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Abstract—This paper presents a new approach for unsupervised
segmentation of histopathological tissue images. This approach has
two main contributions. First, it introduces a new set of high-level
texture features to represent the prior knowledge of spatial organi-
zation of the tissue components. These texture features are defined
on the tissue components, which are approximately represented by
tissue objects, and quantify the frequency of two component types
being cooccurred in a particular spatial relationship. As they are
defined on components, rather than on image pixels, these object
cooccurrence features are expected to be less vulnerable to noise
and variations that are typically observed at the pixel level of tis-
sue images. Second, it proposes to obtain multiple segmentations
by multilevel partitioning of a graph constructed on the tissue ob-
jects and combine them by an ensemble function. This multilevel
graph partitioning algorithm introduces randomization in graph
construction and refinements in its multilevel scheme to increase
diversity of individual segmentations, and thus, improve the fi-
nal result. The experiments on 200 colon tissue images reveal that
the proposed approach—the object cooccurrence features together
with the multilevel segmentation algorithm—is effective to obtain
high-quality results. The experiments also show that it improves
the segmentation results compared to the previous approaches.

Index Terms—Histopathological image analysis, image segmen-
tation, multilevel segmentation, segmentation ensemble, texture.

I. INTRODUCTION

D IGITAL pathology is becoming an increasingly important
tool for automated biopsy analysis. Automated analysis

of histopathological tissue images not only increases through-
put but also improves reproducibility. Digital pathology systems
have been implemented for different purposes including clas-
sification [1]–[3], retrieval [4], [5], and segmentation, which
can further be categorized into two in terms of its objective.
Cell/gland segmentation [6], [7] aim to locate cells and glands
on a tissue image, whereas tissue image segmentation, which is
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the focus of this paper, aims to divide a heterogeneous tissue
image into its homogeneous regions.

There exist only few studies on tissue image segmentation.
The majority of them carry out grid analysis for segmenta-
tion [8]–[11]. To this end, they divide a tissue image into equal-
sized grids, extract their features, and assign them to one of
the predefined labels using a classifier. The connected grids
of the same label are then considered to be in the same seg-
mented region. Another group of studies consider pixels instead
of grids [12], [13]. These studies characterize the pixels us-
ing features extracted within their neighborhood and process
them to construct a segmented region. In characterizing a grid
or a pixel, these studies use low-level color/texture descriptors
that they define on image pixels. On the other hand, it is usu-
ally harder to express prior medical knowledge using only the
pixel level descriptors. This may become even harder for tissue
images, which typically consist of a considerable amount of
variation and noise at their pixel level.

Our recent studies have introduced high-level descriptors for
tissue image representation. These descriptors are designed to
incorporate prior knowledge into segmentation. For that, we
find approximate locations of tissue components, define texture
features on the components instead of directly defining them
on pixels, and use the features in a segmentation algorithm
[14], [15]. These studies focus on defining effective high-level
descriptors whereas they achieve segmentation using a standard
region growing algorithm, for which there is a risk of trapping
into local optima especially when initial seeds are not correctly
selected [16]. In region growing algorithms, seed selection is
commonly controlled by parameters and it is usually hard to find
common parameter values that work well for different images
especially when these images show large variation, as in the case
of tissue image segmentation. Parameter values that yield good
seeds for a set of images may lead to under- or over-segmentation
for others; this raises the risk of obtaining local optimal results.
To increase the likelihood of attaining a global optimum, it
has been proposed to obtain multiple results and combine them
by an ensemble [17]. Two important factors affecting the final
result of the ensemble are the quality and diversity of individual
results [18].

In this paper, we propose a new framework for unsupervised
segmentation of tissue images. In this framework, our main
contributions are twofold. First, we define a new set of high-
level texture descriptors to quantify the organization of tissue
components in an image. This definition relies on modeling
how frequently a tissue component of a particular type cooc-
curs with the other in given distances. Second, we implement a
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Fig. 1. Schematic overview of the proposed approach.

new tissue image segmentation algorithm that uses a multilevel
scheme to obtain multiple segmentations and combines them by
an ensemble. In this scheme, we construct a graph on a selected
subset of the tissue components and achieve segmentation by
multilevel partitioning of the constructed graph. We redesign the
uncoarsening phase of this multilevel scheme to increase the di-
versity, and hence, the performance of the ensemble. Moreover,
this multilevel scheme is invoked many times with selecting
different component subsets in the sake of increasing the diver-
sity further. Working with 200 colon tissue images, our exper-
iments show that the proposed approach—the new descriptors
together with the multilevel segmentation algorithm—is effec-
tive in obtaining high-quality results. The experiments also show
that our approach leads to better results compared against its
counterparts.

The proposed approach differs from the previous grid- and
pixel-based studies in the following aspects. First, it uses high-
level descriptors, which are defined to incorporate prior medical
knowledge into segmentation, whereas these previous studies
employ low-level descriptors directly defined on image pixels.
Second, our approach does not require a labeled training set
since it is an unsupervised algorithm. On the other hand, the
previous studies necessitate obtaining training samples along
with their labels since they train classifiers to classify the grids
or pixels with one of the predefined labels.

Our current approach is also different than our previous al-
gorithms, namely the objectSEG [14] and graphRLM [15] algo-
rithms, in terms of its descriptor definition and its segmentation
algorithm. The algorithm proposed in this study defines tex-
ture features based on second-order statistics among the tissue
components. To this end, it measures the frequency of two com-
ponent types being cooccurred in a particular spatial relation.
On the other hand, the objectSEG algorithm defines its texture
considering the spatial arrangement of the tissue components
with respect to a reference point and the graphRLM algorithm
uses a texture definition based on higher order statistics among
the components. Moreover, to get closer to global optimal re-
sults, our current approach obtains multiple segmentations with
a multilevel graph partitioning algorithm and combines them in
an ensemble scheme. However, both of our previous algorithms
use region growing for segmentation, and hence, have a higher
risk of obtaining local optimal results.

II. METHODOLOGY

The proposed approach relies on characterizing a tissue im-
age with high-level texture features and using them in an effi-
cient segmentation algorithm. To this end, we introduce object
cooccurrence features that quantify the spatial organization of
tissue components. These features are extracted by decompos-
ing a tissue image into a set of objects of different types, which
approximately represent the tissue components, and calculat-
ing the frequency of the cooccurrence of two object types with
respect to different distances.

Image segmentation is then achieved by partitioning the ob-
jects according to their cooccurrence features. In this approach,
we propose to obtain multiple object partitions (segmentations)
and combine them with an ensemble function. For an object
partitioning step, a weighted graph is constructed on a selected
subset of the objects, with an edge weight being defined as the
similarity of its end points with respect to their features, and
a multilevel graph partitioning algorithm is used to obtain a
partition. In order to increase the diversity of the partitions, we
propose to make modifications in the partitioning algorithm by
eliminating initial partitioning, randomizing boundary refine-
ments, and removing the balance constraint of the partitions.
An overview of the proposed approach is given in Fig. 1.

A. Feature Extraction

The proposed approach introduces a texture measure to quan-
tify the spatial organization of components in a tissue. To this
end, it transforms a tissue image from the pixel domain to the
component domain and defines texture on the tissue compo-
nents instead of defining it on pixel values. In this new domain,
the components are approximately represented by three types
of circular objects1. These are white objects that correspond
to luminal regions and epithelial cell cytoplasms, pink objects
that correspond to stromal regions, and purple objects that cor-
respond to cell nuclei. To define these objects, image pixels

1The exact localization of the components is quite difficult in our problem
domain, which focuses on segmentation of low-magnification tissue images.
Thus, we approximately locate the components making use of the domain-
specific knowledge. In tissues stained with the routinely used hematoxylin-and-
eosin technique, the components appear in three main colors, namely, white,
pink, and purple, and they usually form round structures.
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Fig. 2. Illustration of object cooccurrence matrix definition for a selected
white object shown as a thick-bordered cyan circle. The window W is located
at the center object but the steps illustrated here are repeated for every object
in W . Here, we select a side object for illustration since we want to show the
definition for larger distances (for this side object, the maximum distance is 7,
which would be smaller if, for example, the center object was selected).

are clustered into three by the k-means algorithm and a set of
nonoverlapping circles are iteratively located on the pixels of
each cluster using the circle-fit algorithm [15]. Note that in the
k-means algorithm, the principal component of data is divided
into k equal intervals and an initial center is computed as the
average of data in each interval [19].

At the end, an image I is decomposed into a set of objects,
O(I) = {oi}, each of which is represented by its coordinates
(xi, yi) and its type ti ∈ {white, pink, purple.} Next, each ob-
ject oi is characterized by the spatial distribution of objects
within its specified neighborhood. For that, a window W is lo-
cated at the center of this object and an object cooccurrence
matrix C is defined over this window, considering the cooccur-
rence type between a pair of every object within the window.
In this matrix, an entry C(tjk , d) keeps the number of times
objects of type tj cooccur with objects of type tk at a given
distance d. In this paper, we construct a Delaunay triangulation
on all objects and make use of breadth first traversal on this
triangulation to calculate the distance between the objects.

Particularly, to define the object cooccurrence matrix of a win-
dow, we consider each object within this window, calculate the
distance from this to every other object within the same window
using breadth first traversal, and update the matrix accordingly.
Fig. 2 illustrates the matrix definition for a selected white ob-
ject that is shown as a thick-bordered cyan circle; here, we use
cyan circles to represent the white objects. In this figure, the
distance from this object to the others, which is computed using
breadth first traversal, is indicated next to the corresponding ob-
ject. The matrix for the selected object is calculated using these
distances and the object types. For instance, when d = 4, we can
reach one white (cyan), four pink, and two purple objects from
the selected white object. Thus, C(white − white, 4) = 1,

C(white − pink, 4) = 4, and C(white − purple, 4) = 2. To
obtain the matrix of the entire window W , this calculation is re-
peated for every object in W and their corresponding matrices
are accumulated.

After its calculation, we extract 24 features from the object
cooccurrence matrix. For that, we define four features from each
cooccurrence type by accumulating the cooccurrence values for
different distances. For cooccurrence type tjk , these features are
defined as follows, with Md being the maximum distance from
one object to another within a window W

Φ1 = C(tjk , 1)

Φ2 = C(tjk , 2) + C(tjk , 3)

Φ3 = C(tjk , 4) + C(tjk , 5)

Φ4 =
Md∑

d=6

C(tjk , d).

The motivation behind defining the object cooccurrence fea-
tures is that the relative spatial distribution of the tissue com-
ponents differs in normal and cancerous regions. For example,
in a normal colon tissue, there are single-layer epithelial cells
around a lumen. In our domain, cell nuclei are represented as
purple objects and lumina as white objects. As they are rich in
mucin, the cytoplasms of the epithelial cells appear in almost
white and are represented as white objects too. Thus, white ob-
jects cooccur in a close proximity and are surrounded with a
single layer of purple objects. In low-grade cancer, single lay-
ers of epithelial cells typically turn into multiple layers. They
become poor in mucin, which makes their cytoplasms appear
in pink. Thus, purple and pink objects are found close to each
other. In high-grade cancer, the organization among the tissue
components is degenerated. The components, and their corre-
sponding objects, seem to randomly distribute all over a tissue.
This makes the cooccurrences of any two object types similar
to each other.

The definition of an object cooccurrence matrix is similar to
that of a gray-level cooccurrence matrix, which is defined over
gray-level pixels to quantify their distribution with respect to
a distance and a direction [20]. In contrast with this previous
definition, we define our cooccurrence matrices over tissue ob-
jects and make use of graph traversals to measure the distance
between the objects for quantifying the distribution of tissue
components. Since the domain of tissue objects is expected to
be less sensitive to small variations and errors at the pixel level,
this new definition of the cooccurrence matrix becomes more
effective in tissue image representation.

B. Multilevel Segmentation

The previous step transforms an image into the object do-
main, in which objects O = {oi} are characterized by extracting
their object cooccurrence features Φ = {Φ(oi)}. Our algorithm
achieves segmentation on the object domain as well, and trans-
forms the segmentation results back to the pixel domain. In this
algorithm, we propose to obtain multiple object segmentations
and combine them in an ensemble function. The main steps of
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the algorithm are provided in Algorithm 1. For the pseudocodes
of the subroutines called by this algorithm, the reader is referred
to the technical report given in [21].

This algorithm considers the object segmentation as a graph
partitioning problem. It first constructs a graph considering the
objects as vertices and defining edges between the vertices by
Delaunay triangulation. The weight w(u, v) is then assigned
to the edge e(u, v) using (1), according to the similarity be-
tween the objects corresponding to the vertices u and v. Here,
dist(Φ(u),Φ(v)) is the Euclidean distance between the object
cooccurrence features of the vertices u and v

w(u, v) = 1 − dist(Φ(u),Φ(v))
maxij dist(Φ(i),Φ(j))

. (1)

In this study, instead of constructing a graph on the entire set
of the objects, we select a random subset of them and construct
the graph on these selected objects. By doing that, we can obtain
a different graph every time we run the algorithm. This helps
increase the diversity of individual segmentations.

Let G = (V, F,E,W ) be a sample graph constructed on the
selected object set V where F is the feature set for the selected
objects (vertices) and E and W are the sets of graph edges and
their weights, respectively. The aim is to partition the vertices
V into N disjoint parts (segments)2, V = {V1 , . . . , VN | Vi ∩
Vj = ∅ for i �= j}, such that the sum of weights of the edges
between the vertices in different sets is minimized. In this study,
we partition the input graph using a multilevel scheme, on which
we make modifications to obtain high quality but at the same
time diverse results.

The proposed multilevel scheme is composed of two main
phases: coarsening and uncoarsening. This scheme coarsens the
original graph by merging its vertices level-by-level until K ′

segments (vertices) remain and uncoarsens them by refining the
segments at each level. At the end, it outputs a segmentation
vector Π containing the segment each vertex belongs to. As
opposed to the traditional ones, this multilevel scheme omits an
initial partitioning phase, which follows the coarsening, in the
sake of obtaining more diverse results.

2In the forthcoming multilevel graph partitioning discussion, to keep the
presentation simpler and easier to read, we will use segment and segmentation
instead of part and partition, respectively.

Fig. 3. Illustration of coarsening a graph at level t. (a) Graph Gt and the
clusters of its vertices. (b) Graph Gt+1 obtained by coarsening Gt .

1) Coarsening Phase: It coarsens the original input graph
G0 into a sequence of smaller graphs, G =< G1 , . . . , GT >,
such that the graphs have less vertices at a successive level,
|V 0 | > |V 1 | > · · · > |V T |. This coarsening is achieved by co-
alescing disjoint vertex subsets of Gt into multinodes such that
each multinode of Gt forms a single supervertex of Gt+1 , for
t = 0, 1, . . . , T − 1. This level-wise coarsening continues until
K ′ vertices remain in the coarsest (smallest) graph.

In this study, we use a randomized agglomerative clustering
for vertex coalescing. In this process, each vertex is assumed
to constitute a singleton cluster at the beginning of each coars-
ening level. Then, vertices are visited in a random order. If a
vertex has already been clustered, it is not considered for being a
source of a new clustering. However, an unclustered vertex can
choose to join a singleton or a multinode cluster. All neighbor
vertices of an unclustered vertex are considered for selection
and a neighbor singleton or a neighbor multinode vertex that
has the maximum feature similarity with the source vertex is
selected for coalescing. During this process, the feature vector
of a multinode cluster is incrementally computed by averaging
those of its constituent vertices.

At the end of the clustering process in a level, multiple edges
between two clusters are collapsed into a single edge between
the two respective supervertices of the coarser level. The weight
of an edge between two supervertices is calculated from scratch
considering the feature similarity of the respective supervertices.
Fig. 3(a) shows a sample coarsening of a graph with 24 vertices
into nine clusters and Fig. 3(b) shows the coarser level graph
(with nine vertices) induced by this clustering.

2) Uncoarsening Phase: At each level t of the uncoarsening
phase, for t = T, T−1, . . . , 1, the segmentation found on Gt

is projected back to an initial segmentation on the finer level
graph Gt−1 . In this projection, the constituent vertices of each
multinode in Gt−1 are assigned to the segment of the respective
supervertex in Gt . Then, this projected initial segmentation is
refined through iterative vertex moves between segments. The
motivation behind this multilevel refinement is as follows. The
segmentation found at level t may be a local optimal segmenta-
tion of Gt . However, as the finer graph Gt−1 has more degrees of
freedom, the projected segmentation may not be locally optimal
with respect to Gt−1 , and hence, Gt−1 can be used to further
improve the segmentation.

The proposed approach does not use an additional initial
partitioning phase after coarsening, as most of the traditional
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Fig. 4. Illustration of a vertex move: (a) before and (b) after. After moving
vertex A from its source segment to the other, the vertices of its source segment
get disconnected and new segments are created.

multilevel partitioning algorithms do, but uses the vertex set of
the coarsest graph to define the initial partition/segmentation.

We will briefly describe the proposed iterative improvement
heuristic used to refine the initial segmentation at each level of
uncoarsening. The proposed scheme consists of a number of
passes over vertices, in each of which a vertex v is considered
to be moved from its current (source) segment to one of the
destination segments that contain at least one neighbor vertex
of v. These vertex moves try reducing the similarity between
different segments, which in turn corresponds to maximizing
the similarity within the segments.

This scheme considers only boundary vertices, which have
at least one neighbor on a segment different than their own,
for movement. At each pass, a FIFO queue B is maintained to
keep the boundary vertices. Each vertex v in B is considered for
movement in turn. The similarity of the vertex v to the source
and destination segments is computed as the negative Euclidean
distance dist(Φ(v),Φ(S)) between the feature vectors of the
vertex v and the segment S. Then, the vertex is moved to the
segment, to which it is the most similar. Note that if the vertex
v is the most similar to its source segment, it is not moved at all.
Since a move can cause some nonboundary vertices to become
boundary or vice versa, B is updated after each vertex move.
Moreover, a vertex move may cause some other vertices to lose
their connectivity with the remaining vertices in the source seg-
ment, even though these vertices are not moved. Such vertices
are identified at the end of each pass and new segments are
created from them (see Fig. 4). The vertex moves are continued
until either B is empty or after |Binit | trials, where |Binit | de-
notes the number of boundary vertices at the beginning of the
pass. Each vertex is locked after its move to avoid thrashing,
where the same vertices are moved repeatedly from one segment
to another in the same pass.

At the end of uncoarsening, we obtain a segmentation only
on the selected vertices (objects) since our algorithm takes a
random subset of the objects, but not all of them, every time
it runs. Then, we use this segmentation to induce a complete
segmentation on the entire object set: we first determine the
selected neighbor objects of each unselected object oi using
Delaunay triangulation and then assign oi to the segment that
contains the most similar neighbor object of oi .

Fig. 5. Bipartite graph constructed on the object and segment vertices.

C. Ensemble Framework

In the last step, we combine multiple segmentation results
obtained by the multilevel partitioning algorithm. To this end,
we use the cluster ensemble framework given in [24]. In this
framework, multiple segmentation results are represented as an
unweighted bipartite graph Gb = (U ∪ V,E), where the set of
objects and the set of segments obtained in the segmentations
constitute the two vertex sets of the bipartite graph. That is,
an object oi is represented as an object vertex vi ∈ V , and kth
segment of the jth segmentation is represented as a segment
vertex uk

j ∈ U . An edge is defined between an object and a
segment vertex if the object vertex is assigned to this segment
in the corresponding segmentation. Fig. 5 depicts an example
bipartite graph construction.

After constructing the bipartite graph Gb , we partition Gb

using the normalized-cut criterion [22] through a recursive bi-
partitioning framework. In this bipartite graph partitioning, the
unnormalized cutsize is equal to the number of the cut edges
where an edge is said to be cut if it connects two vertices in
different parts. The normalization is introduced by dividing the
cutsize to the total number of edges that connect the vertices of
each part of a partition. Note that normalized cuts can produce
isolated objects. Although not frequent, such cases are handled
by selecting the largest component of each partition and merg-
ing the remaining small components (isolated objects) with their
most similar adjacent partitions.

The final vertex partition produced by the bipartitioning
framework is decoded as inducing a final object segmentation.
In this segmentation, the object vertices that are assigned to the
same segment of the vertex partition constitute the objects of a
segmented region. In our ensemble framework, minimizing the
unnormalized cutsize corresponds to minimizing the number
of object-to-segment assignments that are not respected in the
final segmentation, with regard to the individual segmentation
results in the ensemble. Since the segmentations are obtained
on objects, but not on image pixels, we map the pixels to the
segmented objects, by assigning each pixel to its closest object,
and obtain the segmented image regions.

III. EXPERIMENTS

A. Dataset

In our experiments, we use 200 microscopic images of colon
biopsy samples stained with hematoxylin-and-eosin. These
biopsies are randomly selected from the Pathology Department
Archives of Hacettepe Medical School, Ankara, Turkey. The
images are taken using a Nikon Coolscope Digital Microscope;
the microscope objective lens is 5× and the image resolution
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is 1920 × 2560. The images are so selected as to contain both
normal regions and adenocarcinomatous (cancerous) regions of
different grades. The selected images are randomly divided into
training and test sets. The training set includes 50 tissue images
and is used to estimate the parameters of the algorithms. The
test set includes the remaining 150 tissue images3.

B. Evaluation

We quantitatively evaluate all the algorithms by comparing
their results with the gold standard provided by our medical
collaborator. As the algorithms are unsupervised, we obtain
the quantitative results as follows. First, we assign each seg-
mented region S to the label of its most overlapping region R
in the gold standard. Then, we consider the overlapping pixels
of S and R as either true positive (TP) or true negative and
the nonoverlapping pixels of S as either false positive (FP) or
false negative, according to the label of R (e.g., if R is can-
cerous, the overlapping pixels are considered as TP and the
nonoverlapping pixels as FP). Subsequently, we compute the
F -score as the evaluation criterion for comparison and param-
eter selection. We select the parameter set that maximizes the
average F -score on training images. For our algorithm, the pa-
rameter sets considered in parameter selection are all combina-
tions of the following values: window size = {32, 64, 96, 128},
coarsest graph size = {2, 3, 4, 5, 10, . . . , 50}, sampling ra-
tio = {0.01, 0.02, 0.05, 0.10, . . . , 0.30, 0.50, 0.70, 0.90, 1.00},
and number of segmentations = {50, 100, . . . , 300, 400, 500}.
The parameter sets of the other algorithms can be found in [15].
Note that we select the parameters separately for each number
K of the segmented regions.

We obtain the gold standards considering colon adenocar-
cinoma, which accounts for 90–95% of all colorectal cancers.
As this cancer type originates from epithelial cells, which form
colon glands, it causes deformations in the glandular architec-
ture. Thus, to obtain its gold standard, an image is segmented
into regions containing normal and cancerous glands. In addi-
tion to these, there may exist inflammatory and stromal regions
that do not contain any glands (as shown with green shades in
Fig. 6). In our experiments, we do not consider such regions in
F -score calculations.

C. Results

The multilevel segmentation (MLSeg) algorithm segments an
image into K regions. This is opposed to the case, in which
the number of segmented regions is dynamically selected by
an algorithm; the ones that we use in our comparisons are the
examples of such algorithms. The dynamic selection of this
number usually depends on an external parameter (e.g., a merge
threshold). However, it is hard to select a common value of this
parameter such that it gives good results for multiple images
in terms of both the accuracy and the number of segmented
regions. The values that give accurate results for multiple images

3In this study, we increase the number of test images from 100 to 150.
Therefore, the results of the algorithms that we use in our comparisons are
different from those reported in our previous work [15].

typically lead to oversegmentations. Thus, in order to prevent
such oversegmentations, we externally set the number K of
regions in our algorithm.

In the experiments, we select K as 2 and 3 since the tissue
images we use have 2 or 3 regions to be segmented. Table I
reports the average test results for different K values. It shows
that the MLSeg algorithm can achieve accurate results, > 90%
accuracy and > 90% F-score on the average, even when K =2
and 3. Larger values of K slightly improve the results.

D. Comparisons

We compare the proposed MLSeg algorithm with two sets
of algorithms. The first set includes our earlier studies, the
graphRLM [15] and objectSEG [14] algorithms, that are also
implemented for histopathological image segmentation. These
studies quantify an image defining different sets of features
on the tissue objects and achieve segmentation using a region
growing algorithm. We make these comparisons to understand
the effectiveness of the newly introduced object cooccurrence
features as well as our multilevel segmentation algorithm.

The second set includes two algorithms: the graph-based seg-
mentation (GBS) [23] and J value segmentation (JSEG) [25]
algorithms that are not specifically implemented for histopatho-
logical images but are known as effective segmentation algo-
rithms for images in general. We make these comparisons to
understand the importance of using domain-specific knowledge
in segmentation.

None of these algorithms take the number of segmented re-
gions externally; instead, they select this number dynamically
for each image according to their parameters. Each algorithm
selects the parameter set that gives the highest F-score on the
training images. This selection maximizes this measure at the
expense of obtaining more segmented regions. Thus, to prevent
oversegmentations, we enforce the algorithms not to consider
the parameter sets that give more regions than an upperbound N .
In our previous study [15], we selected N = 5 and 10. Table II
provides the test results for these upperbounds. The results show
that the selection of N greatly affects the segmentation quality.
When it is set to a smaller value to obtain less oversegmented
results, the performance significantly drops. When it is set to a
larger value, such as N = 10, the performance increases but the
results tend to be oversegmented. Comparing the results of the
MLSeg algorithm with those given in this table, we observe that
the MLSeg algorithm achieves higher quality even when K = 2
or 3.

To make a fairer comparison, we also modify the algorithms
so that they segment an image into exactly K regions. For
that, we enforce the graphRLM algorithm to select the largest
K initial seeds in its seed determination step. We enforce the
other algorithms to dynamically select their merge parameters
for each image so that their merging step merges the regions
to each other until K regions are left. Table III reports the test
results when K = 2 and 3. Here, we do not report the results of
the JSEG algorithm since it gives very inaccurate results; some
of its results are depicted in the last column in Fig. 6. As possible
future work, one could consider to modify the other steps of the
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Fig. 6. Visual results obtained on example tissue images when the number K of segmented regions is set to 2 and 3.

TABLE I
AVERAGE TEST SET RESULTS OBTAINED BY THE PROPOSED MLSeg

ALGORITHM AND THEIR STANDARD DEVIATIONS

JSEG algorithm to obtain exactly K segmented regions with
better quality. Table III shows that the MLSeg algorithm greatly
improves the results of the others. The t-test indicates that this
improvement is statistically significant with α = 0.05. Fig. 6
gives visual results on some example images.

E. Discussion

The MLSeg algorithm segments an image into a selected num-
ber K of regions. Of course, the selection of K is closely related
to the application of interest. For applications in which such a
value cannot be defined, dynamic selection should be incor-
porated. In the experiments, we also implement an extended
version of our algorithm that selects K dynamically. To this
end, starting with K = 2, we compute an invariant criterion
for the segmentation result and find the first K for which the
criterion falls below a certain threshold. We use the invariant
criterion J = |SW |/|SB |, where SW and SB correspond to the
within-segmentation (cluster) and between-segmentation scat-
ter matrices [26]. Selecting a threshold value as 0.2, we obtain
94.1 ± 6.4% accuracy and 94.1 ± 9.8% F-score, on the aver-
age. The average number of regions is 3.3 ± 1.1. These results
indicate the potential use of the algorithm for variable K values.
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TABLE II
AVERAGE TEST SET RESULTS OBTAINED BY THE OTHER ALGORITHMS AND THEIR STANDARD DEVIATIONS

TABLE III
AVERAGE TEST SET RESULTS OBTAINED BY THE MLSeg, GraphRLM, ObjectSeg, AND GBS ALGORITHMS AND THEIR STANDARD DEVIATIONS

Fig. 7. Visual results obtained on the example images of tissues stained with
immunohistochemistry.

TABLE IV
AVERAGE TEST SET RESULTS OBTAINED BY THE MLSeg ALGORITHM THAT

USES AN ALTERNATIVE COOCCURRENCE MATRIX CALCULATION

The MLSeg algorithm makes use of Delaunay triangulation
to calculate a cooccurrence matrix. It is also possible to use
different approaches for this calculation. For instance, for an
object, one may compute the Euclidean distance from this ob-
ject to every other object in a window W and create a histogram
by binning. The cooccurrence matrix is then calculated by ac-
cumulating the histograms of the objects that fall in W based
on their object types and the same object cooccurrence fea-
tures are extracted from this matrix. Table IV reports the test
set results obtained by this approach. These results are slightly
less than those obtained by the proposed cooccurrence matrix
calculation. The results indicate the effectiveness of the use of
Delaunay triangulation in extracting descriptive features.

Although the experiments are conducted on the images of
hematoxylin-and-eosin stained tissues to locate normal and
colon cancerous regions, the proposed algorithm has a potential

Fig. 8. Visual results obtained on the example images of tissues containing
different types of regions.

to be used on different types of histology images as well as
to locate regions of different characteristics. Fig. 7 shows the
results when the algorithm is applied to two example images
of tissues stained with immunohistochemistry. In these prelim-
inary results, we observe that normal and cancerous regions are
successfully segmented.

Moreover, we run our algorithm to locate different types of
regions. As an example, the first column in Fig. 8 shows an
image with four different regions: normal region (marked as 1),
inflammatory region (marked as 2), and cancerous regions of
different grades (marked as 3 and 4). The MLSeg algorithm is
successful to segment these regions. As another example, the
second column in Fig. 8 shows an image that contains a region
of dysplastic glands (marked as 1 and 2). For this image, we
observe that such regions can only be roughly segmented. To
segment dysplastic glands accurately, one may consider to com-
bine pixel-level textures to the proposed features. This would
be an interesting future research direction.

We also conduct experiments to validate the robustness and
stability of the segmentations found by our algorithm. To do
so, for each image, we run our overall algorithm 30 times and
calculate the standard deviation of the F-scores over these runs.
We use the average of the standard deviations over the test set
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TABLE V
AVERAGE TEST RESULTS OF THE MLSeg ALGORITHM, A MULTILEVEL SEGMENTATION ALGORITHM WITH GraphRLM FEATURES, A REGION GROWING

ALGORITHM WITH OBJECT COOCCURRENCE FEATURES, AND A MULTILEVEL SEGMENTATION ALGORITHM THAT COMBINES THREE TYPES OF FEATURES

to examine the robustness and stability of the segmentations.
The average F-scores are found to be 1.58%, 2.00%, 1.74%,
and 1.26% for K = 2, 3, 4, and 5, respectively. These results
indicate that the segmentations slightly change from one run to
another. The visual results also support this finding. The reader
is referred to the technical report [21] for the visual results of
an example image obtained over these 30 runs.

IV. CONCLUSION

This paper presents a new algorithm for unsupervised seg-
mentation of histopathological images. This algorithm defines
a set of new high-level texture descriptors to represent the prior
knowledge in a tissue and uses them in an effective multilevel
segmentation algorithm. The experiments on 200 colon tissue
images show that the proposed algorithm is effective to obtain
higher quality results compared to the other algorithms.

The proposed MLSeg algorithm has two main contributions:
the introduction of object cooccurrence features and the use
of multilevel segmentation. We implement two more algo-
rithms to understand the effects of these two contributions sep-
arately. In the first algorithm, we extract the graphRLM fea-
tures [15] to quantify the objects and achieve segmentation by
the same multilevel segmentation. In the second one, we use the
same cooccurrence features to quantify the objects but achieve
segmentation by region growing used in [15]. The results of
these two algorithms are compared to the MLSeg algorithm in
Table V when K = 2 and 3. It shows that it is not possible to
achieve the highest results with one of these two contributions.
Thus, both of them are crucial in the proposed algorithm.

Obviously, it is possible to obtain better results by integrating
different feature types into the multilevel segmentation algo-
rithm. To explore this, we combine three types of features: the
object cooccurrence features proposed by our study, the object-
SEG features [14], and the graphRLM features [15]. The results
in Table V show that one may slightly increase the performance
by combining different features.

The MLSeg algorithm can be used as a part of a two-phase
algorithm for whole slide image segmentation. In the first phase,
empty areas of a whole slide can be separated from histological
sections using a simple algorithm. Then, in the second phase,
the histological sections are segmented into their homogeneous
regions using the MLSeg algorithm; a typical slide contains
75–100 5× images of histological sections. Our implementation
uses Java for feature extraction and MATLAB for multilevel
segmentation. The computational time for a single image is

approximately 7–8 min using a computer with a Intel Xeon
2.27 GHz processor and 12 GB of RAM. However, it is possible
to obtain significant speedups by implementing the algorithm
with C or C++ and using an optimized compiler. This would
be considered as the future work.
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