
Architecting in Global Software Engineering

Bedir Tekinerdogan
Bilkent University, Turkey

bedir@cs.bilkent.edu.tr

Semih Cetin
Cybersoft, Turkey
semih.cetin@cs.com.tr

Muhammad Ali Babar
IT University of Copenhagen,

Denmark
malibaba@itu.dk

 Patricia Lago

 VU University Amsterdam,
 The Netherlands

 p.lago@vu.nl

Juho Mäkiö
Heilbronn University, Germany

juho.maekioe@hs-heilbronn.de

Abstract

This paper summarizes the results of the First Workshop on Arc-

hitecting in Global Software Engineering (GSE), which was or-

ganized in conjunction with the 6th International Conference on

Global Software Engineering (ICGSE 2011). The workshop

aimed to bring together researchers and practitioners for defining

and advancing the state-of-the-art and state-of-the practice in

architecture design of global software development systems.

Keywords: Global Software Engineering, Software Architecture,

Workshop

1. Introduction

Current trends in software engineering show that large software

projects have to operate with teams that are working in globally

distributedlocations. The reason behind this globalization of

software development stems from clear business goals such as

reducing cost of development, solving local IT skills shortage,

and supporting outsourcing and offshoring [1]. There is ample

reason that these factors will be even stronger in the future, and

as such we will face a further globalization of software develop-

ment [8]. To cope with these problems, we have witness the

emergence of Global Software Engineering (GSE) paradigm [10].

GSE is a relatively new paradigm of software development that

can be considered as the coordinated activity of software devel-

opment that is not localized and central but geographically dis-

tant. Figure 1 shows the conceptual architecture for GSE systems.

A GSE architecture usually consists of several nodes, or sites, on

which different teams are working to develop a part of a system.

The teams could include development teams, testing team, and

management team. Usually each site will also be responsible for

following a particular process. In addition, each site might have

its own local data storage.

Despite its envisaged benefits, GSE is not a trivial undertaking

and has to cope with different challenges in different domains

including software architecture, eliciting and communicating

requirements, setting up suitable environments and tools, and

orchestration of GSE [10]. A close analysis of the literature in

GSE shows that little attention has been paid on the software

architecting process and software architecture as an artifact in the

context of GSE. As a consequence of this situation, the problems

related to architecting the large and complex systems required in

GSE have not been explicitly addressed.

 KEY
Product

Development

Site

Conceptual Layer connection

Site

Site

Data Storage

Data Storage

Data Storage

INTERNET

Team

Process

Tool

Team

Process

Tool

Site

Team

Process

Tool

Data Storage

Site

Team

Process

Tool

Figure 1. Conceptual Architecture for GSE[29]

Yet, it is generally accepted that software architecture design

plays a fundamental role in coping with the inherent difficulties

of the development of large-scale and complex software. Since

GSE projects very often have to deal with large systems, software

architecture seems to be even more important for GSE.

Research on architecture design in the last two decades has re-

sulted in different useful techniques and approaches. Different

architectural modeling approaches for representing multiple

views of the architecture have been proposed. Multiple architec-

tural patterns have been introduced in literature to support the

quality of architecture. A broad range of architecture analysis

approaches have also been proposed to analyze the architecture

before it is implemented. Despite the significant research and

development output from the software architecture design com-

munity, we can observe that the endeavor of software architecting

seems to have been mainly focused on architecting systems to be

mainly developed and evolved by following the pre-GSE era.

Considering the two domains of global software engineering and

software architecture design, we can identify different but related

research perspectives:

(1) How can software architecture be used to support GSE?

It is well-known that software architecture design plays an essen-

ACM SIGSOFT Software Engineering Notes Page 1 January 2012 Volume 37 Number 1

DOI: 10.1145/2088883.2088900 http://doi.acm.org/10.1145/2088883.2088900

tial role in coping with the complexities of software systems, but

we are interested, in particular in the way software architecture

can deal with the specific GSE concerns.

(2) How does GSE impact software architecture?

Distributed development as defined in GSE together with its

specific concerns will have an impact on the software architec-

ture.

The viewpoints introduced above have been used to structure the

first workshop on Architecting in Global Software Engineering

(AGSE 2011). The workshop aimed to bring together researchers

and practitioners for defining and advancing the state-of-the-art

and state-of-the practices in architecture design of global software

development systems. In this paper, we report on the results of

this workshop and define an outline for future research.

The remainder of the paper is organized as follows. In Section 2,

we define the workshop topics. Section 3 defines the workshop

organization plan and activities. The subsequent sections report

on the results of the discussions during the workshop including,

the motivation for software architecture GSE, challenges for

architecting in GSE, and requirements for proper GSE architec-

ture.

2. Conceptual Model

Figure 2 shows, a conceptual model representing the relation

between architecture and GSE. The rectangles represent the con-

cepts, the arrows represent conceptual relations.

Stakeholder GSE System
has

Concern

Architecture

has

1..*

has

GSE Project

builds

Team

Process

Tool

Communication Coordination

Control

has

has

uses

realizes

 supports

Development

Architectural

Design Method

Architectural

Modeling

Architectural

Evaluation

modeled

using

designed

using

evaluated

using

*

*

Figure 2. Conceptual Model defining relation between archi-

tecture and GSE

GSE Project consists of Team, Process and Tool. GSE Project

develops a GSE System, that has an Architecture. GSE System has

a set of stakeholders who have a stake in the system, and which

have Concerns. The key concerns in GSE are the following

[14][15]:

Development - the software development activities typically us-

ing a software development process. This includes activities such

as requirements analysis, design, implementation and testing.

Each site will address typically a subset of these activities.

Communication – the communication mechanisms within and

across sites. Typically the different sites need to adopt a common

communication protocol to support distributed development.

Coordination – coordination of the activities within and across

sites to develop the software according to the requirements.

Coordination will be necessary to align the workflows and sche-

dules of the different sites. An important goal could be to optim-

ize the development using appropriate coordination mechanisms.

Control – systematic control mechanisms for analyzing, monitor-

ing and guiding the development activities. This does not only

include controlling whether the functional requirements are per-

formed but also which and to what extent quality requirements

are addressed.

Architecture is designed using an Architecture Design Method,

modeled using Architectural Modeling approach, and evaluated

using Architectural Evaluation.

3. Workshop Topics and Activities

AGSE solicited submissions dealing with topics in the following

list:

 Software Architecture Modeling of GSE

 Modeling Software Architectures for GSE

 Software Architecture Viewpoints for GSE

 Software Architecture Description Languages for GSE

 Software Architecture Patterns for GSE

 Documenting Software Architectures of GSE

 Architectural Requirements Analysis of GSE

 Analysis and evaluation of Software Architectures of GSE

 Quality Models for Software Architectures of GSE

 Tools for Designing and Analyzing GSE

 Experiences in Architecting GSE

 Managing architectural independencies in GSE teams

 Role of architecture in GSE project and process governance

 Architectural knowledge as control mechanism

 Sharing and using distributed architectural knowledge

 Approaches for early stages of architecture design in GSE

projects

 Architectural styles and patterns for supporting GSE teams

 Cultural influence on architectural processes and artefacts

AGSE has been organized as a very interactive event including

ample time for lively discussions. The discussions were orga-

nized around the following three questions:

1. What is the rationale for software architecture in GSE?

2. What are the (additional) challenges for software architecture

design in GSE?

3. What are the roles of an architect in GSE projects?

Each question was discussed in groups of two and later on during

the plenary session. In the following sections we provide the

results of the discussions for each of these questions.

4. Rationale for Software Architecture in GSE

The ISO/IEC/IEEE 42010 International Standard on Architecture

Description of Software-Intensive Systems provides the follow-

ing definition for software architecture [16]:

Architecture is the fundamental concepts or properties of a sys-

tem in its environment embodied in its elements, relationships,

and in the principles guiding its design and evolution.

ACM SIGSOFT Software Engineering Notes Page 2 January 2012 Volume 37 Number 1

DOI: 10.1145/2088883.2088900 http://doi.acm.org/10.1145/2088883.2088900

Different motivations have been given for software architecture

in the literature [1]. In the following, we list the important points

together with a discussion on the motivation for the importance of

architecture in GSE.

 Architecture supports communication among stakeholders

Software architecture represents a common abstraction of a sys-

tem that can be used as a basis for communication among the

stakeholders. Stakeholders are all those people who need to be

considered in achieving a project’s goals and whose participation

and support are crucial to the project’s success. As such, the iden-

tification of all stakeholders is an important activity to ensure

project success. The notion of stakeholder is defined as ―an indi-

vidual, team, or organization (or classes thereof) with interests in,

or concerns relative to, a system‖. Besides local-stakeholders in

GSE, global-stakeholders must specify and manage requirements

across cultural, time-zone, and organizational boundaries. This

results in a more elaborate set of stakeholders than in the case of

single site development. The list of stakeholders that we have

defined is listed in TABLE 1.

 Architecture defines early design decisions

Software architecture is one of the earliest artifacts in the devel-

opment life cycle and likewise represents the earliest set of design

decisions about a system. In general, these early decisions have

the largest impact and cannot be changed easily. The software

architecture defines the structure and constraints on subsequent

artefacts in the life cycle, including detailed design and code. At

the architecture design level, it can be decided whether the sys-

tem to be developed will be able to meet the selected quality

concerns. In the context of GSE, it is important to provide a

common medium for defining the design decisions that impact

the system. Unlike local systems, the impact is even broader in

the GSE environment and will have even a larger impact. Quality

concerns need to be explicitly considered and realized in the

architecture to mitigate risks in GSE projects.

 Architecture shapes organization structure

Architecture very often impacts also the structure of the organiza-

tion. The high level decomposition that it provides can be used to

divide the overall work into portions and assign these to different

groups in the project. This so-called work breakdown structure on

its turn mandates the units of planning, scheduling and budget,

inter-team communication channels, configuration control and

file system organization, and integration and test plans [1]. Re-

garding GSE, we could state that the management of the concerns

for development, communication, coordination and control

somehow are related to the proper architecture. Likewise the

architecture plays an important role in GSE to define the work

breakdown structures.

 Architecture permits early analysis of quality concerns

Since early design decisions regarding quality concerns are made

at the architecture design level, the architecture design permits

also the analysis of these quality concerns. Quality concerns such

as performance, adaptability, scalability, and reuse can all be

analyzed before the system is implemented. In GSE, besides

these quality concerns, cost and schedule estimates are also im-

portant to control and guide the project. The total cost of a GSE

project could be estimated using the architecture.

TABLE 1. STAKEHOLDERS FOR GLOBAL SOFTWARE DEVELOPMENT

Stakeholder Concern
Customer requirements traceability

 cost

Local Business Analyst proper interpretation of business

rules and requirements for technical
system

 business process modeling

Global Business Analyst proper interpretation of business
rules and requirements for technical

system

 business process modeling

 Efficient global development

Local Requirements Engi-

neering
 complete and consistent

specification of functional and non-

functional requirements on local site

Global Requirements Engi-

neering
 complete and consistent

specification of functional and non-
functional requirements across sites

Local System Architect complete consistent architecture

 requirements traceability

 support for trade-off analysis

Global System Architect Overall architecture

Local Developer modularity and easy to develop of

local system

Global Developer modularity and easy to develop of
functionality across systems

Local Database Analyst mapping entities to data

Global Database Analyst Datamodeling across sites

Local Tester Testability of system locally

Global Tester Global testability

Local Maintainer compatibility with existing systems

 adaptability of the system

Global Maintainer Consist global updates

 Adaptability across sites

End-user functional requirements and

performance

Local Manager how long it will take to build the
product, how much it will cost, and

what are the potential problems.

Global Manager Allocation of tasks over different
sites

 Architecture supports management of evolution

Software systems are usually not fixed but evolve over their life-

times. The change can be in different ways. An architectural

change is usually systemic in nature and requires changes all over

the system. An effective architecture anticipates on and provides

mechanisms for change. In the GSE setting because of the larger

scope and the broader differences of the components and sites,

the change is likely to happen more often and in a more difficult

way. Architecture can be helpful to control the change by antic-

ipating the changes, analyzing the consequences of the required

changes, prioritizing the requested changes, and executing the

changes.

 Gross-level reuse

Software reuse is the use of existing software or software know-

ledge to construct new software [10]. Reusable assets are assets

that can be reused in the development of new products. Reusabili-

ty is a property of a software asset that indicates its probability of

reuse. In general, the goal of software reuse is to improve soft-

ware quality and productivity. Software reuse at the code level is

beneficial, but reuse at the architectural level can provide more

benefits and leverage existing effort tremendously. Reuse of

ACM SIGSOFT Software Engineering Notes Page 3 January 2012 Volume 37 Number 1

DOI: 10.1145/2088883.2088900 http://doi.acm.org/10.1145/2088883.2088900

software plays an important role in the context of software prod-

uct line engineering. A software product line or family is a set of

software-intensive systems sharing a common, managed set of

features that satisfy the specific needs of a particular market seg-

ment or mission and that are developed from a common set of

core assets in a prescribed way [5]. The software architecture is

considered as the key asset that is designed to meet the needs of

the entire product family. In GSE, the architecture can be reused

for new GSE projects thereby leveraging the productivity and

reducing cost of development. The GSE can be focused on single

software development or a product line leading to the notion of

global software product line engineering. Although different

processes have been proposed they share the same concepts of

domain engineering, in which a reusable platform and product

line architecture is developed, and application engineering, in

which the results of the domain engineering process are used to

develop the product members.

5. Challenges for Software Architecture in GSE

As discussed in the previous section, there are obvious benefits

for adopting software architecture based development in GSE.

Yet, there are also a number of challenges which require attention

to design architecture in GSE.

 Communication problems

 Though architecture provides a common medium for communi-

cation about stakeholders, this is not trivial in a GSE context.

Communication appears to be one of the major problems in GSE-

projects. A number of challenges in GSE have been reported and

studied in connection with communication problems (e.g., [6], [9]

[10], [11], [12], and [13]).The opportunities to clarify ambiguities

in work items are limited because informal face-to-face meetings

are missing and the communication is usually more formal than

in traditional software development projects. Additionally, the

communication in distributed teams is negatively affected be-

cause it happens over different time-zones and over national

borders. Consequently, the first challenge architecting GSE is the

reduction of the communication needs stemming from communi-

cation failures with relation to tasks or assignment of tasks be-

tween teams. Hence, it is very important that architecting

processes and architectural artifacts are designed to enable differ-

ent teams work independently but collaboratively in order to

reduce the need of having frequent and intensive communication

that may characterize collocated software development arrange-

ment.

 Establishing and maintaining trust

Architecture helps to guide the development process that requires

the interaction of different teams needing to exchange ideas and

artefacts frequently. Herewith, establishing and maintaining trust

is an integral activity of a successful GSE team. The increase of

trust between sites is a challenge for architecting in GSE as it

defines at technical level the dependencies between the teams.

According to [16] and [17] trust is crucial for collaboration and is

fundamental to coordination and cooperation. Lack of personal

contacts and impersonal communication may cause distrust.

Many GSE projects are likely to have a lack of trust among team

members, especially when the members do not have previous

experience of working with one another [18]. Lacking trust in

GSE is analyzed in [19], [20] and [21]. One reason for the mi-

strust can be a weak cognitive trust – this is manifested in a situa-

tion when one site not trusting in the capability of the other site to

fulfill the assigned responsibilities. On the one hand, one way to

increase cognitive trust is to improve and deepen communication.

As distrust is caused among others by bad experiences, angst and

uncertainty [22], these aspects will need to be addressed in trust

building. Bad experiences in GSE are done if one site does not

deliver what another site needs to fulfill its tasks or if the other

site is considered as ballast for the other site. One way of support-

ing trust building efforts may be having a well defined and easily

understandable architecture and mechanisms to share knowledge

underpinning architecture design; these kinds of acts are likely to

reduce the interdependencies and the need of technical communi-

cation among team members; the private communication should

be enabled.

 Coordination of architecture design process

Software architecture may help to guide the coordination and

development process. Yet, in GSE projects this might not be

trivial altogether. In the GSE, the working environment is distri-

buted in the way that two or more teams located in various parts

of the globe develop software together. The geographical distance

between the teams introduces barriers and complexity affecting

coordination and the visibility in the project and cooperation and

the communication among the team members (cp. [15]). Also

issues like, work distribution across sites; software development

process; knowledge management and technical issues may com-

plicate working in a GSEproject.

 Architectural knowledge management

GSE projects are often adversely affected by challenges such as

lack of co-domain knowledge, incomplete requirements, commu-

nication, coordination, and collaboration. However, these chal-

lenges carry heavier penalty for GSE projects if not addressed

appropriately than the collocated projects [7]. According to [14],

the distributed work items can take up twice as much time to

complete as the similar items in a collocated setting. Failures in

GSE-projects are more difficult to improve than similar failures

in traditional projects because of the higher communication and

coordination effort. Further, according to [23], the problems in

coding are among others: ―understanding the rationale behind the

code‖, ―understanding the code someone else wrote‖, ―being

aware of changes to code elsewhere that impact my code‖ and

―understanding the impact of changes I make on code elsewhere‖.

Well-documented architectural patterns and practices for archi-

tectural knowledge management [6] may be helpful for the de-

veloper searching answers for these questions. The required

information may be delivered by clear and up to date architecture

documentation, whereby keeping the documentation up to date is

a challenge for architecting in GSE.

Other sources of potential problem in GSE are interdependencies

among work items and difficulties in task coordination. Both of

them are related to each other because interdependencies lead to

higher coordination effort. The interdependencies occur when the

architecture does not involve independent modules. Independent

modules may be developed and tested in various locations by

different teams with minimal communication needs.

 Architectural modeling of GSE

ACM SIGSOFT Software Engineering Notes Page 4 January 2012 Volume 37 Number 1

DOI: 10.1145/2088883.2088900 http://doi.acm.org/10.1145/2088883.2088900

A common practice for describing the architecture according to

the stakeholders’ concerns is to model different architectural

views. An architectural view is a representation of a set of system

elements and relations associated with them to support a particu-

lar concern. Usually multiple architectural views are needed to

separate the concerns and as such support the modeling, under-

standing, communication and analysis of the software architec-

ture for different stakeholders. Architectural views conform to

viewpoints that represent the conventions for constructing and

using a view. In general the existing architectural frameworks

tend to be general purpose and not directly focused to a particular

domain. The advantage of this is that it can be applied in a broad

set of domains, but on the other hand the general-purpose archi-

tectural frameworks can fall short for modeling the particular

concerns of specific domains. To cope with the specific concerns

of GSE, an architectural framework including architectural view-

points for modeling GSE architecture is needed [29].

To sum up, the practice of software development is an important

challenge in GSE due to its communication and collaboration-

intensive nature. As such, in general the traditional software de-

velopment process activities such as requirements engineering,

design, implementation and testing will be different in nature.

Architecture has a central role in GSE. A proper architecture does

not differ from a proper architecture in traditional software de-

velopment projects, but the penalty of an inadequate architecture

seems higher in GSE. Suitable software architecture may support

bridging challenges of the GSE by reducing the negative effects

caused by geographical distance.

Designing good architecture is challenging for any software sys-

tem and not only in GSE. However, for the GSE project, the

importance of having a good software architecture seems to be

even more important than for the traditional software engineering

projects. The architecture should take into account the specific

situation and limitations of GSE, e.g., the challenges caused by

the geographical, cultural, temporal, and linguistic differences.

Hence, the main challenge in architecting GSE is to mitigate

barriers caused by the geographical, cultural, temporal, linguistic

distances and to minimize the communication needs among dis-

tributed teams.

6. Roles of a GSE Architect

In general terms, ―software architect‖ is the role in a software

development team or group of teams to ensure desired qualities

while achieving the required functionality. The software architect

is responsible for designing the most suitable structure for a soft-

ware system or systems in a way that it meets the business and

stakeholder requirements to achieve the desired results under a

set of constraints.

Defining the roles of a software architect is still being researched

within different perspectives such as technical, business and ad-

ministrative issues [1][5][20]. However, the design of a software

system in a distributed way has some key differences than colla-

boration in a face-to-face environment such as distribution and

integration of development tasks. These variations bring in par-

ticular care for the design of software infrastructure for ―separa-

tion‖ and ―composition‖ of architectural concerns. Thus, we have

rephrased the roles of a software architect for global software

engineering as follows:

 Abstract the complexity of a system

GSE architect decomposes a complex software system into a

more manageable model that describes the essence of a system by

exposing important details and significant constraints in such a

way that the basic building blocks can be implemented indepen-

dently and later composed seamlessly.

 Maintain control over the architecture lifecycle

In parallel to the project’s distributed software development life-

cycle, GSE architect should be visible at every stage to proactive-

ly monitor the adherence of the distributed implementation to the

chosen architecture during all iterations. Here, the proposed ar-

chitecture should be capable of decoupling the implementation

items assigned to independent distributed teams and integrating

these items through proper middleware and / or frameworks in an

iterative manner.

 Stay on course in line with the long term vision

GSE architect should be able to manage stakeholders in such a

way that different distributed teams should be aligned to produce

tangible implementation results as early and consistent as possi-

ble. When project variables outside of a distributed site control

change the architect must adjust the strategy given the resource

available while maintaining the long term goal.

 Progressively make critical decisions

GSE architect should take critical decisions that define a specific

direction for a system in terms of distributed implementation,

collaborative operations, and coordinated maintenance across

time and location boundaries. The critical decisions must be care-

fully made and backed up by understanding and evaluation of

alternative paths among many distributed teams. These decisions

usually result in tradeoffs that principally define characteristics of

a system. Additionally, these decisions must be well documented

in a manner understood by others residing remote sites.

 Set quantifiable objectives

GSE architect should put measurable objectives that encapsulate

quality attributes of a system developed in a distributed way.

These objectives should be defined clearly and understood by

every team in a global scale. Moreover, remotely developed

components should be aligned with these predefined quantifiable

objects.

 Work closely with customer and executives

The GSE architect should work very closely with the customer

and executives to reflect the quality attributes to the software

system where independent distributed teams will implement de-

coupled parts transparently according to the strategies set by the

customer and executives located at a different place. This may be

done by measuring the level of component / architecture re-use

between distributed teams with the help from a common gover-

nance strategy. GSE architect must be effective in order to deliver

results that are meaningful to distributed teams that have an im-

pact on the bottom line that result in greater profits.

 Inspire, mentor, and encourage colleagues

The GSE architect applies intelligently customized industry’s

best practices in distributed software development. Educating the

ACM SIGSOFT Software Engineering Notes Page 5 January 2012 Volume 37 Number 1

DOI: 10.1145/2088883.2088900 http://doi.acm.org/10.1145/2088883.2088900

recipients and participants of system architecture is essential to

successfully selling the chosen architectural path to independent

development teams. Specifically the distant stakeholders must be

able to understand, evaluate, and reason about software architec-

ture within the same perspective. If GSE architect is the only one

who can read and understand documented system architecture,

then he has failed to integrate his best practices into the culture of

a distributed organization.

 Fight entropy

Managing distributed teams threatens GSE architect’s structural

approach to problem solving. It is a GSE architect’s job to keep

the inertia across distributed teams. He or she must convince all

relevant geographically distributed stakeholders that the chosen

common approach is sound – moreover the chosen architectural

solution must be well explained and justified by all remote par-

ties.

 Create and distribute tailored views of software architec-

tures

The GSE architect should instantly distribute tailored views of

the software architecture to appropriate remote stakeholders at

appropriate intervals. Moreover, every stakeholder in a distri-

buted site should only know the expected level of architectural

view, not more not less.

 Act as an agent of change

Managing the change among distributed development teams is

highly important to ensure certain quality attributes in the final

system. GSE architect should make distributed teams aware of

changing design decisions at early stages. Particularly, if these

design decisions end up with some infrastructural changes such

as the use of new frameworks or libraries, a GSE architect should

inform the relevant stakeholders at remote sites.

7. Conclusion

In this paper, we have reported on the different aspects of archi-

tecting in GSE. The ideas we presented were mainly derived from

the First Workshop on Architecting in Global Software Engineer-

ing (AGSE). A key conclusion of the workshop is that specifical-

ly for GSE, it is important to adopt an architecture-based

development approach. The software architecture provides im-

portant benefits such as support for communication among stake-

holders, guiding the development process, guiding the

organization process, and early analysis of the system; next to

providing a reference for codification, architecture also offers a

means for organizing personalization, i.e. communicating and

sharing knowledge in a geographical distant setting. The issues

requiring an architecture-based development approach also

represent challenges that need to be solved. We have discussed

several of these challenges that require more extensive research.

We also plan to organize events related to the combination of

software architecture and GSE in the near future.

Acknowledgments

The organizers of the workshop would like to thank the partici-

pants and the workshops’ program committee.

References

[1] L. Bass, P. Clements, R. Kazman: Software Architecture in Prac-

tice, 2ndEdition. Addison Wesley, Reading, 2003.

[2] R.D. Battin, R. Crocker, J. Kreidler, K. Subramanian. Leveraging

Resources in Global Software Development. IEEE Software, 18(2),

p. 70-77, Mar/Apr, 2001.

[3] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M.Stal,

Pattern-Oriented Software Architecture Volume 1 - A System of

Patterns, Wiley, 1996.

[4] V. Casey, I. Richardson. Uncovering the Reality within Virtual

Software Teams. Workshop on Global Software Development for

the Practitioner, Shanghai, China, p. 66-72, 2006.

[5] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, P.

Merson, R. Nord, J. Stafford. Documenting Software Architectures:

Views and Beyond. Second Edition. Addison-Wesley, 2010.

[6] V. Clerc, P. Lago, & H. van Vliet. The Usefulness of Architectural

Knowledge Management Practices in GSD, Proc. Fourth IEEE In-

ternational Conference on Global Software Engineering ICGSE

2009. pp. 73-82. 2009.

[7] V. Clerc. Architectural Knowledge Management in Global Software

Development, VU University Amsterdam, PhD Thesis, Dec., 2011.

[8] D.E.Damian & D.Zowghi. RE challenges in multi-site software

development organisations. Requirements Eng 8. p. 149–160, 2003

[9] D. L. Ferrin, M. C. Bligh and J. C. Kohles. It Takes Two to Tango:

An InterdependenceAnalysis of the Spiraling of Perceived Trust-

worthiness and Cooperation in Interpersonal andIntergroup Rela-

tionships. Organizational Behavior and Human Decision Processes,

2008.

[10] First Workshop on Architecture in Global Software Engineering

Helsinki, Finland, August 15, 2011

http://www.cs.bilkent.edu.tr/AGSE-2011/. 2011.

[11] W.B. Frakes and K. Kang. Software Reuse Research: Status and

Future. IEEE Transactions on Software Engineering, Vol.31, No. 7,

July 2005.

[12] R. Heeks, S. Krishna,B. Nicholson, and S. Sahay. Synching or

Sinking: Global Software Outsourcing Relationships, IEEE Soft-

ware, p. 54-60, Mar/Apr, 2001.

[13] J.D.Herbsleb and A. Mockus. An Empirical Study ofSpeed and

Communication in Globally-Distributed SoftwareDevelopment.

IEEE Transactions on Software Engineering, Vol. 29(3), 2003.

[14] J.D. Herbsleb. Global Software Engineering: The Future of Socio-

technical Coordination. International Conference on Software Engi-

neering. p. 188-198, 2007.

[15] J.D. Herbsleb and D. Moitra. Global Software Development. IEEE

Software, March/April, p. 16- 20, 2001.

[16] [ISO/IEC/IEEE 42010:2011] International Organization for Stan-

dardization & International Electrotechnical Commission& IEEE.

Systems and software engineering—Architecture description,

March 2011.

[17] S. Jalali, C. Gencel, and D. Smite. Trust dynamics in global soft-

ware engineering. In Proceedings of the 2010 ACM-IEEE Interna-

tional Symposium on Empirical Software Engineering and

Measurement (ESEM '10), 2010.

[18] S. Jarvenpaa. and D. Leidner.. Communication and Trust inGlobal

Virtual Teams. Journal of Computer Mediated Communication

3(4), June 1998.

ACM SIGSOFT Software Engineering Notes Page 6 January 2012 Volume 37 Number 1

DOI: 10.1145/2088883.2088900 http://doi.acm.org/10.1145/2088883.2088900

[19] S. L. Jarvenpaa, K. Knoll and D. E. Leidner. Is anybody out there?

Antecedents of trust inglobal virtual teams. Journal of Management

Information Systems 14(4), 29–64 (1998).

[20] C. Kostenko, Architects Responsibilities. url:

http://www.softwarearchitectures.com/, accessed: November 2011.

[21] S. Krishna,S. Sahay, and G. Walsham.ManagingCross-Cultural

Issues in Global Software Outsourcing.Communications of the

ACM. Volume 47, Number 4, 2004.

[22] P. Kruchten. The 4+1 View Model of Architecture. IEEE Software,

12(6):42–50, 1995.

[23] R. J. Lewicki, D. J. McAllister and R. J. Bies. Trust and Distrust:

New Relationships and RealitiesThe Academy of Management Re-

viewVol. 23, No. 3, p. 438-458, 1998.

[24] A. Mockus and J. Herbsleb. Challenges of Global Software Deve-

lopmentSoftware Metrics Symposium METRICS 2001. Proceed-

ings. Seventh International. p. 182 – 184, 2001

[25] N. B. Moe and D.Smite. Understanding a lack of trust in Global

Software Teams: a multiple-case study. Software. Process 13, 3,p.

217-231.2008.

[26] A. Piri, T. Niinimäki, and C. Lassenius. Fear and distrust in global

software engineering projects. Journal of Software Maintenance and

Evolution Research and Practice, 2010.

[27] B. Tekinerdogan, S. Cetin, F. Savci. Exploring Architecture Design

Alternatives for Global Software Product Line Engineering, in the

Proc. of the Sixth International Conference on Software Engineer-

ing Advances (ICSEA 2011), Barcelona, Spain, October 2011.

[28] G. D. Venolia, R. DeLine, and T. LaToza. Software Development at

Microsoft Observed, no. MSR-TR-2005-140, October 2005.

[29] B.M. Yildiz & B. Tekinerdogan. Architectural Viewpoints for

Global Software Development. in the Proc. of Global Software En-

gineering, First International Workshop on Architecting in Helsinki,

pp. 9-16, August, 2011.

[30] B.M. Yildiz & B. Tekinerdogan. Meta-Model For Global Software

Development to Support Portability and Interoperability, in the

Proc. of the Sixth International Conference on Software Engineer-

ing Advances (ICSEA 2011), Barcelona, Spain, October, 2011.

[31] J. B.Walther & U. Bunz. ―The rules of virtual groups: Trust, liking,

and performancein computer-mediated communication‖, Journal of

Communication, 55, p. 828-846, 2005.

ACM SIGSOFT Software Engineering Notes Page 7 January 2012 Volume 37 Number 1

DOI: 10.1145/2088883.2088900 http://doi.acm.org/10.1145/2088883.2088900

