 1996), reg-
ulation of bone metabolism (Ohlsson et al. 1998),
immune and cardiovascular function (Cittadini et al.
1999; Conti et al. 2008; Hattori 2009). However, in
addition to the peripheral effects of GH and IGF-I,
these factors also impact the central nervous system, in
particular, the hippocampus of adult animals (Lobie et
al. 2000).

Cognitive function, including hippocampal-
dependent learning and memory, declines with ad-
vancing age (Frick et al. 1995; Rosenzweig et al.
1997; Ramsey et al. 2004). Parallel to this age-
related decline in hippocampal-dependent cognition,
the levels of GH and IGF-I also decrease across life-
span (Sonntag et al. 1980; Richman et al. 1981; Carter
et al. 2002; Sonntag et al. 2005; Ramsey et al. 2004).
Importantly, GH and IGF-I supplementation in rodents
have been reported to ameliorate hippocampal-
dependent cognitive deficits associated with normal
aging (Markowska et al. 1998; Thornton et al. 2000;
Ramsey et al. 2004), and there has been debate on
whether there is a direct role of GH in mediating these
effects or whether GH acts through its anabolic medi-
ator, IGF-I (Molina et al. 2011). One potential mech-
anism for the improvement of age-related cognitive
impairment by GH and IGF-I is an enhancement of
excitatory synaptic transmission. Excitatory synaptic
transmission in the hippocampus is mediated primarily
by glutamatergic receptors, principally the alpha-
amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
(AMPA) and N-methyl-D-aspartic acid (NMDA) types
of the glutamate receptor. Subunits that comprise the
AMPA and NMDA receptors in the hippocampus have
been reported to decline with age (Foster 2002; Shi et
al. 2007; Adams et al. 2008; Newton et al. 2008) and
AMPA and NMDA receptor-mediated synaptic trans-
mission is reduced as well (Barnes 1990; Barnes et al.
1992, 1997, 2000a, b; Bauman et al. 1992; Deupree et
al. 1993; Papatheodoropoulos and Kostopoulos 1996;
Jovenceau et al. 1998). Moreover, administration of
either GH or IGF-I has been reported to increase
mRNA and protein levels of those subunits (Sonntag
et al. 2000; Le Grevès et al. 2005). Notably, GH and
IGF-I can also enhance glutamatergic synaptic

transmission in rat hippocampal slices of juvenile ani-
mals (Ramsey et al. 2005; Mahmoud and Grover
2006), an effect that may contribute to improved cog-
nitive performance (Porrino et al. 2005; Goff et al.
2008; Hamlyn et al. 2009; Hampson et al. 2009).

The cognitive benefits of GH and IGF-I supple-
mentation have been demonstrated in aged animals;
however, the enhancement of hippocampal synaptic
transmission by GH and IGF-I has been shown only
in juvenile rats, and little is known about the effects of
GH or IGF-I on glutamatergic synaptic transmission in
adulthood or old age. The question then arises as to
whether GH and IGF-I can augment synaptic trans-
mission in old animals when chronic supplementation
wi th these hormones amel iora tes impai red
hippocampal-dependent cognitive function. Thus, in
the present study, we used extracellular recording
methods to evaluate the effect of acute GH and IGF-I
application on hippocampal glutamatergic synaptic
transmission in brain slices from young adult and old
rats. The results demonstrate that both GH and IGF-I
enhance AMPA and NMDA function to a similar
extent in young adult and old rats, supporting the
notion that acute effects of either hormone may con-
tribute to the reported GH and IGF-I mediated ame-
lioration of age-related cognitive impairment. Our
findings also provide initial evidence of possible age-
dependent differences in the signaling cascades that
mediate the effects of these hormones on rat glutama-
tergic synapses.

Methods

Experimental subjects and slice preparation

Juvenile (1–2 months), young (10 months) and old
(28 months) male Fisher 344 × Brown Norway rats
(F344 × BN) rats from the National Institute of Aging
Colony at Harlan Sprague–Dawley were anesthetized
with halothane and decapitated. The brain was re-
moved and submerged in chilled, oxygenated artificial
cerebrospinal fluid (aCSF) containing 124 mM NaCl,
3.3 mM KCl, 2.4 mMMgCl2, 2.5 mM Ca Cl2, 1.2 mM
KH2PO4, 10-D-glucose, and 25.9 mM NaHCO3 and
saturated with 95 % O2–5 % CO2. The right and left
hemispheres were separated and cut coronally into
400-μm thick slices using a vibratome (Leica
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VT1000S; Vashaw Scientific, Atlanta, GA). The hip-
pocampus in each slice was dissected from the sur-
rounding tissue and was equilibrated in an incubation
chamber with oxygenated aCSF at 20–25 °C for
90 min. During experiments, slices were placed in a
recording chamber and perfused with oxygenated
aCSF at a flow rate of 2 mL/min at 32 °C. All experi-
ments were conducted in accordance with the
Guidelines for the Care and Use of Experimental
Animals and approved by the Institutional Animal
Care and Use Committee.

Field excitatory postsynaptic potential recordings

Electrodes were prepared from filamented borosili-
cate glass capillary tubes (0.86 mm ID) using a
horizontal micropipette puller (Sutter P-97; Sutter,
Novato, CA) and filled with aCSF. Slices were
transferred to a recording chamber, a twisted bipolar
stimulating electrode (FHC, Bowdoinham, ME) was
placed in the Schaffer collaterals of CA3, and Field
excitatory postsynaptic potential (fEPSPs) were
recorded from the stratum radiatum of CA1.
Stimulation was adjusted to elicit ~30 % of the peak
amplitude (pAmp), and responses were recorded ev-
ery 20 s, prior to growth hormone (GH) or des-
insulin-like growth factor-I (des-IGF-I) application.
Compound (CMPD) responses were defined as
fEPSPs elicited in the absence of either AMPA or
NMDA inhibitors. For experiments evaluating
AMPA- and NMDA-mediated synaptic transmission,
appropriate inhibitors were added for 20 min (see
“Drug preparation”) before a baseline was recorded.
To ensure that NMDA and AMPA were effectively
isolated AMPA- and NMDA-dependent fEPSPs were
blocked using AMPA and NMDA receptor antago-
nists, respectively. In addition, CMPD responses
were completely abolished by bath application of
AMPA and NMDA receptor antagonists supporting
that the CMPD response consisted of AMPA and
NMDA fESPSPs, consistent with previous studies
(Foy et al. 1999; Frazier et al. 1998; Alkondon et
al. 2003; McQuiston 2010; data not shown).
Baseline, under all conditions was defined as
10 min of stable recordings where the pAmp
remained within 10 % of the mean. In the case of
AMPA- and NMDA-dependent recordings, the baseline
was recorded after 20 min of inhibitor application. GH

or des-IGF-I was applied for 30 min following baseline
recordings. The enhancement of CMPD, AMPA- and
NMDA-dependent fEPSPs after GH or des-IGF-I appli-
cation in young adult and old hippocampal slices was
determined by comparing the last 5 min of GH or IGF-I
application to the last 5 min of baseline. The same
procedure for determining the GH and IGF-I enhance-
ment was followed for all conditions. Paired-pulse ratio
studies were conducted by delivering two consecutive
stimuli with an interpulse interval of 50 ms. The ratio
between the second stimulus pulse (P2) and the first
stimulus (P1) was calculated in the presence and ab-
sence of GH or des-IGF-I.

Drug preparation

The selective NMDA receptor blocker D-(-)2-ami-
no-5-phosphonovaleric acid (APV, Sigma, St.
Louis, MO; 20 μM) was used for the pharmaco-
logical isolation of AMPA-dependent fEPSPs. To
isolate NMDA-dependent fEPSPs, 6,7-dinitroqui-
noxaline-2,3-dione (DNQX, Sigma, St. Louis,
MO; 50 μM), a selective AMPA/KA receptor
blocker, combined with bicuculline methylbromide
(BIC, Sigma, St. Louis, MO; 30 μM) a gamma-
aminobutyric acid type A (GABAA) channel
blocker, and glycine (Sigma, St. Louis, MO;
1 μM), an allosteric modulator of NMDA recep-
tors were used. The drugs were prepared as stock
solutions in dimethyl sulfoxide (DMSO; final
DMSO concentration <0.05 %, Sigma, St. Louis,
MO) for DNQX or in deionized water for APV
and BIC.

Porcine GH (Ozbiopharm, Knoxfield, Australia)
was prepared as a stock solution in deionized water.
Human des(1-3)-IGF-I (Gropep, Thebarton, Australia)
was prepared as a stock solution in 0.1 N glacial acetic
acid (final concentration 0.1 acetic acid <0.005 %).
Des-IGF-I is a truncated form of IGF-I that does not
interact with the IGF-I binding proteins that normally
sequester circulating IGF-I (Ballard et al. 1996).
Furthermore, while des-IGF-I has been shown to more
potent than IGF-I in vitro, both des-IGF-I and IGF-I
have similar effects (Russo and Werther 1994; Guan et
al. 1996). Drugs used to block signaling components
involved in GH- and IGF-I-mediated effects were:
tyrphostin AG 490 (Sigma, St. Louis, MO; 10 μM),
a Janus kinase 2 (JAK2) inhibitor and wortmannin
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(Sigma, St. Louis, MO; 1 μM), a phosphoinositide 3-
kinase (PI3K) inhibitor. Both inhibitors were made up
as stock solutions in DMSO (final DMSO concentra-
tion <0.05 %). During recordings, all drugs were ap-
plied with aCSF in known concentrations via
calibrated syringe pumps (Razel, Stamford, CT).

Statistics

Post-treatment effects of GH and des-IGF-I on pAmp
of fEPSPs were defined as a percent of pre-treatment
baseline values. The mean of the last 5 min post-
treatment was compared to the mean of the last
5 min pre-treatment baseline. Paired Student’s t tests
were used to compare post-treatment to pre-treatment
values for compound, AMPA- and NMDA-dependent
fEPSPs. Signaling cascade inhibitor effects on GH-
and des-IGF-I-mediated changes in fEPSPs pAmp
were analyzed by one-way ANOVA followed by
Newman–Keuls test for pairwise comparison, when
appropriate. All statistical analyses were performed
using Sigmastat version 3.5 (SYSTAT Software,
Point Richmond, CA). Statistical significance was de-
fined as p<0.05. All error bars in the figures represent
standard error. Values for dose response studies are
represented as mean percent pAmp above baseline ±

standard error. Values for percent potentiation for GH
and IGF-I enhancement and percent potentiation for
signaling studies are represented as mean percent po-
tentiation ± standard error.

Results

Concentration–response curves

In the first set of experiments, concentration–response
curves were generated to determine the optimal GH and
des-IGF-I concentrations for the present studies of the
effects of these hormones on excitatory synaptic trans-
mission in the CA1 field of hippocampal slices from
young adult and old rats (Fig. 1a–d). Statistical assess-
ment of age versus drug effects for both GH and IGF-I
demonstrated that there was an overall concentration
effect for both GH (p<0.005) and des-IGF-I (p<
0.0001); however, there was no significant age effect
at any of the concentrations (p00.7737). Concentrations
of 88 ng/mL of GH and 80 ng/mL of des-IGF-I were
selected because both were intermediate among the
concentrations tested and both exerted significant en-
hancement above baseline in young adult and old rats
(Fig. 1a–d).

Fig. 1 Concentration–
response curves.
Concentration-dependence
of GH (a, b) and des-IGF-I
(c, d) potentiation of com-
pound fEPSPs in young
adult (a, c) and old (b, d)
rats
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GH and des-IGF-I enhance fEPSPs in young adult
and old rats

Age-related differences in the effect of GH or des-
IGF-I on glutamatergic synaptic transmission were
assessed in hippocampal slices (Figs. 2 and 3).
Baseline recordings were performed for each slice
during which pAmp remained within 10 % of the
mean value for 10 min. CMPD and AMPA-
dependent fEPSPs were characterized by short latency
negative-deflecting potentials (Karnup and Stelzer
1999), whereas NMDA-dependent fEPSPs were char-
acterized by prolonged negative-deflecting potentials
preceeded by an initial, rapid negative deflection.
These NMDA-dependent fEPSPs were similar in ap-
pearance to those described previously (Eckles-Smith
et al. 2000). Our results reveal that GH induced a
statistically significant enhancement above baseline
in CMPD (144±7 %, n018), AMPA- (142±15 %,
n08), and NMDA-dependent (145±15 %, n07)
fEPSPs in slices from young adult rats (Fig. 2a, b).
A similar, significant GH-induced enhancement of
CMPD (161±7 %, n014), AMPA- (138±15 %, n0

8), and NMDA-dependent (178±17 %, n07) fEPSPs
was also observed in slices from old rats (Fig. 2a, b).
Des-IGF-I also produced a statistically significant en-
hancement above baseline in young adult, CMPD
(140±8 %, n020), AMPA- (123±13 %, n012), and
NMDA- (133±8 %, n012,) dependent synaptic trans-
mission, as well as in old CMPD (159±11 %, n017),
AMPA (118±2 %, n011) and NMDA (122±3 %, n0
12) fEPSPs (Fig. 2c, d). Furthermore, time–course
waveforms of average fEPSPs across time for GH
(Fig. 3a, b) and des-IGF-I (Fig. 3c, d) under, AMPA-
and NMDA-dependent conditions were similar for
young and old slices. In addition, in Fig. 3, the arrow
indicates the onset of the drug application and since
these time courses are not different directly following
the onset of the drug this likely indicates the enhance-
ment is not due to a change in the speed of the release
of the neurotransmitter. Thus, our results demonstrate
that CMPD, AMPA-, and NMDA-dependent synaptic
transmission was increased above baseline by either
GH or des-IGF-I and that the enhancement was com-
parable in young adult and old rats (p values: GH
CMPD, p00.08; AMPA, p00.83; NMDA, p00.18; p

Fig. 2 GH and des-IGF-I enhancement of excitatory transmis-
sion in young and old rats. Effect of GH (a) and des-IGF-I (b)
on compound (CMPD) fEPSPs and pharmacologically isolated
AMPA- and NMDA-mediated fEPSPs in young adult and old

hippocampal slices. Field EPSP enhancement above baseline
(100 %) was significant in both young adult and old F344 ×
BN rats (all p values <0.05) and there were no significant effects
of age under any of the recording conditions (all p values >0.05)
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values: des-IGF-I CMPD, p00.18; AMPA, p00.72;
NMDA, p00.25 (Fig. 2).

Paired-pulse facilitation is unaltered by GH and IGF-I

Since GH and des-IGF-1 significantly enhanced glu-
tamatergic synaptic transmission in slices from young
adult and old animals, we next sought to characterize
the synaptic locus underlying these effects. Alterations
in the paired-pulse ratio (PPR) of fEPSPs can be used
as an indicator of changes in neurotransmitter release
and thus may reveal changes that are of a presynaptic
origin (Foster and McNaughton 1991; Schultz et al.
1994). Therefore, we measured the PPR of CMPD
fEPSPs following direct application of these hormones
(Fig. 4). Although bath application of GH significantly
potentiated the fEPSPs, GH had no effect on the PPR
in recordings from either young adult (pre-treatment
GH01.311; post-treatment GH 1.217; n04; Fig. 4a) or
old rats (pre-treatment GH01.635; post-treatment
GH01.299, n07; Fig. 4a). Similarly, des-IGF-I appli-
cation also enhanced CMPD fEPSPs with no effect on
PPR in either young adult (pre-treatment des-IGF-I0
1.394; post-treatment des-IGF-I01.435; n05; Fig. 4b)
or old hippocampal slices (pre-treatment des-IGF-I0
1.524, n07; post-treatment des-IGF-I01.034, n07;

Fig. 4b). The observation that neither hormone altered
the PPR is consistent with the notion that GH and des-
IGF-I enhancement of synaptic transmission in young
adult and old hippocampal slices is not mediated by an
increase in glutamate release and instead likely
involves postsynaptic mechanisms.

GH and IGF-I signaling cascade elements are altered
with age

In light of the comparable enhancement of glutama-
tergic transmission observed in young adult and old
hippocampal slices treated with GH or des-IGF-I, we
also conducted initial studies to investigate whether
there were any age-dependent changes in the dominant
elements of the GH and des-IGF-I signaling cascades
that could underlie these effects. Studies indicate that
the non-intrinsic tyrosine kinase GH receptor dimer-
izes and associates with a non-receptor cytoplasmic
tyrosine kinase JAK2 for its activation (Carter-Su et al.
1996). Furthermore, JAK2 phosphorylation has been
proposed to be critical for GH signal transduction (Jin
et al. 2008). To compare the role of this element of the
GH signaling cascade in young adult and old rats, the
JAK2 inhibitor tyrphostin AG 490 was added to slices
from both groups 20 min prior to and throughout GH

Fig. 3 GH and des-IGF-I
effects on excitatory trans-
mission in young and old
rats. Time course for GH
(a, b) and des-IGF-I (c, d)
application on pharmaco-
logically isolated AMPA-
and NMDA-mediated
fEPSPs in young adult and
old hippocampal slices.
Application onset of GH and
IGF-I is depicted by the
arrow. Comparison of time
courses for young adult and
old hippocampal slices
demonstrated no significant
age-related differences in the
response to GH or
des-IGF-I
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application. The results demonstrated that tyrphostin
AG 490 did not block GH enhancement in either
young adu l t (GH 0144 ± 6 %, n 019 , GH +
Tyrphostin AG 4900143±5 %; n010; Fig. 5a) or
old slices (GH0161±7 %, n014, GH + Tyrphostin
AG 4900167±7 %, n04; Fig. 5a). These findings are
in contrast to reports that GH enhancement is dimin-
ished by tyrphostin AG 490 in 2–3-month-old juvenile
rats (Mahmoud and Grover 2006). Therefore, in order
to ensure the effectiveness of our inhibitor, we
assessed inhibition of the JAK2 signaling cascade by
tyrphostin AG 490 in slices from rats in that age range.
We found a significant inhibition of GH-induced en-
hancement similar to that described by Mahmoud and
Grover (2006), (GH0188±18 %, n07, GH + tyrphos-
tin AG 4900136±9, n09, p00.0171; data not shown).
These data indicate that tyrphostin AG 490 can inhibit
JAK2 in juvenile but not in young or old rats. This
suggests that the signaling cascade mediating GH
enhancement in young adult and old rats is not depen-
dent on JAK2, and based on current evidence from the
literature, a second tyrosine kinase, a Src family ki-
nase, that activates the Ras/MAP kinase pathway may
be involved (Zhu et al. 2002; Barclay et al. 2010).

One of the major signaling cascades initiated by
IGF-I receptor activation is the phosphatidylinositol
3-kinase (PI3K) signaling cascade. It has been pro-
posed that the PI3K-dependent pathway contributes
to the maintenance of cognitive function (Sun et al.
2005) and this pathway is involved in the IGF-I
potentiation of hippocampal AMPA EPSCs in juve-
nile rats (Ramsey et al. 2005). To determine if there
were age-dependent changes in this signaling cas-
cade, we tested the effect of the PI3K inhibitor
wortmannin on des-IGF-I potentiation of fEPSPs
in young adult and old rats. The results demonstrat-
ed that wortmannin reduced des-IGF-I enhancement
in slices prepared from old (IGF-I0151±8 %, n0
16, IGF-I+wortmannin 124±7, n05, p00.0262;
Fig. 5b) but not young adult rats (IGF-I0140±
9 %, n015, IGF-I0141±11 %, n05; Fig. 5b).
Thus, our data suggest that the IGF-I-dependent
enhancement may be partially mediated by PI3K
in old rats, but not in young. In young animals,
the IGF-I enhancement may be mediated by a par-
allel pathway, the Ras/MAP kinase pathway,
through the recruitment of GRB2/SOS and its in-
teraction with a phosphorylated IRS-1 or SHC that

Fig. 4 GH and des-IGF-1 effects on presynaptic facilitation in
young and old rats. Effect of GH (a) and des-IGF-I (b) on
paired-pulse ratios of CMPD fEPSPs. A paired-pulse stimulus
train was generated in the hippocampal slices at an interpulse
interval of 50 ms. The ratio of the second (P2) pulse over the

first pulse (P1) was determined under baseline conditions (pre-
treatment) and after GH and des-IGF-I application (post-treat-
ment). Neither GH nor IGF-I application altered paired-pulse
ratios significantly in young adult or old rats

AGE (2013) 35:1575–1587 1581



is activated by the phosphorylation of the IGF-I
receptor (Neuman-Haefelin et al. 2008; Perrini et
al. 2010).

Discussion

The results of this study provide the first evidence that
both acute GH and des-IGF-I application significantly
augment excitatory synaptic transmission in the hip-
pocampus of young adult and old rats. Isolation of
AMPA- and NMDA-dependent fEPSPs demonstrated
that both hormones significantly increased AMPA-
and NMDA-mediated synaptic transmission in young
adult and old rats. PPR experiments suggested that the
GH- and des-IGF-I-induced enhancement is not medi-
ated by a presynaptic facilitation of glutamate release.
Finally, our data provided initial evidence of signifi-
cant age-dependent changes in the signaling cascades
responsible for these effects. Although the JAK2 path-
way is required for GH potentiation of fEPSPs in
juvenile rats, blockade of this pathway had no effect
on GH modulation of glutamatergic transmission in
slices from young adult and old rats. Moreover, inhi-
bition of PI3K revealed that des-IGF-I enhancement

involves the PI3K signaling cascade in old rats, but
not in young adults, suggesting a shift such that the
PI3K pathway is utilized in juvenile and old rats, but
not young animals.

The present results indicate that application of GH
or des-IGF-I potentiates excitatory synaptic transmis-
sion in the hippocampus of young adult and old rats. A
previous study reported that the GH augmentation
involved both AMPA and NMDA receptors in hippo-
campal slices from juvenile rats (Mahmoud and
Grover 2006). The present study extends those find-
ings by demonstrating that (1) GH also increased
AMPA- and NMDA-dependent synaptic transmission
in young adult and old rats and (2) the level of en-
hancement was comparable in young adult and old
rats. A similar change in excitatory glutamatergic
transmission was also evident following application
of des-IGF-I in slices from adult and old rats.
Importantly, we found that des-IGF-I enhances both
AMPA- and NMDA-dependent fEPSPs. This finding
is in contrast to a previous report that des-IGF-I po-
tentiated AMPA-dependent, but not NMDA-
dependent synaptic transmission in juvenile rats
(Ramsey et al. 2005). These data, taken together with
the present results, suggest that there may be age-

Fig. 5 Effect of age on the signaling cascades responsible for
GH and des-IGF-1 potentiation of excitatory transmission. For
blocking the GH-induced JAK-STAT pathway (a), tyrphostin
AG 490 was used in slices from young adult and old rats.
Tyrphostin AG 490 did not block the GH enhancement of

fEPSPs. For blocking the des-IGF-1-induced PI3K pathway
wortmannin was used (b). Wortmannin partially blocked des-
IGF-1 enhancement in slices from young adult but not old rats
(*p values <0.05)
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related changes in the glutamate receptors responsible
for the des-IGF-I augmentation of hippocampal excit-
atory synaptic transmission. Specifically, the des-IGF-
I enhancement appears to only involve AMPA recep-
tors early in life (1–2 months; Ramsey et al. 2005) but
utilizes both AMPA and NMDA receptors by young
adulthood (10 months of age, present findings). This
developmental change could be due to the addition or
maturation of NMDA receptor subunit complexes.
NMDA receptors are comprised of heteromeric com-
plexes consisting of an NR1 subunit and a comple-
ment of NR2 subunits (A-D) which exhibit distinct
physiological and pharmacological properties
(Meguro et al. 1992; Kutsuwada et al. 1992; Cull-
Candy et al. 2001), and the relative proportions of
these subunits have been documented to demonstrate
functionally significant changes during development
(Monyer et al. 1994; Portera-Cailliau et al. 1996;
Bellone and Nicoll 2007).

The enhancement of hippocampal glutamatergic
synaptic transmission by GH and des-IGF-I demon-
strated in the present study provides a mechanism for
the reported amelioration of age-related cognitive im-
pairment by GH and IGF-I supplementation.
Specifically, we show here that GH- and des-IGF-I
each can directly modulate hippocampal synaptic
transmission not only in young adults, but also at old
age when cognitive performance can be improved by
either GH or IGF-I administration (Markowska et al.
1998; Ramsey et al. 2004). Compromised AMPA- and
NMDA-dependent synaptic transmission has been
reported in rats with cognitive deficits (Porrino et al.
2005; Liu et al. 2008; Goff et al. 2008; Kessels and
Malinow 2009; Lin and Tsien 2009; Hampson et al.
2009; Hamlyn et al. 2009), and increased activation or
expression of glutamatergic receptors maintains cog-
nitive function (Tang et al. 1999; Porrino et al. 2005;
Cao et al. 2007; Hampson et al. 2009; Hamlyn et al.
2009). While GH and IGF-I levels were not measured
in the animals in the present study, it has been well-
documented in the literature that they decline with age
(Sonntag et al. 1980; Richman et al. 1981; Carter et al.
2002; Sonntag et al. 2005; Ramsey et al. 2004), and
these declines may contribute to age-related cognitive
deficits. Future studies will be directed at correlating
the amount of the enhancement in excitatory synaptic
transmission with the hormone levels within individ-
ual subjects to determine whether animals with and
without cognitive deficits are still responsive to GH

and/or IGF-I. Finally, it has been recently shown by
our group that in two well-characterized models of
decreased circulating GH and IGF-I levels, the local
levels of these hormones remain constant (Adams et
al. 2009; Molina et al. 2011). Thus, it will be impor-
tant in future studies to document whether the local
levels of these hormones also change and whether
these levels correlate with alterations in synaptic
plasticity.

The results of our PPR experiments, taken together
with the data indicating no change in the speed of
release of the neurotransmitter, suggest that the effects
of GH and des-IGF-I observed here may not involve
increased glutamate release and may instead reflect
changes in the glutamate receptors in the postsynaptic
membrane. For example, increased trafficking of
NMDA or AMPA subunits to the postsynaptic mem-
brane could occur following GH or IGF-I administra-
tion. In the cerebellum, IGF-I mediates NMDA
receptor trafficking by subunit phosphorylation
(Chen and Roche 2007) and other growth factors also
have been shown to enhance NMDA subunit phos-
phorylation (Suen et al. 1998; Lin et al. 1998, 1999).
Moreover, the expression of both NR2A and NR2B
subunit protein levels in old rats is enhanced by IGF-I
(Sonntag et al. 2000) and GH increases the level of
NMDA receptor expression in the hippocampus (Le
Grevès et al. 2005). Finally, the literature suggests that
AMPA subunit phosphorylation and insertion at the
synapse increases the receptor fEPSP amplitude
(Malinow and Malenka 2002) and increases in
NMDA receptor levels occur simultaneously with an
increase in the NMDA-mediated receptor fEPSP
(Eckles-Smith et al. 2000). Thus, the effects of GH
and/or IGF-I on subunit phosphorylation, as well as
expression, may be essential in the enhanced synaptic
transmission reported here.

Although the ability of GH and des-IGF-I to
enhance synaptic transmission does not change ap-
preciably between 10 and 28 months of age, the
signaling pathway implicated in the IGF-I-mediated
enhancement appears to be modified during that
time. Specifically, blocking the PI3K, a signaling
pathway involved in the maintenance of cognitive
function (Sun et al. 2005), reduces the des-IGF-I-
mediated enhancement in old, but not in young
adult rats. In addition to IGF-I downstream signal-
ing events being mediated through the phosphory-
lation of PI3K, activation of the Ras/MAP kinase
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pathway through SHC adaptor protein phosphoryla-
tion has been observed to occur in parallel to PI3K
(Neuman-Haefelin et al. 2008; Perrini et al. 2010).
It may be that as animals age there is a switch
from a dependence on an SHC-MAPK signaling
pathway, which is more utilized in young adult rats
(Kim et al. 1997; Sullivan et al. 2008) to a greater
reliance on the PI3K pathway in old rats. This type
of age-related switch has been reported to occur in
the expression patterns of neurotrophins TrkA and
p75NTR and is thought to involve IGF-I receptor
activation (Costantini et al. 2006). In contrast,
blocking the JAK2 pathway, reported to be a major
signaling pathway for GH induced effects, was
equally ineffective in reducing GH-mediated synap-
tic enhancement in young adult and old rats. While
most of GH-dependent effects have been thought to
occur through the phosphorylation of JAK2 that
occurs after the GH receptor activation, several
studies have demonstrated that some of GH’s func-
tions are independent of JAK2 phosphorylation
(Zhu et al. 2002; Barclay et al. 2010). It is possible
that in young adult and old rats, GH mediates its
effects primarily by recruiting other tyrosine kinases
such as c-Src, which activates the Ras/MAP kinase
pathway, and that the effects mediated through the
recruitment of c-Src are independent of JAK2 (Zhu
et al. 2002). Furthermore, it has been demonstrated
that some GH events GH can induce an increase in
calcium entry independent of JAK2 (Billestrub et
al. 1995). Thus, a GH-induced increase in intracel-
lular Ca2+ might be responsible for the enhance-
ment of synaptic transmission during JAK2
inhibition (Zhang et al. 2004). While JAK2 has a
much greater response to GH receptor activation,
JAK1 has also been observed to be phosphorylated
by JAK1 activation (Smit et al. 1996), and there-
fore, the AMPA- and NMDA-dependent results that
we observe could be mediated by JAK1. In addi-
tion, 17β-estradiol has been observed to exert rapid
action on glutamatergic, currents in the hippocam-
pus (Gu et al. 1999; Kim et al. 2006). It is possible
that the GH-mediated enhancement that we ob-
served on AMPA- and NMDA-dependent fEPSPs
might be as a result of rapid action of GH on
AMPA and NMDA receptors without requiring
post-translational modification. This would occur
by GH directly modulating AMPA and NMDA
receptor-dependent functions.

IGF-I is known to be the anabolic mediator of the
biological effects of GH. Interestingly, we previously
showed that chronic GH treatment enhances excitatory
synaptic transmission in the absence of an increase in
IGF-I levels in aged rats and suggested that GH may
be having a direct effect on the brain. Thus, the current
data demonstrating that acute GH application enhan-
ces compound and pharmacologically isolated
NMDA- and AMPA-receptor fEPSPs in young adult
and old animals, together with evidence of the pres-
ence of GH receptor mRNA in the brain (Fraser et al.
1990; Walsh et al. 1990; Burton et al. 1992; Lobie et
al. 1993, 2000; Zhai et al. 1994; Hull and Harvey
1998) and a demonstration that GH crosses the
blood–brain barrier (Pan et al. 2005), support the
conclusion that GH may directly influence glutamate
receptor function. This also provides a potential mech-
anism for the GH-induced amelioration of cognitive
function in aged rats.

Summary

Taken together, the results presented here demonstrate
that either GH or des-IGF-I application to hippocampal
slices enhanced synaptic transmission in both young
adult and old rats. These findings reveal for the first
time that both GH and IGF-I have direct effects on
AMPA and NMDA-dependent synaptic transmission
at a time in the lifespan that administration of either
GH or IGF-I is able to ameliorate age-related cognitive
decline. Understanding the mechanisms by which GH
and IGF-I mediate synaptic enhancement is essential for
understanding how the chronic administration of these
factors ameliorates the age-related decline cognitive
function. The involvement of AMPA and NMDA recep-
tors in the GH and des-IGF-I-induced enhancement and
the alteration to the IGF-I signaling cascade between
young adulthood and old age provide opportunities for
understanding the targets of the GH and/or IGF-I-
induced amelioration of cognitive impairment in the
elderly, and thus contribute to the development of alter-
native therapeutic strategies that could benefit this
population.
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