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a b s t r a c t

We consider the dynamic lot sizing problem for a warm/cold process where the process can be kept

warm at a unit variable cost for the next period if more than a prespecified quantity has been produced.

Exploiting the optimal production plan structures, we develop nine rule-based forward solution

heuristics. Proposed heuristics are modified counterparts of the heuristics developed previously for

the classical dynamic lot sizing problem. In a numerical study, we investigate the performance of the

proposed heuristics and identify operating environment characteristics where each particular heuristic

is the best or among the best. Moreover, for a warm/cold process setting, our numerical studies indicate

that, when used on a rolling horizon basis, a heuristic may also perform better costwise than a solution

obtained using a dynamic programming approach.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

In this paper, we consider the problem of dynamic lot sizing
for a special type of production processes. The dynamic lot sizing
problem is defined as the determination of the production plan
which minimizes the total (fixed setup, holding and variable
production) costs incurred over the planning horizon for a
storable item facing known demands.

Recently, the notion of a ‘‘warm/cold process’’ has been
introduced into the scheduling literature (Toy and Berk, 2006).
A warm/cold process is defined as a production process that can
be kept warm for the next period if a minimum amount (the so-
called warm threshold) has been produced in the current period
and would be cold, otherwise. Production environments where
the physical nature of the production technology dictates that the
processes be literally kept warm in certain periods to avoid
expensive shutdown/startups are typical in glass, steel and
ceramic production. Robinson and Sahin (2001) provide other
examples in food and petrochemical industries where certain
cleanup and inspection operations can be avoided in the next
period if the quantity produced in the current period exceeds a
certain threshold. Production processes where production rates
can be varied also fall into the warm/cold process category. The
upper bound on the production rate is the physical capacity of the
production process and the lower bound corresponds to the warm
threshold, below which the process cannot be kept running into
the next period without incurring a setup. Such variable
ll rights reserved.

),
production rates can be found in both discrete item manufactur-
ing and process industries. Change in production rate can be
obtained at either zero or positive cost depending on the char-
acteristics of the employed technology. The additional variable
cost is, then, the variable cost of keeping the process warm onto
the next period.

As the above examples illustrate, the dynamic lot-sizing
problem in the presence of production quantity—dependent
warm/cold processes is a common problem. This problem, in
the presence of no shortages, has been formulated and solved
optimally by Toy and Berk (2006) using a dynamic programming
approach with an OðN3

Þ forward algorithm where N denotes the
problem horizon length. Later, they extend their results to the
case where some of the demands may be lost under a profit
maximization objective (Berk et al., 2008).

The dynamic lot sizing problem for a warm/cold process is a
generalization of the so-called classical problem which was first
analyzed by Wagner and Whitin (1958). The classical problem
assumes uncapacitated production and no shortages. Wagner and
Whitin (1958) provide a dynamic programming solution algo-
rithm and structural results on the optimal solution. Their
fundamental contribution lies in establishing the existence of
planning horizons, which makes forward solution algorithms
possible. Although the optimal solution structure is known, the
complexity of obtaining it (shown to be OðN log NÞ in general by
Federgruen and Tzur, 1991; Wagelmans et al., 1992; Feng et al.,
2011 for constant capacities) has stimulated a stream of research
that focuses on developing lot sizing heuristics based on simple
stopping rules, such as Silver–Meal (Silver and Meal, 1973), Part-
Period Balancing (DeMatteis, 1968), Least Unit Cost, Economic
Order Interval, McLauren’s Order Moment (Vollmann et al., 1997),
Least Total Cost (Narasimhan and McLeavy, 1995), Groff’s
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Algorithm (Groff, 1979). (See also Sahin et al., 2008; Narayanan
and Robinson, 2010.)

Further results on the lot sizing problem are found in the
literature on its extension to the capacitated production settings.
The capacitated lot sizing problem (CLSP) is related to the lot
sizing problem for a warm/cold process under certain conditions
(see Toy and Berk, 2006). The CLSP has been first studied by
Manne (1958) and has been shown to be NP-hard by Florian et al.
(1980). Reviews of the works on CLSP (along with the uncapaci-
tated versions) are by Brahimi et al. (2006) and Quadt and Kuhn
(2008), who include extensions of the problem, and Buschkühl
et al. (2010). Recent analytical studies have focused on novel
solution approaches. Heuvel and Wagelmans (2006) develop an
OðT2
Þ algorithm. Pochet and Wolsey (2010) provide a mixed

integer programming reformulation that can be solved with LP-
relaxation to optimality under reasonable conditions. Chubanov
et al. (2008) and Ng et al. (2010) introduce polynomial approx-
imations. Hardin et al. (2007) analyze the quality of bounds by
fast algorithms. Reviews of meta-heuristic approaches to the CLSP
can be found in Staggemeier and Clark (2001), Jans and Degraeve
(2007) and in Guner Goren et al. (2010) on genetic algorithms for
lot sizing. A recent review of related works appears also in Glock
(2010).

Rule-based heuristics in rolling horizon environments have
been studied by Stadtler (2000), Simpson (2001), and Heuvel and
Wagelmans (2005). The work herein joins this stream by con-
sidering the dynamic lot sizing problem for a warm/cold process.
Specifically, we propose rule-based lot sizing heuristics for the
problem and examine the efficacy of such rules. To the best of our
knowledge, this is the first work that studies lot sizing rules for
the operating environment where the production process can be
kept warm at some cost if production quantity in a period exceeds
a threshold value. We believe that our contributions lie in
developing a number of heuristics which perform well in certain
operational environments and in identifying such regions for
selecting a particular heuristic. We consider the application of
the proposed heuristics in a static setting as well as on a rolling
horizon basis as it is the practice. The available commercial ERP
software (e.g., SAP) still offer well-known heuristics for the
classical lot sizing problem as options for decision-makers along
with the ‘optimal’ solution algorithms in their manufacturing
modules. For the conventional production environments, the
benefits of heuristics include the ease of use, smoother produc-
tion schedules and more intuition for the trade-offs. Moreover, for
a warm/cold process setting, our numerical studies indicate that,
when used on a rolling horizon basis, a heuristic may also perform
better costwise than a solution obtained using a dynamic pro-
gramming approach. This finding is consistent with similar
studies on the classical problem (Stadtler, 2000; Heuvel and
Wagelmans, 2005). Hence, investigation of heuristics for warm/
cold process settings may be financially beneficial in practice as
well as from a purely theoretical perspective. Our work extends
the heuristics literature on the dynamic lot sizing problem.

The rest of the paper is organized as follows: In Section 2, we
introduce the basic assumptions of our model, formulate the
optimization problem and present some key results. In Section 3,
we present some theoretical results on an economic production
quantity (EPQ) model that we use as a continuous counterpart of a
warm/cold process to develop some of our heuristics. In Section 4,
we introduce and construct nine lot sizing heuristics for a warm/
cold process. In Section 5, we present a numerical study and discuss
our findings in regards to the cost performance of the proposed
heuristics. In our numerical study, we provide results on the
performance distribution of individual heuristics, on the rankings
of the heuristics, on identifying the operating environment where a
particular heuristic may perform best and on the impact of
planning horizon lengths when production plans are made and
executed on a rolling horizon basis.
2. Model: assumptions and formulation

We consider the operational setting in Toy and Berk (2006)
with time-invariant system and cost parameters. We assume that
the length of the problem horizon, N is finite and known. Demand
in period t, denoted by Dt ðt¼ 1,2, . . . ,NÞ, is non-negative and
known, but may be different over the problem horizon. No
shortages are allowed; that is, the amount demanded in a period
has to be produced in or before its period. The amount of
production in period t is denoted by xt. If xt 40, the production
indicator dt is 1, zero otherwise. The inventory on hand at the end
of period t is denoted by yt ð ¼ yt�1þxt�DtÞ. Inventory holding
cost per unit of ending inventory is h per period. Without loss of
generality, we assume that the initial inventory level is zero.
We assume that unit production cost is c but may be omitted in
the analysis since all demands must be met over the horizon.

Production quantity in a period cannot exceed the capacity, R.
For feasibility, we assume that, for any t, there exists a j(t) for
which

PjðtÞ
i ¼ t Dir ðjðtÞ�tþ1ÞR for tr jðtÞrN, 1rtrN. This condi-

tion guarantees that any subset of demands can be produced
within the horizon; a special case of the condition is satisfied
when Dt rR for all t. We consider a warm/cold production
process: The production process may be kept warm onto the
beginning of period t if the production quantity in the previous
period is at or above a threshold value Q; that is, xt�1ZQ .
Otherwise, the process cannot be kept warm and is cold. Let zt

indicate the warm/cold status of the process as period t starts;
it attains a value of 0 if the process is warm and 1, otherwise.
In order to keep the process warm onto period t, warming cost o
is charged for every unit of unused capacity in period t�1. That is,
the warming cost incurred in period t�1 would be oðR�xt�1Þ

monetary units. Note that, even if the quantity produced in period
t�1 is at least Q , it may not be optimal to keep the process warm
onto the next period if there would not be any production during
the next period. In such instances, there will be no warming costs
incurred although xt�1ZQ since xt ¼ 0. We assume that a warm
process requires no setup (and, hence incurs no setup cost) but a
cold process requires a cold setup with a fixed cost K ð40Þ if
production is to be done in the period. Finally, we assume that
h4o which ensures the Wagner–Whitin type cost structure, and
that the warm/cold process threshold is between the point of
indifference and the capacity, R�ðK=oÞoQ rR. (For the implica-
tions of these assumptions, see Toy and Berk, 2006.)

The objective is to find a production plan xt Z0 ðt¼ 1,2, . . . ,NÞ
(timing and amount of production), such that all demands are
met at minimum total cost over the horizon. Let X ¼ fx1, . . . ,xNg

denote a feasible production plan constructed over periods
1 through N; Gt be the variable cost incurred within period t

computed as Gt ¼ hytþoðR�xtÞdtþ1ð1�ztþ1Þ under the given
production plan; and THC denote the total horizon cost. Then,
the optimization problem (P) can be formally stated as follows:

min
X

THC ¼
XN

t ¼ 1

ðKdtztþGtÞ

subject to 0rxt rR, yt�1þxt ZDt , for all t; z1 ¼ 1, dNþ1 ¼ 0,
zNþ1 ¼ 1, and y0 ¼ yN ¼ 0.

Let Lu,v represent a subset of X between periods u and v�1
(inclusive) such that the starting inventory in period u and ending
inventory in period v�1 are zero and production is done in all periods
u through m to cover the demands for periods u through v�1.
Formally, Lu,v ¼ fxt9xt 40,t¼ u, . . . ,m; xt ¼ 0 for t¼mþ1, . . . ,v�1;
yu�1 ¼ yv�1 ¼ 0g for 0rurmovrNþ1. With a slight abuse of
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terminology, we shall refer to Lu,v as a production lot (for period u

through v�1), the total quantity produced in the production lot as its
lot size and ðv�uÞ as the production lot run length. Under the assumed
cost structure, we have the following result:

Proposition 1 (Optimal Schedule within a Production Lot). The

optimal (total cost minimizing) structure of a production lot Lu,v is

as follows: (i) xt ¼maxðQ ,½Dt�yt�1�Þ, for urtrm�1 and m�u40,
(ii) xm ¼ e, where e¼ ½

Pv�1
i ¼ m Di�ym�1�

þoR and m�uZ0, and

(iii) xt ¼ 0 for t¼mþ1, . . . ,v�1.

The proof rests on showing that any other production plan for
the periods u through v�1 with the given zero inventory
constraints would result in higher total costs and hence cannot
be optimal. Note that, typically, in the uncapacitated, classical
setting, each production lot corresponds to a single period of
production followed by non-production periods (with u¼m); only
in rare cases where setup costs are (comparably) very small, one
would get a lot-for-lot schedule. But, for a warm/cold process, a
production may contain a number of periods in which production
is done in succession (with urm). Also note that the optimal
production plan for problem (P) consists of production lots that
have the same structure as that given above (see Theorems 1–4 in
Toy and Berk, 2006).

Similarly, in devising and implementing the forward solution
heuristics below, we will use this key result. All production lots
Lu,v will be assumed to have the above optimal structure. Hence,
heuristics will result in lot sizes (i.e., the selection of some period
u and v) that may be sub-optimal but the structure of the
production plan will conform to the optimal solution structure.

Let Cu,v be the variable cost incurred over periods u through
v�1 by the production lot Lu,v,

Cu,v ¼
Xv�1

t ¼ u

Gt ¼
Xv�1

t ¼ u

hytþ
Xm�1

t ¼ u

oðR�xtÞ

In the following Lemma, we state how incremental updating of
production plans and costs is performed as the production lot
length is extended by one period, i.e., how the production lot
Lu,vþ1 ¼ fx

0
t9x
0
t 40, t¼ u, . . . ,m0; x0t ¼ 0 for t¼m0 þ1, . . . ,v�1g and

the corresponding cost Cu,vþ1 are obtained dynamically from
Lu,v ¼ fxt9xt 40,t¼ u, . . . ,m; xt ¼ 0 for t¼mþ1, . . . ,v�1g and Cu,v,
respectively.

Lemma 1. Let Lu,v ¼ fxt9xt 40,t¼ u, . . . ,m; xt ¼ 0 for t¼mþ1, . . . ,
v�1g, y0t ¼ y0t�1þx0t�Dt and Et ¼ ðmaxðQ ,½Dt�y0t�1�

þ Þðh�oÞþ
RoÞ=h.

(a) Lu,vþ1 ¼ fx
0
t9x
0
t 40,t¼ u, . . . ,m0; x0t ¼ 0 for t¼m0 þ1, . . . ,v�1g

where

x0t ¼

xt for urtom

Dvþxm for t¼m if DvþxmrEt

maxðQ ,½Dt�y0t�1�
þ Þ for t¼m if Dvþxm4Et

Dvþxm�
Xt�1

j ¼ m

x0j

24 35þ for motovþ1

if Dvþxm�
Xt�1

j ¼ m

x0j

24 35þrEt

maxðQ ,½Dt�y0t�1�
þ Þ for motovþ1

if Dvþxm�
Xt�1

j ¼ m

x0j

24 35þ4Et

8>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>:
and m0 ¼maxft : x0t 40,urtovþ1g;

(b) Cu,vþ1 ¼ Cu,vþ
Pv�1

i ¼ m hð
Pi

j ¼ m x0j�xmÞþ
Pm0�1

i ¼ m oðR�x0iÞ.
Proof. (a) Immediately follows from the optimal schedule structure.

(b) Let Cu,v be the total variable cost associated with the

production lot Luv as defined before.

Hence,

Cu,vþ1�Cu,v ¼
Xv

i ¼ u

h
Xi

j ¼ u

ðx0j�DjÞþ
Xv

i ¼ u

Iðx0
i
40Þðx0

iþ 1
40ÞoðR�x0iÞ

24 35
�
Xv�1

i ¼ u

h
Xi

j ¼ u

ðxj�DjÞþ
Xm�1

i ¼ u

oðR�xiÞ

24 35
¼

Xm�1

i ¼ u

h
Xi

j ¼ u

ðx0j�DjÞþh
Xm
j ¼ u

ðx0j�DjÞ

24
þ

Xv�1

i ¼ mþ1

h
Xi

j ¼ u

ðx0j�DjÞþh
Xv

j ¼ u

ðx0j�DjÞ

þ
Xm�1

i ¼ u

oðR�x0iÞþ
Xv

i ¼ m

Iðx0
i
40Þðx0

iþ 1
40ÞoðR�x0iÞ

#

�
Xm�1

i ¼ u

h
Xi

j ¼ u

ðxj�DjÞþh
Xm
j ¼ u

ðxj�DjÞ

24
þ

Xv�1

i ¼ mþ1

h
Xi

j ¼ u

ðxj�DjÞþ
Xm�1

i ¼ u

oðR�xiÞ

35
¼
Xv

i ¼ m

h
Xi

j ¼ m

x0j�xm

0@ 1AþXv

i ¼ m

Iðx0
i
40Þðx0

iþ 1
40ÞoðR�x0iÞ

which reduces to the result. &

Before introducing the heuristics, we will explore some prop-
erties of the continuous review economic production quantity
(EPQ) counterpart of a warm/cold process in the next section.
3. Economic production quantity for a warm/cold process

In this section, we construct the continuous review economic
production quantity (EPQ) counterpart of a warm/cold process.
The model derived herein serves as the foundation of the EPQ-
based heuristics to be discussed later. The model assumptions are
as follows: Demand rate is deterministic and constant, d. There is
a constant production rate, p which is a decision variable and may
take on values over ½maxðQ ,dÞ,R� per unit time where Q denotes
the physical threshold for a warm process. The cost rate of
operating with a particular value of the production rate p0 is
given by oðR�p0Þ. This cost is analogous to the warming cost in
the sense that it keeps the production process running. We omit
the unit production cost due to material usage, etc. as in the
periodic review problem at hand. Hence, the effective production
cost rate is oðR�p0Þ. A cycle is defined as the time between two
consecutive instances of a cold setup, which initiates a production
run. Each cycle consists of two phases – a production and a non-
production phase – as in the classical EPQ setting. During the
production phase, q units are produced and inventory is accumu-
lated at a rate that is in excess of the demand rate; during the
non-production phase, the accumulated inventory is used up
to satisfy the demand until the next production run. Each unit
of inventory held per unit time incurs a carrying cost h.
The objective is to find the production quantity and the produc-
tion rate that minimize the total cost per unit time.

The cycle length for a given production quantity q and a
production rate p is given by

CLðq,pÞ ¼ q=d
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The length of the production phase in a cycle is q/p and the
maximum inventory level at the end of the production phase is
ðp�dÞðq=pÞ. In each cycle, there is a single cold setup by definition,
and warming cost is incurred during the entire production phase.
Therefore, the total (setup, holding and production/warming) cost
per cycle is

CCðq,pÞ ¼ Kþ
q2ðp�dÞ

2pd
hþ

qðR�pÞ

p
o

The total cost rate is TCðq,pÞ ¼ CCðq,pÞ=CLðq,pÞ ¼ Kd=qþ

ðqðp�dÞ=2pÞhþ½oðR�pÞ=p�d. Note that the cost rate expression is
similar in structure to that of an economic production quantity model
in the presence of (i) production rate dependent unit production costs
or (ii) cost of selecting a production rate (e.g. Khouja and Mehrez,
1994; Larsen, 1997).The unique optimizer q̂ðpÞ of TCðq,pÞ for a given
value of production rate p is given by the classical EPQ formula:
q̂ðpÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Kd=h

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p=ðp�dÞ

p
with the corresponding optimal cost

rate cTC ðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
2Kdh
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðp�dÞ=p
p

þdoðR�pÞ=p. (Note, when p¼d,
the process is run continuously ðq̂ðpÞ-1Þ resulting incTC ðp¼ dÞ ¼oðR�dÞ.) The unique extremum of cTC ðpÞ is given by
~p ¼ 2o2R2d=ð2o2R2

�dKhÞ. However, it is not possible to say that ~p is
a global minimum (or maximum) since the principal minors of the
Hessian are of mixed signs. Furthermore, it may not lie within the
feasible region. Therefore, to obtain the optimal production rate pn,
we need to check the total cost rates attained when the production
rate takes on the extremum value (if feasible) and its two boundaries;
pn ¼ arg minpA fmaxðQ ,dÞ,Rg[P̂

cTC ðpÞ where we define the set P̂ ¼ fr :
r¼ ~p;maxðQ ,dÞrrrRg which is non-empty only for feasible ~p.

Then, we have dTCn
¼cTC ðpnÞ and cqn ¼ q̂ðpnÞ; we also let dCCn denote

the corresponding cycle cost.
4. Heuristics

In this section, we develop the proposed lot sizing heuristics.
Solving the problem (P) over a problem horizon from period i0 to
period N0 by a forward heuristic means that a production plan is
obtained in a forward manner (starting from period i0 and proceeding
ahead up to period N0) by employing a pre-specified stopping rule to
determine the production lots over the horizon. The stopping rule of
a heuristic dictates when a production lot starting in period u should
terminate; at the termination of one production lot, it is assumed
that another starts. Due to Proposition 1, the structure of the
production lot is known. Applying the rule over the horizon to
generate successive production lots, one obtains the production plan
X under the heuristic. The total horizon cost THC under the heuristic
is then computed using the production plan X. The implementation
of the forward heuristics herein follows the pseudo-code below.
Program_FindProductionPlanði0,N0Þ
begin

i :¼ i0

while ðirN0Þ

u :¼ i;
n :¼ 1;
stoping_rule :¼false

generate Lu,uþn

while (stopping_rule¼¼ false)
generate Lu,uþnþ1

if stopping condition is satisfied then do
stopping_rule :¼true

compute n̂ (number of periods in the
production lot)

i :¼ uþ n̂

else n :¼ nþ1

end
We propose nine heuristics for the dynamic lot sizing problem
for a warm/cold process. They are adaptations or modifications
for the warm/cold process setting of the heuristics that have been
developed for the classical, uncapacitated lot sizing problem. As
we show in our numerical analysis, some of the proposed
heuristics do not perform as well for certain system and cost
parameters and demand patterns. However, there is not one
particular heuristic that performs best in all experiments either.
Below, we discuss the construction of our heuristics and state the
stopping rules for each heuristic.

Heuristic #1 is developed in the same essence as the Silver–
Meal heuristic in the classical, uncapacitated setting (Silver and
Meal, 1973); it is an adaptation of the Silver–Meal heuristic for a
warm/cold process. It rests on the comparison of the total cost per
period. A production lot starting at u terminates at period uþ n̂�1
after which the total cost rate increases for the first time.
Formally, the stopping rule for this heuristic can be stated
as KþCu,uþn=noKþCu,uþnþ1=ðnþ1Þ with n̂ ¼ 1þmaxfn : Kþ

Cu,uþn=nZKþCu,uþnþ1=ðnþ1Þg.
To illustrate the mechanics of the proposed heuristics, we shall use

an illustrative example with the following parameter set: K¼10,
h¼1, o¼ 0:95, R¼8, and Q¼5 with N¼15 and demands over the
horizon, D¼ f6,4,2,2,4,7,5,6,4,8,4,5,8,1,4g. The optimal production
plan for periods 1 through 15 for this example is found as ff6,5,3,0g,
f5,6,5,6,5,7,5,5,7,5,0gg with a corresponding total cost of 55.70.
Note that the production plan is presented as a sequence of produc-
tion lots and each production lot is defined as a sequence of the
production done on each consecutive period. For Heuristic #1,
starting with the first period, we construct the production lot
Lu,uþn, compute the stopping criterion ru,uþn ¼ ðKþCu,uþnÞ=n and
apply the rule as follows. L12 ¼ f6g, r12 ¼ ð10þ0Þ=ð2�1Þ ¼ 10;
L13 ¼ f6,4g, r13 ¼ ð10þ0:95ð8�6ÞÞ=ð3�1Þ ¼ 5:95 ðor12Þ; L14 ¼

f6,6,0g, r14 ¼ ð10þ0:95ð8�6Þþ1ð0þ6�4ÞÞ=ð4�1Þ ¼ 4:63 ðor13Þ;
L15 ¼ f6,5,3,0g, r15 ¼ ð10þ½0:95ð8�6Þþ0:95ð8�5Þ�þ½1ð0þ5�4Þþ
1ð1þ3�2Þ�Þ=ð5�1Þ ¼ 4:44ðor14Þ; L16 ¼ f6,5,7,0,0g, r16 ¼ 5:15
ð4r15Þ. We freeze the production plan for periods 1 through 4,
f6,5,3,0g, and start from period 5. Proceeding in a similar fashion,
we get the production plan for periods 1 through 15 as ff6,5,3,0g,
f5,6,5,6,5,7,4g, f5,8,5,0gg with a corresponding total cost of
59.90.

Heuristic #2 is similar in construction to the Part Period
Balancing (PPB) heuristic in the classical, uncapacitated
setting (DeMatteis, 1968); it is an adaptation of the PPB heuristic
for a warm/cold process. It rests on the comparison of the
cost of a production lot against a cold setup. A production
lot starting at u terminates at period uþ n̂�1 after which the
variable cost exceeds the fixed cold setup cost for the first time.
Formally, the stopping rule can be stated as Cu,uþn4K with
n̂ ¼maxfn : Cu,uþnrKg.

Consider the same illustrative setting given above. Starting
with the first period, we construct the production lot Lu,uþn,
compute the stopping criterion run ¼ Cu,uþn and apply the rule
as follows. L12 ¼ f6g, r12 ¼ 0; L13 ¼ f6,4g, r13 ¼ 0:95ð8�6Þ ¼ 1:90
ðoK ¼ 10Þ; L14 ¼ f6,6,0g, r14 ¼ 0:95ð8�6Þþ1ð0þ6�4Þ ¼ 3:90
ðoKÞ; L15 ¼ f6,5,3,0g, r15 ¼ ½0:95ð8�6Þþ0:95ð8�5Þ�þ½1ð0þ
5�4Þþ1ð1þ3�2Þ� ¼ 7:75ðoKÞ; L16 ¼ f6,5,7,0,0g, r16 ¼ 15:75
ð4KÞ. We freeze the production plan for periods 1 through 4,
f6,5,3,0g, and start from period 5. Proceeding in a similar fashion,
we get the production plan for periods 1 through 15 as ff6,5,3,0g,
f5,6,5,6g, f5,7,5,4g, f8,5,0gg with a corresponding total cost of
60.90.

Heuristic #3 is the adaptation for a warm/cold process of the Least
Unit Cost heuristic (LUC) in the classical, uncapacitated setting
(Vollmann et al., 1997). It rests on the total cost per unit comparison.
A production lot starting at u terminates at period uþ n̂�1 after
which the total cost rate increases for the first time. Formally,
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the stopping rule can be stated as ðKþCu,uþnÞ=
Puþn�1

i ¼ u DioðKþ
Cu,uþnþ1Þ=

Puþn
i ¼ u Di with n̂ ¼ 1þmaxfn : ðKþCu,uþnÞ=

Puþn�1
i ¼ u DiZ

ðKþCu,uþnþ1Þ=
Puþn

i ¼ u Dig.
For Heuristic #3, starting with the first period, we construct

the production lot Lu,uþn, compute the stopping criterion
run ¼ ðKþCu,uþnÞ=

Puþn�1
i ¼ u Di and apply the rule as follows.

L12 ¼ f6g, r12 ¼ ð10þ0Þ=ð6Þ ¼ 1:67; L13 ¼ f6,4g, r13 ¼ ð10þ0:95
ð8�6ÞÞ=ð6þ4Þ ¼ 1:19 ðor12Þ; L14 ¼ f6,6,0g, r14 ¼ ð10þ0:95ð8�
6Þþ1ð0þ6�4ÞÞ=ð6þ4þ2Þ ¼ 1:16 ðor13Þ; L15 ¼ f6,5,3,0g, r15 ¼

ð10þ½0:95ð8�6Þþ0:95ð8�5Þ�þ½1ð0þ5�4Þþ1ð1þ3�2Þ�Þ=ð6þ4þ2þ
2Þ ¼ 1:27 ð4r14Þ. We freeze the production plan for periods
1 through 3, f6,6,0g, and start from period 4. Proceeding in a
similar fashion, we get the production plan for periods 1 through
15 as ff6,6,0g, f5,5,5,5,5,5,6,5,5,7,1g,f4gg with a corresponding
total cost of 75.55.

Heuristic #4 is the adaptation for a warm/cold process of the
Least Total Cost (LTC) heuristic in the classical, uncapacitated
setting (Narasimhan and McLeavy, 1995). A production lot start-
ing at u terminates at period uþ n̂�1 at which the absolute
difference between the fixed cold setup cost and the total variable
cost is minimum. Formally, the stopping rule can be stated as
Cu,uþn4K with n̂ ¼ arg minnA f ~n , ~nþ1g9K�Cu,uþn9 where ~n ¼max
fi : Cu,uþ irKg.

Starting with the first period, we construct the production lot
Lu,uþn, compute the stopping criterion run ¼ Cu,uþn and apply the
rule as follows. L12 ¼ f6g, r12 ¼ 0; L13 ¼ f6,4g, r13 ¼ 0:95 ð8�6Þ ¼
1:90 ðoK ¼ 10Þ; L14 ¼ f6,6,0g, r14 ¼ ½0:95ð8�6Þþ1ð0þ6�4Þ� ¼ 3:90
ðo10Þ; L15 ¼ f6,5,3,0g, r15 ¼ ½0:95ð8�6Þþ0:95ð8�5Þ�þ½1ð0þ5�4Þþ
1ð1þ3�2Þ� ¼ 7:80 ðo10Þ; L16 ¼ f6,5,7,0,0g, r16 ¼ 15:75 ð410Þ.
Note that the difference for period 5 is larger than that for period
4; minð910�15:759,910�7:809Þ ¼ 2:20. Hence, we freeze the produc-
tion plan for periods 1 through 4, f6,5,3,0g, and start from period 5.
Proceeding in a similar fashion, we get the production plan for
periods 1 through 15 as ff6,5,3,0g, f5,6,5,6,4g,f8,5,5,7,1g,f4gg with
a corresponding total cost of 66.95.

For the classical, uncapacitated setting, a group of heuristics
have been proposed in the literature based on a continuous
review (economic order quantity, EOQ) approximation of the
periodic review production environment: Groff’s heuristic
(Groff, 1979), the economic order interval (EOI) heuristic, and
McLauren’s Order Moment (MOM) heuristic (see Vollmann et al.,
1997). In these heuristics, the demand stream over the problem
horizon is approximated by a constant rate demand process with
the same mean; and, the cost trade-offs inherent in the lot sizing
problem for the periodic setting are approximated by the cost
trade-offs based on the EOQ model. This class of heuristics has
been shown to be effective in certain operating environments.
For the warm/cold production processes, we propose four heur-
istics that are adaptations or modifications of these classical
setting heuristics. The existence of a warm/cold process implies
the capability of keeping the process warm (running) by selecting
minimum production quantities (at or above the warm threshold)
and incurring a warming cost. This suggests an analogy between
the warm/cold setting and a production environment with a finite
production rate. Hence, the construction of our heuristics is based
on the approximation of the periodic review, warm/cold produc-
tion setting via the continuous review, economic production
quantity (EPQ) model. It attempts to capture the warm/cold
capability through the finite production rate that can be selected
at a cost. For these heuristics, we have the following definitions.
Let D denote the constant demand rate for the problem horizon;dTCn denote the optimal total cost rate and cqn denote the optimal
economic production quantity for the equivalent EPQ model.
The equivalent EPQ model assumes constant demand rate D and
a constant production rate pn whose computation involves
the warm threshold Q, the physical production capacity R and
the warming cost o. We refer the reader to Section 3 for the
development of the equivalent EPQ approximation and
the derivation of the basic operational entities above (dTCn , cqn

and pn) used in the construction of the heuristics. We introduce
these four heuristics (Heuristics #5–8) below.

Heuristic #5 is the adaptation for a warm/cold process of the
Economic Order Interval (EOI) heuristic in the classical, uncapa-
citated setting (Vollmann et al., 1997). It is based on an equivalent
(continuous review) economic production quantity cqn obtained
by assuming a constant demand rate D over the horizon and
imposing a constant production rate pn. By construction, with this
rule, a production plan consists of production lots of equal size
(except possibly the last lot). In this heuristic, a production lot
starting at u terminates at period uþ n̂�1 when the production lot
reaches a length equal to the largest integer that is smaller than
the economic production interval (EPI). The stopping rule can be
stated as n4cqn=D with n̂ ¼ bcqn=Dc with cqn ¼ND if pn ¼D.

For the given demand stream and cost parameters of the
illustrative example, we have D ¼ 4:67, ~p ¼ 7:83, cTC ðQ Þ ¼ 5:15;cTC ð ~pÞ ¼ 6:237; cTC ðRÞ ¼ 6:236; cTC

n

¼ 5:15; pn ¼ 5:00 and cqn ¼ 37:42
for the heuristics based on the EPQ model. For Heuristic #5,
n̂ ¼ b37:42=4:67c ¼ 8 which gives the production plan for periods
1 through 15 as ff6,5,5,5,5,5,5,0g, f5,7,5,5,7,5,0gg with a corre-
sponding total cost of 85.60.

In the classical, uncapacitated setting, Groff (1979) proposes a
heuristic that uses an EOQ approximation to the dynamic lot
sizing problem. It is based on the comparison of marginal changes
in the fixed and variable cost components when the length of a
production lot is extended by one period. We develop Heuristic #6
in a similar fashion using, instead, an EPQ approximation for a
warm/cold process. Consider the production lot Lu,uþn. Let ~Cu,uþn

denote the total holding and warming costs within the production
lot as approximated by its EPQ counterpart for a constant demand
rate D over the horizon and imposing a constant production rate
pn; and, let ½Kþ ~C u,uþn�ðN=nÞ denote the corresponding approx-
imate total cost over the horizon as in Groff. We obtain ~C u,uþn as
follows. With constant demand rate over the horizon, D and the
imposed production rate pn, the maximum inventory level within
the production lot is Imax ¼

Puþn�1
i ¼ u Diðp

n�DÞ=pn. The cost of the
inventory carried within the lot is approximated as hnImax=2.
Noting that

Puþn�1
i ¼ u Di=pn gives the length of the production run

within the lot, the corresponding warming cost within the lot is
computed as ðR�pnÞo

Puþn�1
i ¼ u Di=pn, which we approximate as

ðR�pnÞonD=pn by replacing the total demand by its average. Then,

~C u,uþn ¼ hn
Xuþn�1

i ¼ u

Diðp
n�DÞ=ð2pnÞþðR�pnÞonD=pn

Under Heuristic #6, a production lot starting at u terminates at
period uþ n̂�1 after which the approximate total cost over the
horizon increases for the first time. Formally, the stopping rule
can be stated as ½Kþ ~C u,uþn�ðN=nÞo ½Kþ ~C u,uþnþ1�ðN=ðnþ1ÞÞwhich
simplifies to nðnþ1ÞDuþn4 ½cqn �2=D ð ¼ 2Kpn=hðpn�DÞÞ with
n̂ ¼ 1þmax fn : nðnþ1ÞDuþno ½cqn �2=Dg with cqn ¼ND if pn ¼D.

Starting with the first period, we construct the production lot
Lu,uþn, compute the stopping criterion run ¼ ½Kþ

~C u,uþn�ðN=nÞ and
apply the rule as follows. L12 ¼ f6g, r12 ¼ 192:9; L13 ¼ f6,4g,
r13 ¼ 119:9 ðor12Þ; L14 ¼ f6,6,0g, r14 ¼ 95:9 ðor13Þ; L15 ¼

f6,5,3,0g, r15 ¼ 84:4 ðor14Þ; L16 ¼ f6,5,7,0,0g, r16 ¼ 78:9 ðor15Þ;
L17 ¼ f6,5,5,5,4,0g, r17 ¼ 77:4 ðor16Þ; L18 ¼ f6,5,5,5,5,4,0g,
r18 ¼ 76:33 ðor17Þ; L19 ¼ f6,5,5,5,5,5,4,0g, r19 ¼ 76:65 ð4r18Þ.
We freeze the production plan for periods 1 through 8,
f6,5,5,5,5,4,0g, and start from period 9. Proceeding in a similar
fashion, we get the production plan for periods 1 through 15 as
ff6,5,5,5,5,4,0g, f6,5,7,5,5,7,5,0gg with a corresponding total cost
of 77.65.
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Next, we develop the two heuristics (Heuristics #7 and #8) that
are modifications of the McLauren’s Order Moment (MOM) heur-
istic in the classical, uncapacitated setting (Vollmann et al., 1997).
The construction logic of the MOM heuristic is similar to that of the
PPB heuristic; it determines the lot size for individual orders by
matching the number of accumulated part periods to the number
that would be incurred if an order of size equal to EOQ were placed
under conditions of constant demand. The construction of Heuristics

#7 and #8 is similar; an EPQ equivalent is used with constant

demand rate over the horizon, D and the imposed production rate
pn instead of the EOQ. In Heuristic #7, we use the total cost within
the lot as the basis for the stopping rule. A production lot starting at

u terminates at period uþ n̂�1 after which the total cost within the
lot exceeds the benchmark value (cost for an EPQ cycle). It can be

formally stated as KþCu,uþn4
dCCn with n̂ ¼maxfn : Kþ Cu,uþnrdCCn

g. In Heuristic #8, we use the production quantity within the lot
as the basis for the stopping rule. A production lot starting at u

terminates at period uþ n̂�1 after which the total demand to be
satisfied by the lot exceeds the benchmark value (an EPQ). It can be

formally stated as
Puþn�1

i ¼ u Di4cqn with n̂ ¼maxfn :
Puþn�1

i ¼ u Dircqn g with cqn ¼ND if pn ¼D.
Consider the illustrative example. For Heuristic #7, starting with

the first period, we construct the production lot Lu,uþn, compute
the stopping criterion run ¼ KþCu,uþn and apply the rule as

follows. L12 ¼ f6g, r12 ¼ 10; L13 ¼ f6,4g, r13 ¼ 10þ0:95ð8�6Þ ¼

11:90 ðo ðcqn=DÞdTCn
¼ ðð37:41Þð5:15Þ=4:67Þ ¼ 41:33Þ; L14 ¼ f6,6,0g,

r14 ¼ 10þ 0:95ð8�6Þþ1ð0þ6�4Þ ¼ 13:90 ðo41:33Þ; L15 ¼ f6,5,3,0g,
r15 ¼ 10þ½0:95ð8�6Þþ0:95ð8�5Þ�þ½1ð0þ5�4Þþ1ð1þ3�2Þ� ¼ 17:75

ðo41,33Þ; L16 ¼ f6,5,7,0,0g, r16 ¼ 25:75 ðo41:33Þ; L17 ¼ f6,5,5,5,4,0g,
r17 ¼ 39:45 ðo41,33Þ; L18 ¼ f6,5,5,5,5,4,0g, r18 ¼ 48:3 ð441,33Þ.

We freeze the production plan for periods 1 through 7,
f6,5,5,5,4,0g, and start from period 8. Proceeding in a similar
fashion, we get the production plan for periods 1 through 15 as
ff6,5,5,5,4,0g, f5,6,5,7,5,5,7,5,0gg with a corresponding total cost
of 71.65. For Heuristic #8, starting with the first period, we
construct the production lot Lu,uþn, compute the stopping criterion

run ¼
Puþn�1

i ¼ u Di and apply the rule as follows. L12 ¼ f6g, r12 ¼ 6

ðocqn ¼ 37:42Þ; L13 ¼ f6,4g, r13 ¼ 6þ4¼ 10 ðo37:42Þ; L14 ¼ f6,6,0g,
r14 ¼ 12 ðo14:97Þ; L15 ¼ f6,5,3,0g, r15 ¼ 14 ðo37:42Þ; L16 ¼

f6,5,7,0,0g, r16 ¼ 18 ðo37:42Þ; L17 ¼ f6,5,5,5,4,0g;r17 ¼ 25 ðo37:42Þ;
L18 ¼ f6,5,5,5,5,4,0g, r18 ¼ 30 ðo37:42Þ; L19 ¼ f6,5,5,5,5,5,5,0g, r19 ¼ 36

ðo37:42Þ; L1,10 ¼ f6,5,5,5,5,5,5,4,0g, r1,10 ¼ 40 ð437:42Þ. We

freeze the production plan for periods 1 through 9, f6,5,5,5,
5,5,5,0g, and start from period 10. Proceeding in a similar fashion,
we get the production plan for periods 1 through 15 as
ff6,5,5,5,5,5,5,0g, f5,7,5,5,7,5,0gg with a corresponding total cost
of 85.60.

Finally, we propose Heuristic #9 which is a modification for a

warm/cold process of the Wagner–Whitin solution algorithm in

the classical, uncapacitated setting (Wagner and Whitin, 1958).

The construction of the heuristic is as follows. Given a warm/cold

process with its system and cost parameters and a demand

stream; we consider another production process with the same

parameters and demands except that it has infinite capacity per

period and cannot be kept warm. That is, the two processes are

identical except that R-1 and Q-1 for the latter which

corresponds to the classical, uncapacitated setting. Let �X ¼ f �x1,
�x2, . . . , �xNg denote the production plan obtained by the Wagner–

Whitin algorithm for this uncapacitated production process for

the given demands. Under Heuristic #9, the production plan

X ¼ fx1,x2, . . . ,xNg for the warm/cold process at hand is obtained

by spreading out the production quantities in �X over the periods

so as to incur the lowest possible costs by taking into account the
capability of keeping the process warm and the physical capacity
level. With this heuristic, a production lot starting at u terminates
at period uþ n̂�1 after which a positive production quantity is
encountered for the first time in the Wagner–Whitin solution.
The stopping rule can be formally stated as �xuþn40 with
�n ¼minfn : �xuþn40,n41g�1.

For the illustrative example, we have the Wagner–Whitin
solution given by ff12,0,0g,f6,0g,f12,0g,f10,0g,f17,0,0g,f13,0,0gg.
Then, the corresponding production plan for the warm/cold
process for periods 1 through 15 is ff6,6,0g,f6,0g,f7,5g, f6,4g,
f8,5,4g,f8,5,0gg with a corresponding total cost of 71.45.

Note that costs are computed by considering warming effects
for consecutive lots even when the stopping rules generate
separate lots (beginning with cold setups); that is, heuristics are
used to obtain only the production plan but not the costs.
For example, under Heuristic #4, the second and third lots
generated result in a production run that goes on for five
consecutive periods (without a cold setup in between) with the
process being kept warm between periods seven and eight.

For ease of reference, we provide a list of the basis of
construction, the stopping rule and lot run length for all of our
heuristics in Table 1.

5. Numerical study and discussion

In this section, we present and discuss our findings in a numerical
study.

We conducted our numerical study to investigate four aspects:
(i) percentage deviation from the optimal cost for each heuristic;
(ii) dominance of heuristics among themselves; (iii) impact of the
parameter values and demand patterns on performances of the
heuristics, and finally (iv) impact of planning horizon lengths
when production plans are made and executed dynamically on a
rolling horizon basis.

For our numerical study, we considered a problem horizon of
N¼300 periods. Demands are generated randomly from a normal
distribution with mean mð ¼ 500Þ and standard deviation s with
s=mAf0,0:2,0:5,1g. Demand streams generated have been pre-
processed: (i) All demand values have been truncated to integers,
and negative demands have been replaced by zero demands.

(ii) Given the demand stream from (i) D0 ¼ fD01, . . . ,D0Ng, the final

demand stream D¼ fD1, . . . ,DNg is obtained by spreading out D0

over the problem horizon starting with the last period such that
no final demand value exceeds the imposed capacity for a parti-

cular experiment; that is, DN ¼minðR,D0NÞ and DN�j ¼minðR,ðD0N�jþ

½
PN

i ¼ N�jþ1ðD
0
i�DiÞ�ÞÞ for 1r jrN�1. If

PN
i ¼ 1 ðD

0
i�DiÞ40, the

generated stream is infeasible with the given production capacity
level and has to be discarded. In our numerical study, we have
encountered no such infeasible streams. We set unit holding cost
rate h¼1, unit production cost c¼0 and vary unit warming cost
oAf0:55,0:65,0:75,0:85,0:95g. The cold setup cost is selected as a

function of the mean demand rate, K ¼ ½J2=2�m where J may be
viewed as a proxy for the average length of production lot; we
have JAf2,5g. The warm process threshold also varies as a
function of the mean demand rate, Q ¼ am with
aAf1,1:3,1:5,2,2:3,3:5g. The tightness of capacity is attained by
selecting the imposed physical capacity as R¼ ðgK=oÞþQ with
gAf0:3,0:4,0:5,0:6,0:7,0:8,0:9,1:0g. Note that g corresponds to the
ratio of keeping the process warm for one period and a cold setup.

We considered the problem of obtaining a production plan
(i) statically (when demands for the entire problem horizon are
known at the beginning of the problem horizon) and (ii) on a
rolling horizon basis with given planning horizon lengths (when
demands are revealed sequentially). We used 19 different plan-
ning horizon lengths PHL (in terms of number of periods);



Table 1
Summary of heuristics.

Heuristic Construction basis Stopping rule with n̂

#1 Silver–Meal KþCu,uþn

n
o

KþCu,uþnþ1

nþ1

n̂ ¼ 1þmax n :
KþCu,uþn

n
Z

KþCu,uþnþ1

nþ1

� �
#2 Part period balancing Cu,uþn 4K

n̂ ¼maxfn : Cu,uþn rKg

#3 Least Unit Cost KþCu,uþnPuþn�1
i ¼ u Di

o
KþCu,uþnþ1Puþn

i ¼ u Di

n̂ ¼ 1þmax n :
KþCu,uþnPuþn�1

i ¼ u Di

Z
KþCu,uþnþ1Puþn

i ¼ u Di

( )

#4 Least Total Cost Cu,uþn 4K

n̂ ¼ arg minnA f ~n , ~n þ1g9K�Cu,uþn9,
~n ¼maxfi : Cu,uþ i rKg

#5 Economic production quantity n4cqn=D

n̂ ¼ bcqn=Dc

#6 Groff Kþ ~C u,uþn

n=N
o

Kþ ~C u,uþnþ1

ðnþ1Þ=N

n̂ ¼ 1þmax n : nðnþ1ÞDuþn o
½cqn �2

D
g

(

#7 McLauren’s Order Moment KþCu,uþn 4
dCCn

n̂ ¼maxfn : KþCu,uþn rdCCn
g

#8 McLauren’s Order Moment 2 Puþn�1
i ¼ u Di 4cqn

n̂ ¼maxfn :
Puþn�1

i ¼ u Di rcqn g

#9 Wagner–Whitin �xuþn 40

n̂ ¼minfn :
ˇ
x

uþn
40, n41g�1
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PHLAf2,3, . . . ,19,20g. Note that the static solution may be viewed
as having a planning horizon equal to the problem horizon.

Overall, our experimental set contains 480 (¼5�2�6�8)
parameter instances for each of the four levels of demand variance
and a given planning horizon length. (Capacity and warm thresh-
old values have been truncated if non-integer for consistency
with demands.) The average fraction of zero demand values in the
generated replication streams is 0%, 2.32% and 15.72% for
s=m¼ 0:1, 0.5 and 1 respectively. Across all planning horizon
lengths, we have 9600 (¼480�19þ480) experiment instances for
each of the four levels of demand. For the static case, an
experiment instance and a parameter instance coincide by defini-
tion. For each particular experiment instance – a particular
combination of system parameter values – we have generated
30 demand stream replications for non-zero demand variances
yielding a total of 873,600 (¼480� (1þ19)�30�3 plus
480� (1þ19) for s¼ 0) problem instances with 43,680 instances
for the static case and the rest for the rolling horizon case.

We discuss our findings for the static and rolling horizon cases
separately; we begin with the former.

5.1. Static case

For the static case, we use as the benchmark the optimal
solution to problem (P) with the entire problem horizon. The total
cost over the horizon under a particular heuristic THCi and the
optimal total cost over the horizon THCopt are computed as the
average values across the replications for an experiment instance.
For computing the total cost under a particular heuristic for a
problem instance, we used the algorithm employing Program_-
FindProductionPlan ði0,N0Þ directly by setting i0 ¼ 1 and N0 ¼N. For
each experiment instance, we measure heuristic performances in
terms of percentage deviations from the optimal total cost which
is computed for Heuristic iAf#1, . . . ,#9g as follows:

Di%¼
THCi�THCopt

THCopt
� 100

Thus, for each heuristic, we obtain a distribution of percentage
deviations for four different demand variance levels based on
replication-averages over all 480 experiment instances. Table 2
provides the average and the five number summary (maximum,
third, second and first quantiles and the minimum) of the devia-
tions. As s increases, percentage deviations also increase for all
heuristics. All heuristics have left-skewed performance distribu-
tions for all demand variance values. The performances of Heuristics

#3, #4 and #5 are more sensitive – in that order – to s. When we
consider the performances in the average and median percentage
deviations from the optimal. Heuristic #1 performs best in both
measures. The ranking of other heuristics changes with the respect
to the variance in demand and the performance measure. Heuristic

#9 ranks very low when demand variance is low; but its ranking
improves with the increase in s. In terms of average percentage
deviation, Heuristics #6, and #9 perform closely; similar behavior is
observed with respect to their median performance as s increases.

In Table 3, we tabulate the fraction of problem instances
(expressed in % points) in which a particular heuristic strictly
dominates another one in a pairwise fashion. For example, Heuristic

#1 strictly dominates Heuristic #2 in 79.1% of all 43,680 problem
instances, strictly dominates Heuristic #3 in 98.4% and so forth. An
instance in which a heuristic dominates another does not necessa-
rily imply that the dominating heuristic gives the best heuristic
solution for that instance. There is no one heuristic that dominates
nor is dominated by all others in all instances but there are clear
winners. Heuristic #1 is the best and Heuristic #3 is the worst in this
ranking although, in mean and median deviation percentages, it
performs well for low demand variances.



Table 2
The average and five number summary (maximum, third, second, first quantiles, minimum) of deviations from the benchmark (averaged over 30 replications and 19

planning horizons). The benchmark for the static case is the optimal solution; the benchmark for the rolling horizon case is the rolling horizon DP solution.

s/m¼0 s=m¼ 0:2

(for s=m¼ 0 and s=m¼ 0:2)

Static #1 12.6;(50.1;14.8;2.7;0.2;0.0) 16.1;(53.2;24.1;5.4;1.8;1.0)

#2 15.9;(83.3;25.2;4.3;0.3;0.0) 19.7;(82.8;32.2;5.9;2.0;1.5)

#3 12.7;(50.1;14.8;2.7;0.2;0.0) 18.1;(59.0;29.7;9.0;2.6;1.7)

#4 22.0;(96.4;38.1;9.0;0.3;0.0) 26.6;(98.8;43.7;9.1;6.0;4.1)

#5 22.8;(134.6;35.1;4.7;0.2;0.0) 27.4; 132.7;42.2;16.1;1.9;1.5)

#6 22.6;(134.6;35.1;4.5;0.2;0.0) 26.7;(133.9;43.1;9.5;3.3;1.3)

#7 28.2;(135.2;39.9;11.5;9.0;0.0) 31.8;(138.6;43.4;18.6;10.4;5.0)

#8 22.7;(134.6;35.1;4.7;0.2;0.0) 26.7;(132.6;42.3;14.5;2.1;1.5)

#9 23.5;(134.6;35.1;9.4;0.2;0.0) 26.5;(132.1;40.4;12.8;1.4;0.1)

Rolling horizon #1 10.8;(50.0;11.9;0.0;0.0;�8.9) 14.5;(53.3;23.0;3.8;1.0;�2.7)

#2 14.2;(83.3;24.6;0.2;0.0;0.0) 18.9;(82.7;31.0;6.9;1.4;�2.3)

#3 10.8;(50.0;11.9;0.0;0.0;�8.9) 16.5;(59.2;27.9;7.4;1.7;�1.9)

#4 22.7;(96.3;35.0;11.1;5.7;�8.9) 25.6;(98.5;41.6;10.2;5.5;0.2)

#5 21.3;(134.7;33.0;4.7;0.0;�8.8) 26.2;131.6;39.2;14.8;1.4;�2.2)

#6 21.1;(134.7;33.0;4.4;0.0;�8.9) 25.9;(133.6;40.0;12.6;2.8;�2.8)

#7 21.4;(134.7;33.0;4.7;0.0;�8.8) 26.3;(128.0;38.5;14.4;3.7;�2.1)

#8 21.3;(134.7;33.0;2.2;0.0;�8.8) 25.1;(132.3;39.7;11.9;1.6;�2.3)

#9 20.7;(134.7;35.2;1.4;0.0;0.0) 25.2;(131.7;38.1;12.1;1.2;0.0)

(for s=m¼ 0:5 and s=m¼ 1)

s=m¼ 0:5 s=m¼ 1

Static #1 19.0;(56.8;29.0;8.4;5.5;3.0) 21.4;(54.5;36.7;11.2;8.1;4.1)

#2 23.7;(81.1;38.2;10.6;7.8;3.9) 26.1;(71.2;42.0;14.7;10.6;5.5)

#3 29.6;(67.4;38.0;27.3;15.4;12.3) 40.7;72.1;47.9;39.2;33.6;21.5)

#4 33.4;(104.2;49.2;18.7;14.8;11.1) 48.0;107.7;56.8;39.8;32.0;29.4)

#5 36.3;(134.8;51.8;25.1;11.4;9.9) 43.0;121.9;51.6;33.0;24.6;21.6)

#6 29.3;(131.0;43.8;11.4;6.4;2.8) 29.0;(111.5;43.5;12.4;7.7;4.2)

#7 38.3;(139.1;55.1;22.0;15.6;11.8) 42.2;131.2;52.0;29.6;23.2;16.7)

#8 31.2;(132.6;43.3;19.9;7.8;3.9) 30.7;(119.8;45.6;16.3;8.8;4.9)

#9 28.7;(132.3;43.3;11.8;5.4;0.2) 28.5;(117.6;43.3;12.2;6.8;1.6)

Rolling horizon #1 17.6;(56.7;28.9;6.9;4.0;0.5) 20.0;(54.4;36.2;9.9;6.5;2.1)

#2 23.0;(81.0;35.8;11.4;7.6;1.7) 24.7;(71.3;41.4;13.1;9.0;4.3)

#3 27.5;(67.5;35.0;24.0;12.9;7.3) 37.1;(62.1;45.0;35.7;29.6;16.5)

#4 30.7;(102.1;45.9;16.7;12.4;6.6) 34.8;94.3;47.3;23.5;19.0;13.7)

#5 37.2;(130.3;55.4;24.6;11.4;7.0) 60.4;398.6;66.3;39.2;25.8;17.0)

#6 30.1;(132.4;45.7;16.8;6.6;0.7) 34.7;(189.3;52.2;24.4;9.6;3.8)

#7 35.8;(134.4;53.2;22.6;11.3;5.1) 50.4;393.9;58.5;33.0;16.8;10.6)

#8 30.2;(132.3;43.7;17.9;7.2;1.7) 33.9;(119.7;51.9;25.1;9.5;4.1)

#9 27.8;(131.8;42.9;12.4;5.3;0.0) 27.9;(117.6;42.0;12.6;6.6;1.2)

Table 3
Fraction of problem instances (in % points) of dominance in pairwise comparison.

Heuristic #1 #2 #3 #4 #5 #6 #7 #8 #9

Static #1 – 79.1 98.4 84.6 59.9 92.3 81.6 96.0 81.4

#2 20.5 – 93.1 59.8 33.1 76.6 59.0 81.4 47.8

#3 1.4 6.7 – 11.3 8.3 41.6 41.0 49.4 9.1

#4 14.9 39.2 88.6 – 24.7 79.3 58.4 78.0 37.5

#5 39.6 65.9 91.7 74.3 – 83.8 63.7 80.1 59.6

#6 7.1 22.4 58.4 17.8 15.2 – 52.2 68.1 11.7

#7 12.9 40.5 58.9 40.9 35.9 45.8 – 61.2 32.1

#8 3.6 18.1 50.4 21.6 19.5 31.2 38.3 – 8.2

#9 15.4 51.8 90.8 54.8 39.9 84.5 62.6 90.3 –

Rolling horizon #1 – 87.5 80.5 97.7 94.5 92.2 96.9 93.1 72.0

#2 9.3 – 60.7 87.0 84.7 59.6 87.6 56.9 44.5

#3 13.3 33.9 – 54.1 53.6 45.9 55.9 43.6 40.2

#4 2.1 11.7 45.7 – 63.2 28.9 46.4 29.5 25.8

#5 4.9 11.2 44.2 36.2 – 25.2 31.3 21.2 20.3

#6 7.2 39.9 53.6 70.7 73.8 – 67.7 55.2 32.9

#7 2.6 11.8 43.6 53.3 67.3 31.3 – 28.9 27.8

#8 6.3 31.0 55.6 70.2 76.6 43.8 70.0 – 28.2

#9 27.5 54.9 59.3 74.0 79.0 66.5 71.6 71.2 –
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Next, we present results for each heuristic on the average
performance of a particular heuristic vis-a-vis the optimal solu-
tion in the instances where it is the best heuristic. The entry for
row j in Table 4 shows, respectively, the average percentage
deviation of heuristic j and the average percentage deviation of all
heuristics from the optimal in the instances when the heuristic is
the best (or among the best) and the percentage of such instances
in parentheses. For example, for s=m¼ 0, Heuristic #1 is the best
performer (or among the best performers) in 81.7% of the
experiment instances with an average deviation from the optimal
of 11.3% while the average deviation for all heuristics is 20.8%. If a
heuristic has no entries (e.g., Heuristic #4), it implies that the
heuristic has never performed best for that category of demand.
Heuristics #1 and #9 turn out to be best performers for a large
fraction of experiment instances in the overall, followed by
Heuristic #3. In Table 4, we also tabulate the percentage of
problem instances in which a particular heuristic has been found
to be the best heuristic, and the percentage of instances in which
it is within 2% and 5% proximity of the best heuristic performance.
For example, Heuristic #1 results in the best cost performance in
42.9% of the problem instances, is within 2% of the best cost
performance in 80.8% of the instances, within 5% of the best cost
performance in 98.2% of the instances. Heuristic #1 ranks first and
Heuristic #7 ranks last by all performance criteria.
Finally, we attempt to identify the range of experiment
parameter values where each particular heuristic is the best or
among the best. Identification of such operating environment
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Fig. 1. Illustration of the experiment instances for which a heuristic is the best performer (or among the best), s=m¼ 0.

Table 4
Mean performances of individual heuristics and all heuristics in the experiment instances in which a particular heuristic is best or among the best and fraction of problem

instances (in % points) in which a particular heuristic is the best (or among the best) or Whitin 2% and 5% of the best heuristic solution for the static case. (n corresponds to

3 instances out of 14,400.)

s=m¼ 0 s=m¼ 0:2 s=m¼ 0:5 s=m¼ 1 Overall r2% r5%

#1 11.3/20.8 (81.7) 24.0/38.3 (47.8) 26.3/40.5 (48.4) 31.2/47.0 (31.2) 26.3/40.9 (42.9) (80.8) (98.2)

#2 8.4/16.8 (66.7) 22.9/42.6 (14.5) 16.6/29.8 (3.4) 18.2/30.3 (0.7) 20.2/37.3 (6.9) (31.5) (70.0)

#3 10.9/20.1 (82.3) 28.5/48.9 (20.6) 30.6/49.9 (10.0) 35.8/57.3 (15.3) 30.2/50.1 (16.0) (35.4) (49.0)

#4 3.8/7.2 (45.6) 15.4/21.5 (4.6) –/– –/– 12.5/17.9 (2.0) (5.3) (15.7)

#5 0.5/2.4 (46.7) 6.6/9.4 (2.8) –/– –/– 4.4/6.9 (1.4) (14.1) (23.4)

#6 0.4/2.4 (47.7) 5.8/9.7 (4.4) 7.0/16.3(5.6) 9.4/24.9 (6.7) 7.0/16.6 (6.0) (34.3) (67.3)

#7 6.0/10.5 (14.2) 39.6/43.4 (1.0) 34.5/36.6 (0.0n) –/– 28.7/32.7 (0.5) (2.2) (12.3)

#8 0.5/2.4 (46.9) 16.0/18.7 (2.1) 21.7/26.2 (0.3) 8.8/22.1 (1.5) 9.9/ 15.4 (1.8) (25.5) (61.2)

#9 0.6/2.1 (43.8) 0.9/3.8 (27.9) 4.7/10.6 (32.6) 8.4/19.6 (44.6) 5.2/12.5 (35.1) (53.8) (65.7)
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characteristics would help practitioners choose a priori the best
heuristic for a given operational setting. In Figs. 1–4, we illustrate
(as blackened) the regions of the experiment set for which a
particular heuristic is the best (or among the best). Based on this
illustration, we can make the following observations. For s¼ 0,
for J¼2, we see that all heuristics except #7 show comparable
performance. When J¼5, however, a delineation among the
heuristics starts to emerge. Heuristics #1, #2 and #3 dominate
the rest but, we see that there are regions for all heuristics in
which they are the best (or among the best). (See Fig. 1.) As
demand variability increases ðs=m¼ 0:2Þ, the deviation increases
further. For low J, Heuristics #1 and #9 almost complement each
other; that is, one is the best in the regions where the other is not.
For high values of a, Heuristic #9 dominates. We see fewer
instances where Heuristics #2, #4, #5, and #6 are the best (or
among the best) performers. Heuristics #3, #7 and #8 are never
among the best performers in this region. For high J, Heuristic #1
is the best for the large majority of experiment instances
(especially for low a) followed by Heuristics #2, #3 and #4. For
low and high ends of a values, Heuristic #1 dominates the rest of
the heuristics. There are also instances where Heuristics #6, #7
and #8 are among the best performers; but Heuristics #5 and #9
are never the best in this region. (See Fig. 2.) For s=m¼ 0:5 and
low J, Heuristics #1 and #9 are the best for most of the instances
followed by only Heuristic #6; the rest is never among the best
performers. We observe the complementary behavior of Heuristics

#1 and #9 in this case as well. For low a, Heuristic #1 is the best
whereas Heuristic #9 dominates for high a values. For high J,
Heuristic #1 dominates clearly except for moderate values of a
and high values of g. It is complemented in those regions by
Heuristic #3. Heuristic #9 starts to show presence for large a and g.
(See Fig. 3.) For high demand variance (s=m¼ 1), Heuristic #9
dominates for low J and high a values at the expense of Heuristic

#1. Heuristic #6 also emerges as the best heuristic complementing
Heuristic #9. For high J and low a, Heuristic #1 is the sole best
heuristic but Heuristics #3 and #9 dominate it in the rest of the
experiment instances. For moderate a, Heuristic #3 is more likely
to be the better than Heuristic #9. (See Fig. 4.)

Next, we discuss our findings for the rolling horizon case.

5.2. Rolling horizon case

The rolling horizon case corresponds to the problem of
obtaining the production plan dynamically as time progresses



Fig. 2. Illustration of the experiment instances for which a heuristic is the best performer (or among the best), s=m¼ 0:2.

Fig. 3. Illustration of the experiment instances for which a heuristic is the best performer (or among the best), s=m¼ 0:5.
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and demands within a planning horizon are revealed sequentially.
(That is, demands become known within a planning horizon as
the horizon rolls; therefore, the deterministic demand condition
for Proposition 1 hold for the new horizon length.) For this case,
we use as the benchmark the dynamic programming (DP) solu-
tion of the problem obtained on a rolling basis with the given
planning horizon; that is, we solved problem (P) sequentially as
the problem horizon extended over time until we reached period
N as the end of the planning horizon. The total cost over the entire
problem obtained thus is denoted by THCDPS and is computed as
the average value across 30 replications (and nineteen different
planning horizons for a parameter instance when so noted). We
note that the benchmark rolling horizon DP solution may not give
the best cost; this is illustrated by our results, especially for short
planning horizon lengths. (We discuss this finding later below.)
The total cost over the horizon under a particular heuristic THCi is



Fig. 4. Illustration of the experiment instances for which a heuristic is the best performer (or among the best), s=m¼ 1.

Table 5
Mean performances of individual heuristics and all heuristics in the experiment instances in which a particular heuristic is best or among the best and fraction of problem

instances (in % points) in which a particular heuristic is the best (or among the best) or Whitin 2% and 5% of the best heuristic solution for the rolling horizon case.

s=m¼ 0 s=m¼ 0:2 s=m¼ 0:5 s=m¼ 1 Overall r2% r5%

#1 9.5/18.6 (93.8) 19.1/32.4 (55.3) 20.1/34.8 (67.1) 23.1/43.6 (51.5) 16.8/58.0 (66.9) (92.1) (99.4)

#2 7.4/16.2 (72.1) 21.6/46.4 (14.1) –/– –/– 9.7/0.0 (21.5) (31.4) (68.5)

#3 9.5/19.9 (93.8) 19.2/39.7 (19.8) 29.9/51.4 (10.4) 31.4/53.2 (16.3) 14.9/87.7 (35.1) (37.1) (50.7)

#4 5.9/10.6 (27.1) 13.0/15.6 (3.1) –/– –/– 6.6/0.0 (7.6) (3.9) (17.6)

#5 0.8/2.3 (49.9) 0.8/2.4 (1.6) –/– –/– 0.8/0.0 (12.9) (14.4) (23.4)

#6 0.5/2.3 (51.0) 20.0/22.1 (2.4) –/– 9.1/15.3(0.2) 1.4/1.0 (13.4) (26.7) (58.7)

#7 0.8/2.0 (47.9) 11.7/13.6 (0.1) –/– –/– 0.8/ 0.0 (12.0) (8.8) (27.0)

#8 0.8/2.3 (49.9) 25.8/28.3 (2.1) –/– –/– 1.8/ 0.0 (13.0) (22.0) (53.1)

#9 1.1/3.2 (46.0) 0.6/2.7 (21.5) 2.8/8.9 (22.5) 7.5/25.0 32.1) 3.0/ 4.2 (30.5) (47.1) (62.1)
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computed also similarly as an average. To compute the total cost
under a particular heuristic for a problem instance, we used the
algorithm whose pseudo-code is given below.
begin
j :¼ 1

k̂ :¼ 1

while ðjrN�PHLþ1Þ

i0 :¼ k̂

N0 :¼ jþPHL�1

call Program_FindProductionPlan ði0,N0Þ

j :¼ jþ1

k̂ :¼ last cold setup such that k̂r j

end
The heuristic performance for each parameter instance for
Heuristic iAf#1, . . . ,#9g is found as follows:

Di%¼
THCi�THCDPS

THCDPS
� 100
The analysis and discussion of our findings follow closely that for
the static case above.

Table 2 provides the average and the five number summary
(maximum, third, second and first quantiles and the minimum) of
the deviations. As s increases, percentage deviations also increase
for all heuristics. All heuristics have left-skewed performance
distributions for all demand variance values. The performances of
Heuristics #3, #5 and #7 are more sensitive – in that order – to s
with maximum deviations under Heuristics #5 and #7 increasing
while that of Heuristic #3 decreases. Across all variance levels,
Heuristic #1 performs best in terms of both the average and the
median. The ranking of other heuristics changes with the respect
to the variance in demand and the performance measure.
For deterministic demand, there are multiple heuristics resulting
in the same performance. As demand variance increases, the
difference among average percentage deviations also increases.
Note that for deterministic demand Heuristics #1 and #2 have
zero values for the median percentage deviation.

In Table 3, we tabulate the fraction of problem instances
(expressed in % points) in which a particular heuristic dominates
another one in a pairwise fashion. Heuristic #1 is the best and
Heuristic #5 is the worst in this ranking.
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Next, we present results for each heuristic on the average
performance of a particular heuristic vis a vis the optimal solution
in the instances where it is the best heuristic. The entry for
column j in Table 5 shows, respectively, the average percentage
deviation of heuristic j and the average percentage deviation of all
heuristics from the optimal in the instances when the heuristic is
the best (or among the best) and the percentage of such instances
in parentheses. Heuristic #1 is the best performer overall when we
compare the fraction of dominated instances and the deviation
percentages. In Table 5, we also tabulate the percentage of
problem instances in which a particular heuristic has been found
to be the best heuristic, and the percentage of instances in which
it is within 2% and 5% proximity of the best heuristic performance.
Heuristic #1 ranks first and Heuristics #4, #5 and #7 are worst
performers by all criteria.

Next, as in the static case, we provide, in Figs. 1–4, an
illustration (as blackened) of the regions of the parameter set
for which a particular heuristic is the best (or among the best) for
one short and one longer planning horizon (PHL¼3 and 18). We
discuss the short planning horizon case first. For s¼ 0, for J¼2,
we see that all heuristics show comparable performance except
Heuristics #4 for moderate to large a. When J¼5, however, a
delineation among the heuristics starts to emerge. Heuristics #1,
#2 and #3 dominate the rest but, we see that there are regions for
all heuristics in which they are the best (or among the best). (See
Fig. 1.) As demand variability increases ðs=m¼ 0:2Þ in Fig. 2,
certain heuristics start to emerge as the sole best. Specifically,
Heuristic #1 is the best performer over a vast majority of
parameter instances. For large J and a, Heuristics #2 and especially
#3 become better. Heuristics #7 and #9 are never the best; the
rest perform well sporadically. For s=m¼ 0:5, (in Fig. 3) Heuristic

#1 is clearly the best performer with Heuristic #3 for some
instances with large J and moderate a, and Heuristic #9 only for
low J and large a. The rest of the heuristics is never the best.
As demand variance increases further ðs=m¼ 1Þ in Fig. 4, Heuristic

#1 deteriorates and Heuristics #9 and #3 replace it. Heuristic #6
performs well for few instances of large J and moderate a.
For longer planning horizons, there is not a discernable difference
compared to short horizon for s¼ 0; for large J, Heuristic #9
deteriorates for large a but improves slightly for moderate a.
Fig. 5. The average percentage deviation of the rolling DP solu
For moderate a and large J, Heuristics #5, #6, and #8 start to
perform well. As demand variance increases, Heuristics #1, #3 and
#9 start to dominate the rest with Heuristic #3 being best for large
J and moderate a, and #9 for small J and moderate to high a.

Next, we present our observations on the impact of planning
horizon length on heuristic performance. In terms of best per-
forming heuristics, there is a clear separation among Heuristics #1
and #3 and the rest. The performances deteriorate but stabilize as
planning horizon extends. This is to be expected: The benchmark
solution approaches the optimal static solution for longer horizon
lengths but, as the planning horizon gets very short, it becomes
more suboptimal as evidenced by better solutions obtained via
Heuristic #1 for such instances.

For s=m¼ 0 and low J, Heuristics #1 and #3 are the best
performers over all planning horizon lengths, followed by
Heuristics #6, #5 and #8. Heuristic #4 performs distinctly badly
whereas the remaining heuristics form a cluster with higher
deviations. For large J, the performance deteriorates for all
heuristics. Heuristics #1 and #3 are again the best performers
followed by Heuristics #2, #6 and then by Heuristics #4 and #9.
The rest form a separate grouping with very close performances.
Overall, the heuristic performance is similar to that for large J

since the deviations are larger for large J. For s=m¼ 0:2 and low J,
Heuristic #1 is clearly the best performer over all planning horizon
lengths, followed by a grouping comprising Heuristics #8, #2 and
#3. Note that for certain short planning horizons, the deviations
of Heuristic #1 from the rolling horizon DP solution are negative
which indicates that, on average, Heuristic #1 provides better
solutions. (We elaborate on this aspect later.) The second group-
ing is followed by Heuristics #9 and #6. Heuristic #9 improves
over longer planning horizon lengths whereas Heuristic #6 dete-
riorates. The rest follow the trend of the second grouping but with
larger deviations. For large J, the performance deteriorates for all
heuristics. Heuristic #1 is again the best performer followed
closely by Heuristic #3, and then by Heuristics #2 and #6. The
rest is in a distinctly separate grouping. Overall, Heuristic #1
performs the best followed by Heuristics #3 and #2. The remain-
ing heuristics form a distinct grouping with similar behavior.
For s=m¼ 0:5 and low J, Heuristic #1 is the best performer over
all planning horizon lengths, followed by Heuristics #9 and #2.
tion from the static case versus planning horizon lengths.
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Heuristics #6 and #8 deteriorate over longer planning horizon
lengths; the rest is relatively stable. For large J, the performance
deteriorates for all heuristics. Heuristic#1 is again the best
performer followed by Heuristics #3 and #2. The rest is very close
to each other. Overall, Heuristic #1 performs the best followed by
Heuristics #2, #3 and #9. Heuristics #6, #8, #4 and #5, #7 form the
remaining groupings. For s=m¼ 1 and low J, Heuristics #1 and #9
have very similar performances and are the best performers over
all planning horizon lengths, followed closely by Heuristic #2.

Heuristics #6 and #8 deteriorate over longer planning horizon
lengths. Heuristics #3 and #4 are stable throughout but Heuristic

#7 deteriorates fast stabilizing over longer horizon lengths.
Heuristic #5 has the worst performance throughout. For large J,
the performance deteriorates for all heuristics. Heuristic #1 is
again the best performer followed by Heuristics #3 and #2.
Heuristics #9, #6, #8, #7 and #4 exhibit similar performances
with #5 being the worst. Overall, Heuristic #1 performs the best
followed by Heuristics #2 and #9. Heuristics #6, #3, #4 and #8
behave similarly with Heuristics #7 and #5.

Finally, we consider the impact of planning horizon lengths on
the DP solution vis a vis the static solution.

We first consider the impact of introducing a planning horizon
and obtaining the production plan on a rolling horizon basis. In
Fig. 5 we present the average percentage deviation of the rolling
horizon DP solution from the static case. We observe that as the
planning horizon extends, the rolling solution approaches that of
the static case. Interestingly we observe the highest percentage
deviation for a=m¼ 0. For variable demand patterns, the percen-
tage deviations increase as demand variance increases.

When we consider the percentage of problem instances in
which a particular heuristic results in a lower total cost than the
rolling horizon DP solution for a planning horizon length, we
observed the largest fraction to be for a=m¼ 0:2 reaching 45.2%
for short horizon lengths. We see that as demand variance
increases such instances become rare; we observed no such
instances for a=m¼ 1. However, there is not a monotone behavior.
For the deterministic case, we observed dominated instances for
all planning horizon lengths but reported a portion for brevity. For
a=m¼ 0:2, we observed no such instances for any heuristic beyond
PH¼11; for a=m¼ 0:5, beyond PH¼3. For a=m¼ 0, the fraction is
lower but still sizable for Heuristics #1, #3, #4 and #6. These
observations lead us to the conclusion that use of heuristics may
be beneficial in practice. Overall, the fraction of instances that the
heuristics #1 through #9 dominates the rolling DP solution has
been found as : 2.6, 1.7, 1.4, 0.1, 1.4, 1.1, 1.0, 1.6 and 0.1. In
Table 6, we present the average percentage savings that one gets
by using Heuristics #1 instead of the DP solution on a rolling
horizon basis; we focus on Heuristics #1 because it turns out to be
the best performer based on our entire numerical study.
As expected, the length of a planning horizon vis a vis the proxy
for average production run length, J is an important factor.
Table 6
The percentage deviation of Heuristic #1 from the DP solution on a rolling horizon

basis across all problem instances for different planning horizon lengths and J.

J D% PH

2 3 4 5 6 7 8 9 10

2 Max 4.1 4.1 1.6 1.6 0.6 0.5 0.2 0.0 0.1

Median 1.7 1.7 0.5 0.5 0.1 0.2 0.2 0.2 0.0

Mean 1.8 1.8 0.5 0.6 0.2 0.2 0.2 0.2 0.0

5 Max 1.2 1.2 1.2 1.2 0.0 0.0 0.0 0.0 0.0

Median 0.5 0.5 0.5 0.3 0.0 0.0 0.0 0.0 0.0

Mean 0.5 0.5 0.5 0.4 0.0 0.0 0.0 0.0 0.0
6. Conclusion

In this work, we have proposed nine rule-based lot sizing
heuristics for a warm/cold process (defined as the one which can
be kept warm for the next period at an additional linear cost if the
production quantity in the current period is at least a positive
threshold amount). Due to the nature of the stopping rules, the
proposed heuristics fall into two categories: quantity based and
cost based. For quantity based heuristics, we use an adaptation of
the EPQ model. The stopping rule determines the size of the
production lots. For all heuristics, the production schedule (over
possibly consecutive production periods) within a production lot
is determined by the optimal results obtained for the warm/cold
process which minimize the total costs. In a numerical study, we
have examined the performance of the proposed heuristics. We
find that, overall, EPQ-based heuristics are dominated by those
constructed on the basis of costs. Our findings further indicate
that there is not a single heuristic that is best for all parameter
settings. In terms of total cost, Heuristics #1 and #9 perform best
for the static case but for rolling horizon settings, Heuristic #1 is
clearly the best. In terms of fraction of experiment instances
where a particular heuristic dominates others, Heuristic #1 is the
best followed by #9 and #3. In the numerical study, we have also
identified operating environments for which the proposed heur-
istics would perform best. In general, but especially for large
demand variability ðs=mÞ, the heuristics constructed via EPQ-
based rules (Heuristics #5 through #8) perform badly. As the
warm/cold process approaches the classical problem setting,
Heuristic #9 starts to dominate Heuristic #1. This happens for
small J, large a and large g=o (with resulting large R). We observe
that Heuristic #9 is replaced by Heuristic #3 for relatively medium
to large values of a. The intuition behind these performance
behavior may be as follows. The heuristics are constructed in two
steps: (i) determination of the production lot size (according to
the specified stopping rule), and (ii) determination of the produc-
tion schedule (according to Proposition 1). The second decision is
always optimal by construct. Thus, the performance of the
heuristics primarily depends on how well the lot size is deter-
mined. The Wagner–Whitin solution (resulting in Heuristic #9) is,
by definition, optimal for the static classical problem; our findings
indicate that this uncapacitated solution provides also very good
approximations for the lot size in a warm/cold process. In the case
of Heuristic #1, it is the only one that uses a stopping rule that is
based on cost rate optimization. Its good performance indicates
that this criterion results in good lot sizes for a warm/cold
process, as well. A similar explanation may be valid for the
performance of Heuristic #3 which is based on a stopping rule
minimizing costs per unit.

An important result of our numerical studies is that, when
used on a rolling horizon basis, a heuristic solution for a warm/
cold process may also perform better costwise than a solution
obtained using a dynamic programming approach especially for
short planning horizons and small J. This finding is consistent
with similar studies on the classical problem (Stadtler, 2000;
Heuvel and Wagelmans, 2005). Hence, investigation and imple-
mentation of heuristics for warm/cold process settings may be
economically beneficial in practice as well as important from a
purely theoretical perspective.
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