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Abstract: We propose a method and present applications of this method
that converts a diffraction pattern into an elemental image set in order
to display them on an integral imaging based display setup. We generate
elemental images based on diffraction calculations as an alternative to
commonly used ray tracing methods. Ray tracing methods do not accom-
modate the interference and diffraction phenomena. Our proposed method
enables us to obtain elemental images from a holographic recording of a 3D
object/scene. The diffraction pattern can be either numerically generated
data or digitally acquired optical data. The method shows the connection
between a hologram (diffraction pattern) and an elemental image set of
the same 3D object. We showed three examples, one of which is the
digitally captured optical diffraction tomography data of an epithelium
cell. We obtained optical reconstructions with our integral imaging display
setup where we used a digital lenslet array. We also obtained numerical
reconstructions, again by using the diffraction calculations, for comparison.
The digital and optical reconstruction results are in good agreement.
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1. Introduction

Integral imaging is a promising 3D capture and display system. Conventional integral imaging
systems are composed of two stages: a pick-up system to obtain elemental images of a 3D
object/scene and a display stage which integrates the elemental images for reconstruction [1].
These parts are physical optical setups. These setups are usually not end-to-end, that is, two
setups are separate. In the capture part, the elemental images are imaged by means of a series
of lenses and a lenslet array, on a CCD array or a digital camera. In the display setup, the
obtained elemental images are displayed on a LCD and the reconstruction is observed through
a lenslet array. It is necessary to match the size of the captured elemental images on the CCD
to the displayed ones on the LCD in the display setup since the physical sizes of the devices are
usually different. Furthermore, the pixel size of the CCD sensor does matter since the quality
of the reconstruction depends on it. Finally, the LCD panel in the display setup should be able
to accommodate all of the captured elemental images. To display a good quality still 3D image
or a video sequence, both setups require usual adjustments and alignments (imaging distances,
magnification ratios, etc.) of optical elements. Such a work is studied rigorously in [2]. That
work is an example for the case where optically captured elemental images of a physical 3D
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object are reconstructed optically at the display end. Such integral imaging systems consist of
decoupled capture and display units, and therefore, both units need careful adjustments. For
applications such as 3D gaming, 3D modeling, animation, etc., the only physically needed part
is the display. In those systems, the elemental images are digitally obtained for synthetic 3D
objects and then displayed on an optical display setup. Digital techniques are more flexible
compared to optical capture processes. If the elemental images are obtained by computation,
optical adjustments are needed only for the display part. Ray tracing methods can be used
to generate elemental images. There are many reported studies using ray tracing methods to
obtain elemental images for computer generated integral imaging systems [3–7]. The capture
process, for computer generated integral imaging systems, is performed using certain computer
graphics algorithms such as point retracing rendering, multiple viewpoint rendering, parallel
group rendering, viewpoint vector rendering, etc., [8]. All of these algorithms are based on ray
tracing.

In our work, as an alternative method to generate elemental images, we performed diffrac-
tion calculations using wave propagation methods based on the Fresnel kernel. To the best of
our knowledge, such an approach is not reported before. One can compute the scalar field dis-
tribution in the space using the Fresnel propagation model [9, 10]. We can generate elemental
images by first modeling the optical system with image processing tools and then by applying
optical wave propagation principles [11]. Wave propagation models accommodate diffraction
and interference phenomena whereas ray models do not [12,13]. Wave propagation models are
especially useful for the cases where we have holographic data of a 3D object/scene. This is in
fact an inverse problem of hologram generation from elemental images [5, 14, 15]; that is, we
obtain elemental images from a holographic recording as in [16].

There are certain problems with direct optical reconstruction from holographic data by holo-
graphic means, such as speckle noise due to coherent illumination. Thus, certain image pro-
cessing techniques (filtering and averaging) are usually performed to remove the noise and to
reconstruct the data digitally [17–19]. This way, the visibility in digital reconstructions can be
improved. However, in holographic optical reconstructions, speckle noise is present due to co-
herent illumination. In our case, at least on the display side, we do not have additional speckle
noise problem since we use incoherent illumination for the reconstructions.

It is not desirable to use lasers for the reconstruction due to potential hazards to the eye,
either. It may be possible to use LED illumination to avoid laser hazards while observing the
holographic reconstructions [20, 21]. However, the reconstruction quality would be lower due
to spectral properties of the light source.

On the other hand, integral imaging works primarily with incoherent illumination. It may
be desirable to reconstruct holographic data by an integral imaging display. A conversion from
holographic data to elemental image data is needed to reconstruct the 3D image using incoher-
ent light and integral imaging techniques. Such an idea is studied in [16]. In that work, first a
series of images are reconstructed at different depths, creating a set of slices of 3D data. Then,
the elemental images are generated using another process which maps each slice to the elemen-
tal image plane. Instead of such an approach, we directly use holographic data to display 3D
images on an integral imaging setup. For this purpose, we designed a direct pick-up integral
imaging capture system, [6]. This digital pick-up system is realized solely by a computer pro-
gram that simulates wave propagation. Lenslet arrays that we used in the design are composed
of digital synthetic Fresnel thin lenslets [11]. We processed the input holographic data with this
simulator to obtain computer generated elemental images. This way, we generate the elemental
images in one step. We used these computer generated elemental images in a physical display
setup to reconstruct optically 3D images. In our proposed display, we used a modified version
of the setup given in [11] where we replaced the analog lenslet array with a digitally controlled
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synthetic Fresnel lenslet array written on a phase-only LCoS SLM. By this procedure, we can
generate elemental images digitally from recorded holographic input data and optically recon-
struct a 3D image from them on our integral imaging display. For example, our method can be
used to generate elemental images from holograms captured within a diffraction tomography
setup [22].

In some cases, diffraction calculation might be slower than ray tracing calculations. There
are several fast algorithms which implement diffraction calculations based on the Fresnel ker-
nel [23]. Even real-time diffraction calculations are possible [24]. Indeed, one of the implemen-
tations uses the graphical processing unit to further increase the computation speed [25]. Our
elemental image generation method is quite similar to techniques used in digital hologram gen-
eration procedures. We calculated the diffraction fields using DFT. We computed the DFT using
an FFT algorithm. It is possible to apply other abovementioned faster algorithms to our case,
as well. However, the comparison of the effects of such different computational procedures to
the performance is not a part of this study.

Presented numerical and optical results show that the computationally generated elemental
images using wave propagation principle from synthetic or real objects can be used to success-
fully reconstruct 3D images. Furthermore, a digitally controlled synthetic lenslet array can be
used at the display stage setup of an integral imaging system [11, 26].

In Section 2 we describe the proposed system. We explain the method to obtain elemental
images and present the optical setup that we use to reconstruct the 3D objects. In Section 3, we
show the optical display experiment results of the proposed system together with the computer
simulations. Finally, we draw conclusions, with notes, in the last section.

2. Proposed system

In this section, we present the method for elemental image generation from holographic data
and an integral imaging optical setup to reconstruct 3D images from the computer generated
elemental images. The holographic data may be acquired either by optical means or computed
using digital techniques. We present our method in the first subsection. In the second subsec-
tion, we present the algorithm and in the third subsection we present three examples. In the first
example, we obtain the elemental images of two letters at different depths. We first generated
the diffraction patterns (computer generated holograms) of the letters. The complex diffraction
pattern is then used as the input to our algorithm. The output of the algorithm gives the ele-
mental image set of these letters at the imaging distance. For the second example, we obtain
the elemental images of a 3D pyramid shaped object. In the last example, we obtain the set
of elemental images as the output from a digitally captured optical holographic data which is
obtained using a diffraction tomography technique [22]; the object is an epithelium cell. In
the last subsection, we describe the optical setup which we used to reconstruct the 3D image
from elemental images. Thus we show that the obtained elemental images can be used for
optical reconstruction. The object sizes and display distances should match the optical setup
requirements. Thus, the holographic data should be further processed if the object sizes and the
distances do not match the display system. This processing is especially needed for optically
captured holographic data.

2.1. The method

Suppose we have digitally recorded holographic data (diffraction data) of a 3D object; a setup
is shown in Fig. 1(a). Since, our aim is to display 3D image of a holographically recorded ob-
ject/scene data by using an integral imaging technique, we need to convert the holographic data
to elemental images. An in-line hologram of a 3D object is related to the diffraction field of that
object [10]. This diffraction field can either be obtained digitally by calculating the propagation
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of light field scattered from the object or captured by optical means. In Fig. 1(a), a sketch of the
diffraction pattern at z = z0 of a cube is shown. In Fig. 1(b), a generic setup is demonstrated to
holographically reconstruct the 3D image of the original object. In a digital holographic display
system, diffraction field is sampled and written on a SLM. When the SLM is illuminated by a
laser light source, an observer can perceive the 3D image [27]. For the integral imaging setup,

Fig. 1. (a) A generic sketch of holographic recording. The diffraction pattern at z = z0 is
captured. (b) A generic sketch of 3D image reconstruction from the captured hologram.

to find the elemental images of a 3D object numerically, we used the block diagram depicted in
Fig. 2(c) that is designed based on the capture setup of a generic integral imaging system shown
in Fig. 2(a). We assume that the light field scattered from the object is available as diffraction
data at the input. We obtained the elemental images by first calculating the Fresnel propagation
of this data to the lenslet array plane, z = d, and then by multiplying this field by the lenslet
array phase pattern, and finally, by computationally propagating the resulting field once more
by a distance z= g, where 1/g= 1/ f −1/d, f is the focal length of a single lenslet [11]. In Fig.
2(b), reconstruction of the 3D image at the display part of a generic integral imaging system
is shown. The observer perceives a pseudoscopic 3D reconstruction due to the nature of direct
pick-up method used in the capture part of the integral imaging system. It is easy to process
the elemental images to set orthoscopic 3D images instead of pseudoscopic version [2]. To re-
late the diffraction data of a 3D object and the elemental images of the same 3D object, let us
examine the setups in Fig. 1(a) and Fig. 2(a). Suppose that the wavelength is the same during
recording and reconstruction. In the integral imaging system, the diffraction pattern just before
the lenslet array is needed to find the elemental images as described above. If we have the 2D
diffraction field at a certain distance, we can find the 2D diffraction field of the same object at
another distance by calculating the free space propagation. So, the field just before the lenslet
array is related to the diffraction pattern at the distance z = z0 and can be found by propagating
this diffraction field by another distance z = d − z0. However, we might have an input diffrac-
tion pattern obtained from a holographic setup with a different wavelength than the one used in
the integral imaging display system. In that case we need to pre-process the input data.
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Fig. 2. (a) A generic integral imaging data capture setup. The diffraction pattern in Fig.1
(a) is also depicted. For the same object with the same physical dimensions, the diffraction
patterns in both systems are the same. (b) A generic Integral imaging display setup. The
reconstruction is pseudoscopic due to employed direct pick-up method.(c) Designed model
to calculate elemental images from diffraction (hologram) data.

The impulse response of the continuous Fresnel kernel is

h(x) =
1

jλ z
exp

(
j
2π
λ

z

)
exp

(
j

π
λ z

xT x
)

(1)

where x= [x y]T , x and y are the transversal spatial domain variables, z is the distance parameter
and λ is the wavelength [10]. The scalar wave propagation can be modeled as a linear shift in-
variant system with the impulse response given by Eq. (1). Naturally, discretizations are needed
for computer simulations. For this reason we model the analog system given in Fig. 2(a) as a
discrete system given in Fig. 2(c). Here the two blocks represent discrete linear shift invariant
systems with impulse responses hα [n] and hβ [n]. So, we can use convolution to compute the
response of the system to a discrete input. In the model, we first convolve the input data by
the discrete impulse response hα [n] where α = π

λd and then multiply by the lenslet array phase
distribution LA [n] and we finally obtain the elemental images by convolving the result by hβ [n]
where β = π

λg . Note that we omitted the constants in the discrete versions of the kernel in order
not to clutter the computations. The discretization issues related to diffraction are discussed
in [10]. The parameters during the holographic recording must be known before we start. If
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there is a mismatch between the recording parameters and the display parameters, we should
process the hologram to match the parameters of these two steps. This is necessary because we
want to focus the elemental images at the output.

During the process, we wish to first back propagate the holographic data to a location which
we call the “origin”. The origin is defined as the effective depth of the nearest point of the object
to the lenslet array.

In case of a mismatch between the physical parameters of the holographic recording step
and our display the matching process is equivalent to equating the corresponding discrete Fres-
nel kernels. To find the relation between the kernels, let us assume that hα1 [n] represents the
propagation associated with the holographic input setup parameters and the kernel hα2 [n] rep-
resents the propagation with the integral imaging setup parameters. If we equate the quadratic
phases in hα1 [n] and hα2 [n], we can find the relation that matches the physical parameters. Let
exp

[
jα1nT n

]
be the quadratic phase in the Fresnel kernel representing the 2D diffraction field

of the holographic setup where α1 =
πX2

1
(λ1z1)

, λ1 is the wavelength, z1 is the propagation distance,

X1 is the sampling period of the field in both directions. n = [n1 n2]
T where n1,n2 are integers.

Let exp
[

jα2nT n
]

be the quadratic phase in the Fresnel kernel representing the 2D diffraction

field of the integral imaging setup where α2 =
πX2

2
(λ2z2)

. If we equate the parameters of these func-

tions ∀n, we get, α1 = α2 thus π
(λ1z1)

X2
1 = π

(λ2z2)
X2

2 . So, we can find that z2 = z1.
λ1
λ2
.
X2

2
X2

1
. So,

back-propagating the input data by z2 is equivalent to placing the 3D object effectively at the
origin as in Fig. 2(a).

2.2. The algorithm

The algorithm is given by the flowchart shown in Fig. 3. The input of the algorithm is diffraction
data. Additional preprocessing steps may be needed depending on the nature of input data and
the desired quality of the output display. For example, if the input is not from an object with a
diffusing surface, we may need to multiply the associated field with a random phase to improve
the visibility at the output. Also, for the cases where the recording physical parameters do
not match with the display system parameters and where the object size is small compared to
the display size, we may need to pre-process the data. The procedures for such cases will be
discussed in detail later in this section. However, here we should mention that for all these
cases, we first want to find the complex object field at the origin and then apply the specified
processes. Actually, this step is not a necessity. On the contrary, we can generate the elemental
images with the given diffraction pattern directly. To cover all cases by a single uniform step,
we first back-propagate all input to the origin, and then apply the fixed process as described in
Fig.2(c). This will then directly give the elemental images regardless of the properties of the
original data.

We use the DFT method to compute the convolution to find outputs of the discrete systems.
However, our discretized signals have a support that span both sides of the axes; i.e. n1,n2

can take zero, positive or negative values. Therefore, we must modify the commonly used
DFT definition to operate also on such signals. Suppose that for a finite length signal x [n],
n1,n2 = −N/2, · · · ,N/2− 1 we define the modified finite length ˆDFT X [k] = ˆDFT {x [n]},
k1,k2 =−N/2, · · · ,N/2−1 as follows: Let the periodic X̃ [k] be given by,

X̃ [k] =
N−1

∑
n1=0

N−1

∑
n2=0

x̃ [n]e− j
2π
N

kT n k1,k2 ∈ (−∞,∞) · (2)

Here, X̃ [k] and x̃ [n] are periodic extensions of finite length X [k] and x [n], respectively, as,
X̃ [k1 −N/2, k2 −N/2] = X [(k1)modN −N/2, (k2)modN −N/2], and x̃ [n1 −N/2, n2 −N/2] =
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Fig. 3. The algorithm to generate elemental images from a diffraction pattern.
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x [(n1)modN −N/2, (n2)modN −N/2], n1,n2 are integers (−∞, ∞) and consequently, X [k] is
one period over k1,k2 = −N/2, · · · ,N/2 − 1 of X̃ [k] and x [n] is one period over n1,n2 =
−N/2, · · · ,N/2− 1 of x̃ [n]. In order to avoid aliasing that might be caused by the periodicity
associated with DFT, while using this method, the computation window size should be selected
sufficiently larger than the signal window in both directions. Outside the signal window, we
chose to pad the computation window with zeros (opaque borders). Thus, we compute the lin-
ear convolution of the signals by approximating the circular convolution by padding zeros in the
computation array. Moreover, this way, we simulate the case where those points on the object
surface are the only possible source points. In our examples, the signal window sizes are chosen
smaller than 1920×1920 while the computation window sizes are chosen as 3840×3840. The
Fresnel diffraction kernel is used to model wave propagation. Let us denote the signal window
by t [n]. The diffraction pattern, td [n], of the signal is calculated by

td [n] = ˆIDFT
{

ˆDFT {wt [n]}Hθ [k]
}

(3)

where n = [n1 n2]
T and k = [k1 k2]

T represent the discrete spatial domain variables and the dis-
crete spatial frequency domain variables, respectively, and n1,n2,k1,k2 are integers; we choose
the range for n1,n2,k1 and k2 as [−1920, 1919] in our examples. wt [n] is the computational
window and t[n] is centered inside wt [n]. 2D ˆDFT and 2D ˆIDFT of the matrices are computed
using 2D FFT and 2D IFFT algorithms, respectively.

In order to speed up the computations, we used the Fresnel kernel in the spatial frequency
domain. The Fourier transform of continuous Fresnel kernel is

H (f) = exp

(
j
2π
λ

z

)
exp

(− jπλ zfT f
)

(4)

where f = [ fx fy]T , fx and fy are the spatial frequency domain variables in cycles per unit dis-
tance in (−∞, ∞). To compute the discrete Fresnel kernel, we discretize Eq. (4) by substituting
f with Uk and we obtain

Hθ [k] = exp
(− jθkT UT Uk

)
(5)

where k = [k1 k2]
T and k1,k2 = −N/2, · · · ,N/2− 1, U =

[
1/(NX) 0

0 1/(NX)

]
is the 2D

rectangular sampling matrix in the spatial frequency domain and θ = πλd. N is the total number
of pixels along one side of the discrete 2D calculation array, X is the spatial sampling period
and d is the propagation distance. We omitted the phase constant, which appears in Eq. (4), in
order not to clutter the computations.

On the lenslet array plane, we generate the lenslet array complex phase pattern given as
in [11]. A single lenslet of the array is given by

l [n] = exp
(− jγnT VT Vn

)
(6)

which is obtained by discretizing

l (x) = exp

(
− j

π
λ f

xT x
)

(7)

and by substituting x by Vn where n1,n2 are in the interval [−M/2, M/2− 1] and γ = π
λ f ,

V =

[
X 0
0 X

]
is the 2D rectangular sampling matrix in the spatial domain. We chose the

focal length as f = M X2

λ to cover the entire normalized frequency range in the interval [−π, π)
radians where M is the length of one side of a lenslet. A 2D array of lenslets, LA[n], is generated
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by replicating l[n] in both directions in a rectangular fashion. LA[n] is centered within the
computation window wLA[n]. Also, the lenslet array is large enough to image most of the light
scattered from the object. wLA[n] is multiplied with the diffraction pattern, td [n], of the object.
Focal length of the lenslets is chosen such that it satisfies the imaging equation 1/ f = 1/g+1/d
and proper magnification ratios are obtained at the imaging plane. To give numerical examples,
we chose f = 10.8mm and d = 7 f . Finally, we calculate the diffraction pattern due to the
resulting complex field of the multiplication wLA[n]td [n] at the imaging depth, g. The resultant
complex diffraction pattern is given by

p[n] = ˆIDFT
{

ˆDFT {wLA [n] td [n]}Hσ [k]
}

(8)

where σ = πλg Taking the square magnitude of this pattern simulates the discrete intensity
recording,

I [n] = |p [n]|2 · (9)

As a result, we obtain computer generated elemental images of the 3D object.

2.3. The examples

Now we will proceed with the examples of three different input diffraction patterns, as a proof
of the concept, we chose three examples. In the reconstructions, we demonstrate the depth of
focus, viewing angle and parallax of our display, qualitatively. The first example is a set of
two planar letters; the letters are at different depths. Such an example is extensively used in
the literature [4, 5, 7]. This example helps us to understand whether we are able to distinguish
different depths in the reconstructions. Also, it gives an idea about the depth of focus of the
lenslets. Our second example is an extension of the first one. We sliced down a pyramid object
to create several planar objects. This time our aim is to show the parallax that can be obtained
using our display. Since, we have a depth variation in the object, it is easier to observe the
parallax effect. The last example presents the most important aspect of our method. We used
a digitally obtained optical diffraction tomography data as the input of our method. We can
generate elemental images even from such physical data.

In the first example, we have two different digital letters at two different depths. One letter is
located at the origin, and the other one is located at z =−5 f where f = 10.8mm. These letters
are separated along the x-axis by 2.6mm. The amplitude of the object points on the letters are
taken as 1 and the other points outside the letters are 0. Let the letter located at distance z=−5 f
is represented by the computation window wt1 [n] and the other is represented by wt2 [n]. So, we
have two slices in the space. To find wt [n] we perform the following computation:

wt [n] = ˆIDFT
{

ˆDFT {wt1 [n]R1 [n]}Hη [k]
}
+{wt2 [n]R2 [n]} (10)

where η = πλ (5 f ), Ri [n], i ∈ {1, 2}, is a random matrix with entries Ri [n] = [rn1n2 ] where
rn1n2 = exp(− j2πX ) and where X is a random variable uniformly distributed in [0, 1]. Thus,
the window wt1 [n] is first multiplied by a random phase R1 [n] and then propagated by an ef-
fective distance of 5 f . The result is added to wt2 [n] which is also multiplied by another random
phase factor. The second slice is not propagated since it is already located at the origin. The
assumption is that, the multiple diffraction effects from each slice of the object are negligible.
Thus, each slice is assumed to contribute to the diffraction field independently of others. This
is because, the multiplication with the random phase simulates diffusing surfaces, and thus,
ensures that the light traveling in the space well scatters almost everywhere. To note that, the
object at z =−5 f distance will be 5 f in front the object at the origin in the reconstruction. So,
the object at the origin will be reconstructed at d = 7 f , which is the distance we chose while
generating the elemental images, and the other object will be observed at 12 f . The generated
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Fig. 4. Computed and recorded elemental images of two letters at different depths and
positions. (We enhanced the brightness of the figure for visual purposes. This is achieved
by stretching the contrast. The figure is also used on the LCD display of the integral imaging
setup as is. Similar enhancement procedure is used in Figs. 6, 8 and 14-17. In Figs. 14-17,
we enhanced only the computer simulation results.)

elemental images set is given in Fig. 4. The second example is a pyramid object. This time we
have several slices of a pyramid object; a sketch is shown in Fig. 5. Only six slices are shown
in Fig. 5 for clarity. However, we chose to simulate with nine slices. Only the base part of the
pyramid is a full frame. And only the tip of the pyramid is a single square patch. At each other
slice, we have square patches located at the corners on the edges. When looking from the cen-
ter, each slice containing square patches can be seen clearly, that is, any patch do not obscure
the others including the base frame and the tip. This is a coarse quantization of a wire-frame
pyramid structure. To make a reconstruction where the tip is at the front and the base frame is at
the back, the base frame (wt0 [n]) is located at the origin and tip (wt8 [n]) is located at z= 24mm.
We chose such a size because, we had a similar size physical wire-frame pyramid, which is also
used in [28], to compare the optical reconstructions. The base frame of this physical pyramid is
a square with an edge size of 8mm. In the simulations, the pixel size of this edge is 960 pixels.
The width of the patches and the wire-frame is 60 pixels. wt [n] is computed as,

wt [n] =
8

∑
i=0

ˆIDFT
{

ˆDFT {wti [n]Ri [n]}Hη [k]
}

(11)

where η = πλ (iΔ) and Δ = 24mm/8 = 3mm. Note that Hη [k] = 1 when η = 0. Fig.6 shows the
elemental images of the pyramid object. The last example is physically captured diffraction data
obtained by a diffraction tomography technique [22]. The object is an epithelium cell, which
is mostly a transparent (phase) object. Since it has a small depth, it is harder to see the 3D
volume and perceive the parallax. Moreover, a coherent illumination is used while obtaining
the diffraction pattern. Furthermore, the size of the data is small pixel-wise, so, we zoomed
the input data to perceive a larger object. All of these issues are handled as follows: To zoom
the object, we interpolated the 2D signal. To do that, we upsampled the original diffraction
data, tcaptured [n], by a factor of two in both directions (K = 2) and then low pass filtered (half
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Fig. 5. A sketch of the pyramid object. A square pyramid is sampled (sliced) over the z-
axis. Base part is a square frame while the edges and the tip of the pyramid are small square
patches. For display purposes we showed six slices of the object whereas in the simulations
we used nine slices.

band filter) the result and obtained tinterpolated [n]. This method does not degrade the diffraction
pattern. The result can be seen in Fig. 7. The diffraction data was captured at a certain distance,
z = z1. First, we will propagated this data backwards to the origin as it is shown in the flowchart
in Fig. 3. However, since we upsampled the data, the required propagation distance become
z = K2z1

λ1
λ

X2

X2
1

. Thus the pre-processed signal (complex field) becomes,

tob ject [n] = ˆIDFT
{

ˆDFT
{

tinterpolated [n]
}

Hη [k]
}
, (12)

where η = πλ
(

K2z1
λ1
λ

X2

X2
1

)
which is simply η = πλ1(K2z1

X2

X2
1
). We now, insert this signal into

the center of the computation window wt [n], thus, we have the diffraction field at the origin.
At this point, the complex diffraction data contains the three-dimensional information of the
object. Depending on the depth of the object, only certain parts of the object are seen in focus
if the magnitude of this field is imaged. Since the object depth is shallow compared to the
reconstruction distance, most of the object is in focus at the origin. We also do not know the
diffusiveness of the complex object field. So, we choose to multiply the complex diffraction
data with a random phase. Here, one should be careful while doing this operation since it might
destroy the three-dimensional information. This can be visualized as putting a diffusive glass in
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Fig. 6. Computed and recorded elemental images of the pyramid object. (We enhanced the
brightness of the figure for visual purposes.)

front of an object. The parts closer to the glass can be seen well while the far away points will be
obscure. Fortunately, this operation improves the performance of our method because the light
will reached and imaged by most of the lenslets. Furthermore, the visibility of the elemental
images will improve. However, for those objects that have a rather large depth, this method may
not work. Even if this step is skipped, the method would still work. However, this time, only
those lenslets closer to the center of the lenslet array will image the 3D object. The ones at the
periphery will not generate any image since the light from the object will not reach them. This
will decrease the viewing angle of the reconstructed 3D image. So, multiplication by a random
phase helps us to use the maximum viewing angle. We multiply wt [n] with a random phase
R [n]. For this last example the elemental images are shown in Fig. 8. Note that, the elemental
images obtained for the epithelium cell is filtered by a simple high pass filter to sharpen the
edges and enhance the details of the object. We filtered the signal by a half band high pass
filter. This improved the reconstruction quality, which is determined by subjective assessments.
All of the examples need slightly different preprocessing. However, once we obtained wt [n], the
rest of the algorithm is the same for all cases. We also performed reconstruction simulations and
compared them with the optical reconstructions. To simulate the reconstructions, we computed
our algorithm in the reverse order. However, this time the input of the algorithm is the intensity
distribution of the elemental images, I [n], at a single plane. We first multiplied the elemental
images with a random phase R [n] and then propagate the result to a distance z = g, where the
lenslet array is located. The complex field just before the lenslet arrays is given by

td [n] = ˆIDFT
{

ˆDFT {I [n]R [n]}Hσ [k]
} · (13)

We multiply this field with the lenslet array pattern, wLA [n], as in the previous case. Finally, we
propagate the field just after the lenslet array to a distance z = d +Δd, where d is the closest
distance from the points on the object to the lenslet array and Δd is the additional distance to
focus on the far away object points. We can focus at a certain plane by selecting this distance.
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Fig. 7. (a) The amplitude picture of the diffraction pattern of the epithelium cell. (b) The
upsampled (interpolated and low pass filtered) version of (a).

The intensity distribution on the focused plane is given by

r [n] =
∣∣ ˆIDFT

{
ˆDFT {wLA [n] td [n]}Hχ [k]

}∣∣2 (14)

where χ = πλ (d+Δd). The simulation results for the reconstructions are given in Section 3.

2.4. Optical setup

The optical setup is depicted in Fig. 9. We display the elemental images on a Samsung T240
monitor. The resolution of the monitor is 1920× 1200 pixels. Our elemental image set size
is 1920× 1080 pixels. So, we fit the image by leaving 60 pixels from top and bottom blank.
The pixel size of the monitor is 0.27mm and the dimensions of the active area that we used was
518mm×292mm. The lenslet array is written on a Holoeye HEO 1080P phase-only LCoS SLM,
which is a high definition 1920×1080 pixels reflective type SLM. We write 20×12 lenslets on
the SLM. Each lenslet has a size of 90×90 pixels with a focal length f = 10.8mm. Pixel size
of the SLM is 8μm, thus each lenslet size is 0.72mm× 0.72mm. With that many lenslets we
can only fit a lenslet array with full size lenslets to an active area of 1800×1080 pixels on the
SLM. The unused parts (60 pixel each) are left blank equally on the left and right side of the
SLM. Thus, the active area size for the lenslet array was 14.4mm×8.64mm. The lenslet array
is shown in Fig. 10. Our setup is a typical integral imaging display setup. However, due to the
size difference between the lenslet array and the LCD screen, we need to scale the elemental
images on the LCD screen by the help of a projector objective. For this reason, we used a
projector objective which is disassembled form a Epson EMP-TW520 projector. Since the SLM
is reflective type, we put a non-polarizing beam splitter (NPBS) to illuminate and observe the
reconstructed image. However, the NPBS changes the focal point of the lenslets [11]. Thus, for
fine tuning, we tried to find a focused reconstruction while changing the position of the projector
objective. The reconstructions are observed at the expected distances. The entire system, its
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close-up view and the view from the viewing zone perspective are shown in Fig. 11, Fig. 12
and Fig. 13, respectively.

Fig. 8. Computed and recorded elemental images of the epithelium cell. (We enhanced the
brightness of the figure for visual purposes.)

3. Results

We compared the computer simulation results and the optical reconstructions. Here we present
the results for each example given in Section 2.3.

Our first example was two letters at different depths and location. To determine the focused
planes we put two cards with “Bilkent University” label on them as shown in Fig. 13. The
card, where the label is horizontally aligned, is located 8.4 f distance away from the SLM
surface. The one with the label, which is vertically aligned, is located approximately at 13 f
away from the SLM surface. When we display the elemental images in Fig. 4, we observed
the reconstructions as in Fig. 14. In this figure, the top images are computer simulation results
while the bottom images are the optical reconstructions. The images on the left shows the
reconstructed object at 8.4 f while the right images are the reconstructions of the object at 13 f .
The letter “A” is seen sharper than the letter “Z”. This is due to the depth of focus of the lenslets.
We exaggerate the distances to show that the system works. For a closer capture distance, for
the letter “Z”, the reconstructions would be sharper. As we explained in Sec. 2.4, the NPBS
shifts the focal distance of the lenslets. We also confirmed these shifted location by computer
simulations.

For the second object, the pyramid, we performed two experiments. The first experiment is
to show the depth of the object and the second one is to show the parallax. In Fig. 12, we show
how we modified the setup. In Fig. 15, left images are the computer simulation results and the
right images are the optical reconstructions together with a physical wireframe pyramid object
with the same size as the reconstruction. The top two images show the focusing to the tip of
the pyramid. The depth of the object is 24mm as mentioned in Section 2.2. The base part of the
pyramid, which is located 8.4 f away from the SLM surface, is shown in focus in the bottom
part of Fig. 15. For the parallax experiment, we shoot photos from three different viewing
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Fig. 9. The optical setup

Fig. 10. A Fresnel lenslet array pattern with 12×20 lenslets. Each lenslet has a focal length
of 10.8mm. We excluded the lenslet on either side of the array since they would be cropped
if we have included them. Instead we left 60 pixels blank from either side of the array that
is written on the 1920×1080 pixels phase only LCoS SLM.
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Fig. 11. Picture of the entire optical setup.

Fig. 12. Top view of the optical setup. There is a wireframe pyramid object next to the
reconstruction zone. It is used to compare the reconstructed 3D images of the pyramid
object.
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angles from left to right. We focused to the tip in order to show the parallax better. In Fig.
16, the top three images are computer simulations for the parallax, while the bottom pictures
are the optical reconstructions. This effect can be seen better with the optical reconstructions.
However, the viewing angle of the system, is limited with the maximum diffraction angle of
the SLM device, ω = λ

X = 532nm
8μm = 0.067rad ≈ 4◦, [6, 14]. The aliased components appear

when we go to higher angles to observe the reconstruction. This is seen both in the optical
reconstruction and in the computer simulations. Viewing angle of this system can be improved
by decreasing the pixel period, X , of the SLM device or by introducing multiple SLM circular
configurations [29–31].

The last example was the epithelium cell object. The top image in Fig. 17 shows the computer
simulation results. The bottom image shows the reconstruction at 8.4 f . Since the object has a
small depth, it is not possible to observe a 3D effect or the parallax. However, we showed
with this last example that it is possible to convert holographic recording, regardless of the
acquisition method (numerical data generation or digital recording of optical data), to elemental
images and reconstruct them successfully by numerical or optical means.

Fig. 13. The viewing zone of the optical setup. We placed cards labeled as “Bilkent Uni-
versity” at different distances in order to check the reconstruction distances.

4. Conclusion

We demonstrated a method to convert digitally computed (synthetic) or digitally recorded holo-
graphic (physical) data to elemental images. Synthetic (computationally generated) or digitally
recorded physical data are processed to obtain elemental images of the original 3D objects.
Our proposed method is based on diffraction calculations, instead of commonly used ray trac-
ing methods, to generate elemental images from digitally available 3D data. We showed three
examples: two letters at different depths, a pyramid object and a hologram of a real epithe-
lium cell that is obtained by diffraction tomography. Both digitally simulated reconstructions
(obtained using diffraction calculations) and optical reconstructions are compared for these
three examples. Optical reconstructions are obtained from an integral imaging display setup.
The lenslet array of the integral imaging display consists of a phase-only SLM with a Fresnel
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Fig. 14. 3D reconstruction from the elemental images of Fig. 4. At the top, digital recon-
structions are shown while at the bottom we observe the optical counterparts. On the left
side, the camera, which took this picture, was focused to a distance 8.4 f and on the right
side, it was at 13 f . (We enhanced the brightness of the computer simulation results for
visual purposes.)

Fig. 15. 3D reconstruction from the elemental images of Fig. 6. Images at the left are digital
reconstructions. Images at the right are optical reconstructions. The top images are focused
to the tip of the pyramid object and the images at the bottom are focused to the base of
the object. It is clearly seen that the physical (wire) object and the reconstructed 3D images
match. (We enhanced the brightness of the computer simulation results for visual purposes.)
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Fig. 16. The pictures of the pyramid image taken from three different angles. (All are
focused to the tip of the pyramid.) The pictures at the top are the digital reconstructions
and the bottom ones are the optical reconstructions. The pictures show the parallax and the
viewing angle. (We enhanced the brightness of the computer simulation results for visual
purposes.)

Fig. 17. Reconstruction from the elemental images of Fig. 8. Top picture is the digital re-
construction whereas the bottom one shows the optical reconstruction. Since the object
thickness is small relative to the reconstruction distance, a 3D depth is not perceived. How-
ever, the planar looking thin object still floats in 3D space. (We enhanced the brightness of
the computer simulation results for visual purposes.)
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lenslet array pattern written on it. The optical reconstructions provide satisfactory results. The
first example gives an idea about the depth of focus of the digital lenslet array. We showed with
the synthetic 3D pyramid object example that the display provides a good parallax, which is
limited by the maximum diffraction angle of the SLM. We also compared the reconstruction
with a physical wire-frame pyramid object and it confirmed that our system works well within
its physical limitations. We also showed that we can use digitally captured optical diffraction
data to computationally generate a set of elemental images and reconstruct the 3D image of the
cell from these elemental images on a physical integral imaging display. Our proposed display
system and the method for obtaining elemental images make it possible to display holographic
recordings on an integral imaging display setup.
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