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he integration of systems for pricing and revenue management must trade off potential revenue gains

against significant practical and technical challenges. This dilemma motivates us to investigate the value of
coordinating decisions on prices and capacity allocation in a stylized setting. We propose two pairs of sequential
policies for making static decisions—on pricing and revenue management—that differ in their degree of integra-
tion (hierarchical versus coordinated) and their pricing inputs (deterministic versus stochastic). For a large class
of stochastic, price-dependent demand models, we prove that these four heuristics admit tractable solutions
satisfying intuitive sensitivity properties. We further evaluate numerically the performance of these policies
relative to a fully coordinated model, which is generally intractable. We find it interesting that near-optimal
performance is usually achieved by a simple hierarchical policy that sets prices first, based on a nonnested
stochastic model, and then uses these prices to optimize nested capacity allocation. This tractable policy largely
outperforms its counterpart based on a deterministic pricing model. Jointly optimizing price and allocation
decisions for the high-end segment improves performance, but the largest revenue benefits stem from adjusting
prices to account for demand risk.
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1. Introduction
Revenue management is common in capacity-
constrained service industries—including airlines,
hotels, car rentals, event ticketing, and TV adver-
tising—where demand is responsive to price changes.
However, revenue management models and practice
have traditionally focused on capacity allocation deci-
sions while treating price and demand as exogenous.
This focus is partly explained by rigid organizational
structures that separate the functions of marketing
(including pricing) and operations (revenue man-
agement) and also by the technical and operational
difficulties inherent in implementing an integrated
price—availability decision support system. Indeed,
“departmental differences in personnel, expertise
and decision-support systems make it difficult to
coordinate...pricing and yield management deci-
sions” (Jacobs et al. 2000). As a result, a sequential
decision process is common in many industries
(Talluri and van Ryzin 2004, Chap. 10; Kolisch and
Zatta 2012).

Over the past decade, the importance of coordinat-
ing decisions on tactical pricing and revenue manage-
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ment has been widely acknowledged in the revenue
management literature (McGill and van Ryzin 1999)
and by practitioners (Garrow et al. 2006). In a wide-
ranging review, Fleischmann et al. (2004) observe that
pricing decisions have a direct effect on operations
and vice versa. Yet, the systematic integration of oper-
ational and marketing functions remains in an emerg-
ing stage, both in academia and in business practice.
The need to learn more about the value of integrat-
ing pricing and revenue management motivates two
broad types of research questions. First, from a mod-
eling perspective, what are the technical challenges
entailed by incorporating pricing decisions into a rev-
enue management framework? In particular, what
types of demand specifications lead to tractable prob-
lems, how should we model price-sensitive demand
uncertainty, and when is it actually important to do
s0? Second, from the practical perspective of assessing
benefits, when is it important to integrate pricing and
availability decisions, and what is the financial impact
of doing so—for example, as compared with a tra-
ditional sequential approach? In particular, given the
practical limitations of coordination, are there simpler
alternatives that can achieve comparable revenues?



Downloaded from informs.org by [139.179.2.250] on 07 May 2014, at 01:53 . For personal use only, all rights reserved.

Kocab1yikoglu, Popescu, and Stefanescu: Coordination in Pricing and Revenue Management

Management Science 60(3), pp. 730-752, © 2014 INFORMS

731

Our research addresses these issues by studying
four sequential policies that combine pricing with
subsequent revenue management decisions and dif-
fer along two dimensions: the extent of coordina-
tion between price and allocation decisions and the
firm’s approach to pricing. These heuristics, which
are modeled as two-stage stochastic programs, build
price sensitivity and optimization into a stylized
framework of static, two-fare-class revenue manage-
ment (Belobaba 1987, Littlewood 1972). This standard
building block model of revenue management theory
and practice optimizes the nested allocation of lim-
ited capacity between two customer segments, where
higher-paying customers arrive later in the horizon
and where prices and demand are exogenously fixed.

The design of our study is simple but does capture
the key elements of pricing and revenue management
while allowing us to assess the value of coordinating
these decisions under demand uncertainty. We focus
on static two-fare-class pricing; preliminary analysis
suggests that our main insights do extend to multiple
classes. Static pricing is frequently observed in prac-
tice, for advertising, administrative, and competitive
reasons (Talluri and van Ryzin 2004, p. 334) and it is
supported theoretically by consumer behavior consid-
erations (e.g., Besanko and Winston 1990, Nasiry and
Popescu 2011). Finally, static models with few prices
and independent demand can serve as good sources
of approximation for more realistic dynamic problems
(Gallego and van Ryzin 1994, Bitran and Caldentey
2003). It can be argued that modern dynamic pricing
techniques remove the need for managing capacity
allocation because a fare class can be closed by setting
sufficiently high prices; however, as we have pointed
out, there are many settings where dynamic pricing is
not possible or practical, and actual implementations
of fully dynamic pricing remain relatively rare.

This paper makes the following main contribu-
tions, as intimated by the questions raised at the
outset. First, unlike a fully coordinated system, all
the sequential policies studied here are proved to
be tractable for a broad class of stochastic price-
dependent demand models that capture increasing
elasticity in the firm’s lost sales rate (LSR). Examples
include attraction models and additive-multiplicative
specifications (e.g., with linear and isoelastic price
dependence) with increasing failure rate (IFR). Our
conditions on stochastic demand extend deterministic
demand regularity conditions (Gallego and van Ryzin
1994, Ziya et al. 2004) as well as single-product
newsvendor model assumptions (Kocabryikoglu and
Popescu 2011), and they allow for sensitivity results
characterizing the interaction of price and capacity
decisions. For example, we show that in a hierarchi-
cal environment (i.e., one where pricing decisions pre-
cede allocation decisions), an increase in the high-end
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price should be met with a lower protection level—
that is, fewer reserved seats for this class—in con-
trast with implications of the standard revenue man-
agement model that does not capture price response.
If LSR elasticity is increasing in price and quantity,
then firms with expanding capacity should reserve
more seats but offer lower prices for high-end cus-
tomers because they will see lower revenue rates—
for example, lower revenue per available seat (RAS)
for airlines and lower revenue per available room
(REVPAR) for hotels.

Second, we quantify the value of coordinating the
decisions on pricing and capacity allocation. Through-
out this paper, “coordination” refers to the full or
partial integration of pricing and allocation decisions.
Using extensive numerical simulations, we find that
the revenue gains from full coordination can be large
(typically 1%-10%) relative to a sequential policy that
sets prices based on a deterministic demand model
and subsequently optimizes booking limits. These
gains increase when demand is large (compared to
capacity) or more uncertain. On the other hand, we
find it interesting that a similar policy, which adjusts
prices to reflect demand risk (based on a tractable
nonnested model) and then optimizes nested booking
limits, achieves near-optimal performance in most of
our simulations. Jointly optimizing price and alloca-
tion decisions for the high-end segment improves per-
formance, but the largest revenue benefits typically
stem from incorporating demand uncertainty in pric-
ing decisions.

These insights have practical consequences for
capacitated firms when one considers the organi-
zational and implementation challenges posed by
the integration of pricing and revenue management
(Jacobs et al. 2000). Moreover, the financial conse-
quences can be significant because small positive
changes in revenue translate into spectacular profit
gains for revenue management industries grappling
with high fixed costs and extremely thin margins.
For example, a 1% increase in revenue would have
allowed the car rental company whose data inspired
our numerical experiments—which in 2009 posted
net profit margins of —1% on revenues of $5 billion
(U.S.)—to break even that year.

2. Relation to the Literature

Our work contributes to the vast literature on revenue
management, for which the most comprehensive ref-
erences to date are the books by Talluri and van Ryzin
(2004) and Phillips (2005). McGill and van Ryzin
(1999) review the earlier revenue management litera-
ture, and Elmaghraby and Keskinocak (2003) focus on
dynamic pricing.



Downloaded from informs.org by [139.179.2.250] on 07 May 2014, at 01:53 . For personal use only, all rights reserved.

Kocabiyikoglu, Popescu, and Stefanescu: Coordination in Pricing and Revenue Management

732

Management Science 60(3), pp. 730-752, © 2014 INFORMS

There is a growing body of work (reviewed by
Bitran and Caldentey 2003) in the revenue manage-
ment literature that addresses the problem of joint
pricing and allocation. Several papers in this area
use deterministic demand models to capture com-
plex multiproduct, multiresource, or dynamic envi-
ronments (e.g., Cote et al. 2003, Kachani and Perakis
2006, Kuyumcu and Popescu 2006). Ziya et al. (2004)
analyze demand conditions that ensure regularity in
deterministic models.

In contrast, we focus on stochastic demand mod-
els: we provide corresponding regularity conditions
and assess the value of capturing price-sensitive
demand uncertainty, relative to the value of coordi-
nation. Toward this end, we focus on a static, two-
fare-class capacity allocation model (Belobaba 1987,
Littlewood 1972) and extend it to manage and coor-
dinate pricing decisions. A first step in this direction
is due to Weatherford (1997), who evaluates numeri-
cally the revenue benefits—as a function of the requi-
site computational effort—from integrating allocation
decisions and pricing in a static, single-resource envi-
ronment with normally distributed additive-linear
demand.

A few revenue management papers study joint pric-
ing and allocation problems with aggregate demand
uncertainty; they all use additive and/or multiplica-
tive demand forms, which are special cases of our
model. Bertsimas and de Boer (2005) provide reg-
ularity conditions for a static, partitioned allocation
model and additive-multiplicative demand (similar
to our model in §4.1) and then use that model to
devise a heuristic for a multiperiod price—capacity
allocation problem. In the context of nonprofit appli-
cations, de Vericourt and Lobo (2009) jointly optimize
prices and allocations in a dynamic setting under a
multiplicative demand model; their single-stage reg-
ularity condition is a special case of our LSR elas-
ticity conditions. In a dynamic setting with competi-
tion, Mookherjee and Friesz (2008) assume increasing
price elasticity in a multiplicative demand model with
increasing generalized failure rate (IGFR) risk. These
papers all rely on static regularity conditions to char-
acterize more complex dynamic problems. Our results
extend the static regularity conditions in these papers
to more general demand models.

Several other approaches have been used for mod-
eling price-sensitive demand uncertainty in revenue
management. Dynamic pricing problems character-
ize price-sensitive stochastic demand as a Markov
arrival process, which is typically described as being
Poisson distributed with known price and time-
dependent intensity (Feng and Xiao 2006, Gallego and
van Ryzin 1994, Maglaras and Meissner 2006). Uncer-
tainty about the arrival rate has been addressed in
Bayesian learning frameworks (Aviv and Pazgal 2005)
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or by using robustness methods (Adida and Perakis
2010). Our modeling choice favors instead the sim-
plest framework that allows us to explore the inter-
play of coordination and uncertainty about (price-
sensitive) demand in a revenue management context.

Finally, our work is also related to a vast oper-
ations literature on coordinating pricing and inven-
tory decisions, as reviewed by Chan et al. (2004)
and Fleischmann et al. (2004). An important distinc-
tion is that models in this stream focus on storable
goods rather than services. Our model can be viewed
as a multiproduct extension of static newsvendor
pricing models (for reviews, see Petruzzi and Dada
1999, Yano and Gilbert 2003). Most of this litera-
ture characterizes price-sensitive demand uncertainty
in terms of additive and/or multiplicative models.
Our general demand model and approach are based
on Kocabiyikoglu and Popescu (2011), who use the
concept of increasing LSR elasticity to provide gen-
eral regularity conditions for the newsvendor pricing
problem. Our analytical results in the first part of this
paper show that similar demand regularity conditions
are sufficient for several sequential pricing and rev-
enue management problems. However, our primary
concern differs from the concerns of this literature in
that we aim to assess the value of coordinating pricing
and capacity allocation decisions relative to a status
quo hierarchical business process.

3. Hierarchical and Coordinated

Revenue Management Models

In the standard revenue management model (Belob-
aba 1987, Littlewood 1972), a monopolistic firm opti-
mizes the allocation of a fixed quantity of a flexible
resource between two market segments with uncer-
tain demands; the high-price segment arrives after the
low-price segment, and prices are predetermined. In
reality, firms have the ability to control prices, which
in turn affect demand. In particular, the demand in
major application areas of revenue management, such
as airline travel and car rental, is sensitive to price
changes (Talluri and van Ryzin 2004, Chap. 7). To
capture price response, we model demand as a gen-
eral stochastic function of price, D(p) (see §4) and
extend the standard revenue management problem to
optimize segment prices (§3.1). To assess the value of
coordination, we introduce pricing models (§3.2) that
provide input to sequential pricing and revenue man-
agement policies (§3.3).

3.1. Price-Sensitive Revenue Management

Let p and p denote the high- and low-fare prices
(respectively); the corresponding random demands at
these prices are D(p) and D(), which are assumed to
be independent. Throughout this paper, the parame-
ters pertaining to the low-fare class are denoted by a
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bar (overline). Table A.1 in the appendix summarizes
our notation.

The standard revenue management model allows
for nested allocations of the firm’s capacity K, which
means that all capacity that is not sold to the low-fare
class is made available for sale to the high-fare class.!
Given a protection level x € [0, K] (i.e., the number of
units reserved for the high-fare class), sales to the
low-price segment are constrained by the booking limit
K — x and by low-fare demand D(j), so they amount
to min{D(p), K — x}. Thus, the inventory available for
sale to the high-fare class is ex ante uncertain and
amounts to max{x, K — ]_)(;3)} ; in particular, it exceeds
the protection level x if the low-fare demand falls
short of the booking limit—that is, if D() < K — x.
Since low-fare demand is realized before high-fare
demand and the two are independent, it follows that
expected sales to the high-fare class (conditional on
the low-fare demand realization D(p) = D) can be
calculated as Fp[min{D(p), max{x, K — D}}]. Taking
sequential expectations, the firm’s expected revenue
from the two nested fare classes may be written as
follows:

R(p, p, x) = pE[min{D(p), K — x}]
+pE[min{D(p), max{x, K-D@}]. (1)

A fully coordinated pricing and revenue management
model, (F), simultaneously optimizes the prices p,
p >0 and the protection level x € [0, K]:

(F) R™ =maxR(p,p, x). @)
pop,x

Because model (F) is generally intractable, we study
policies based on a partially coordinated model, (C),
which jointly optimizes the price and allocation for
the high-end market, given a low price p:

(© R™(p)=maxR(p, p, x). ®)

By contrast, the standard revenue management model
optimizes the protection level x, given fixed prices p
and p. To reflect this hierarchical approach of optimiz-
ing allocation decisions after prices are set, we refer
to this model as (H):

(H) R*(5,p)=maxR(, p, v). (4)

As broadly discussed in the introduction, our
goal is to assess the value of coordinating deci-
sions on pricing and capacity allocation and to pro-
vide tractable alternatives to the fully coordinated

!In contrast, nonnested models partition capacity into blocks des-
ignated to each fare class, and these cannot be offered for sale to
another class; nonnested models are typically suboptimal but easier
to solve.
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but generally intractable model (F). We study four
sequential (hierarchical and partially coordinated)
policies that employ, in a first stage, pricing heuris-
tics (described in the next section) to provide segment
prices, which are then used as input into model (H)
or model (C) above.

3.2. Pricing Models

Depending on the industry, several pricing ap-
proaches are conceivable and used in practice; these
include fixed prices, value-based and cost-plus meth-
ods, and matching the competition (Phillips 2005). In
this paper we focus on normative, model-based pric-
ing decisions (as opposed to descriptive, judgment-
based approaches) and consider two demand-based
pricing models that are common in the operations lit-
erature: the deterministic model (D) and the stochastic
model (S).

The deterministic pricing model (Bitran and Caldentey
2003, Gallego and van Ryzin 1994) is a certainty-
equivalent (or fluid) benchmark that replaces random
demands with their means, u(p) =E[D(p)] and p(p) =
E[D(p)], to solve for optimal “deterministic” prices p”
and pP:

(D) @=max pu(p)+pp(p)
p.p (5)
st u(p) +A(p) <K.

The stochastic pricing model (Belobaba 1987, Bert-
simas and de Boer 2005) is a nonnested version of
model (F) that jointly optimizes prices p, p together
with nonnested allocations for each segment; in other
words, capacity is partitioned into separate blocks of
size k and K —k that can be sold only to the respective
market segments. The optimal segment prices p° and
p° solve the following:

S) ¥= E[min{D(p), k
) #= max pE[min(D(p), k]

+ pE[min{D(p), K — k}]. (6)

This stochastic, nonnested (so-called partitioned
allocation) model (S) has also been used to approx-
imate nested or multiperiod revenue management
models, which are typically more difficult to solve
(Belobaba 1987, Bertsimas and de Boer 2005). In con-
trast with those papers, which use model (S) as a
benchmark for making allocation decisions k, we
will use model (S) to make pricing decisions. Unlike
model (D), model (S) captures demand uncertainty in
pricing decisions—in particular, the variance of both
demand classes typically affects (5°, p°) but does not
affect (p°, pP). Absent demand risk, the two models
and corresponding prices coincide, so we can say that
(S) adjusts deterministic prices set by (D) to account
for (price-sensitive) demand uncertainty.
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3.3. Sequential Pricing and Revenue
Management Policies

We are now ready to introduce two pairs of sequen-
tial policies that combine a (deterministic or stochas-
tic) pricing model, (D) or (S), with a hierarchical or
partially coordinated revenue management approach
based on (H) or (C), respectively. Table 1 defines the
four models of interest: (HD) and (HS) (respectively,
(CD) and (CS)) are the hierarchical (respectively, coor-
dinated) models with, respectively, deterministic and
stochastic pricing. The operator % is used to denote
the performance of a given policy evaluated by the
nested objective R, as defined in (1); in particular, the
fully coordinated model (F) achieves the maximum
performance %[F] = R**.

Each policy in Table 1 solves a two-stage stochas-
tic program for making pricing and capacity allo-
cation decisions. Specifically, (HS) sets prices equal
to (p°,p°) determined by the nonnested stochastic
pricing model (S) and subsequently optimizes the
protection level x for these prices based on model (H),
yielding %[HS] = R*(p°, p°). By contrast, model (CS)
jointly optimizes the high-end price p and the alloca-
tion x, using only the low-end price p° from (S), so
R[CS] = R**(p°). Models (HD) and (CD) are defined
similarly, with (S) replaced by (D). Unlike hierarchi-
cal (H) policies, where pricing decisions are oblivi-
ous to subsequent allocation decisions, in coordinated
(C) policies, the price and allocation decisions for
the high-end market are integrated—in other words,
high-end prices are set by anticipating optimal protec-
tion levels. Intuitively, these models aim to improve
on the simple (HD) benchmark along two dimensions:
coordination (CD), capturing demand stochasticity in
pricing decisions (HS), or both (CS).

Preliminary results on the performance of various
policies are summarized next, together with the usual
bounds based on the value & of the deterministic
model (D) (e.g., Bitran and Caldentey 2003, Propo-
sition 6). We use the generic symbol (A) to refer to
one of the pricing models (D) or (S) and cv” and
¢v” to denote the coefficients of variation of demand
at optimal deterministic prices, D(pP) and D(p"),
respectively.

Table 1 Hierarchical vs. Coordinated Pricing and Revenue
Management Policies

DETERMINISTIC PRICING STOCHASTIC PRICING

(D) ©)

© (CD) (CS)
COORDINATED | &[CD] = ngapx R(P°, p, x) | R[CS] = nxlapx R(5°,p, x)

(H) (HD) (HS)
HIERARCHICAL | Z[HD] = mXaxH(ﬁD,pD, X) | #[HS] = max R(P°, p%, x)

{p?, p°} =argmax (D) {p%, p°} =argmax (S)
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ProrosiTiON 1. For A € {D,S}, & > R*™* = R[F] >
R[CA] = Z[HA] = (1 — I max{cv?, &vP})D. Moreover,
R[HS] > &, and both equal R[F] if either D(p) or D(p)
is deterministic.

Proofs are in the appendix. The result formal-
izes the intuition that coordination improves policy
performance (R[CA] > R[HA]) and so does nesting
(Z[HS] > &). Nesting is relevant when demand from
both classes is uncertain; otherwise, policies based on
stochastic pricing (S) are optimal. Although stronger
analytical bounds are difficult to obtain, we comple-
ment Proposition 1 by assessing the performance of
these policies numerically in §6. For a broad set of
demand models, we show in the next two sections
that the heuristics in Table 1 are indeed tractable.

4. Demand Model and Results for

Hierarchical Processes
In this section we obtain conditions for the hierar-
chical pricing and revenue management models (HD)
and (HS) presented in §3 to be tractable and then
characterize sensitivity properties for the correspond-
ing price and allocation decisions. Throughout this
paper, we make the following assumption on the
price-sensitive stochastic demand:?

AssuMPTION 1. Demand is given by D(p) = d(p, Z)
> 0 a.e. such that (a) the random variable Z has finite
mean and a continuous price-independent distribution ®
with density function ¢; (b) the riskless demand function
d(p, z) is decreasing in price p, strictly increasing in z, and
twice differentiable in p and z; and (c) the pathwise (risk-
less) unconstrained revenue m(p, z) = pd(p, z) is strictly
concave in p (ie., 2d,(p, z) + pd,,(p, z) <0).

The random variable Z captures demand risk; in
empirical estimation, this can be random noise or
an independent variable in a regression model. Con-
ceptually, Z can be any sales driver that is uncer-
tain and not perfectly controlled by the firm; exam-
ples include market size, personal disposable income
of the target market, brand awareness, and a refer-
ence price (see, e.g., Hanssens et al. 2001). Assump-
tions 1(a) and 1(b) ensure that the demand distribu-
tion F(p, y) =P[D(p) < y] is continuous with a density
f(p,y); the survival (lost sale) function is denoted
L(p,y) =1—F(p, y).> Neither the concavity Assump-
tion 1(c) or demand positivity are necessary for all our
results, but they do simplify the analysis; in particu-
lar, the former ensures that the deterministic pricing

2We use the terms increasing (decreasing) and positive (negative)
in their weak sense and denote partial derivatives by corresponding
subscripts.

% This implies that the objective R in (1) is differentiable because
E[min{D(p), x}] = [y L(p, y) dy is so.
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model (D) has a unique solution, whereas the latter
serves to characterize optimal prices for model (S).

For technical convenience, variables are restricted
to positive compact intervals, in particular x € X =
[0,K] and p € P = [Pmins Pmax), Where p,.. is arbi-
trary, possibly infinite. We assume that p.;, =
argmax{d(p, ®'(1 — p/p)) | p > p}; this lower bound
on price is used for regularity of coordinated (but
not hierarchical) models and seems to be practically
unrestrictive (see §4.3 and the appendix). Our results
extend to any subintervals of P and X.

4.1. Regularity of Pricing Models and
Lost Sales Rate Elasticity

We next characterize structural results for the pric-
ing models introduced in §3.2. We begin by reviewing
the well-known microeconomic results for model (D),
which is concave owing to Assumption 1(c). An alter-
native regularity condition is that expected demands
u(p) and u(p) have increasing price elasticity; that
is, E(p) = —pi, (p)/u(p) and E(p) = —pii, (p)/i(p) are
increasing in p and p, respectively. Define the opti-
mal unconstrained prices (p°, p°), which solve E(p°) =
EGp)=1.

ReMARK 1. The deterministic pricing model (D) has
a unique solution (p°, pP) that equals (p°, p°) if K >
n(p®) + m(p°) and otherwise solves

wp)1-E@) =a@A-E@)=0, ()
wlp) =K — (). (®)

In particular, expected demand at the optimal (D)
prices is elastic: E(pP) > 1, E(5°) > 1.

To obtain regularity conditions for stochastic mod-
els, we rely on a different concept of elasticity: the
price elasticity of the rate of lost sales—that is, the
percentage change in the lost sales rate L(p, x) with
respect to the percentage change in price for a given
capacity allocation x.

DEerINITION 1 (KOCABIYIKOGLU AND PoPEscu 2011).
The LSR elasticity corresponding to D(p) given a
price p and allocation x is defined as €(p,x) =

—pL,(p, x)/L(p, x) =pE,(p, x)/(1 = F(p, x)).

The LSR elasticity €(j, x) for the low-fare class is
defined similarly. The next proposition shows how
the structural results for the deterministic model (D)
extend to its stochastic counterpart (S) through the
concept of LSR elasticity. In particular, the pricing
problem (S) is tractable for stochastic demand models
with LSR elasticity increasing in x. This condition is
fairly general and satisfied by most demand specifi-
cations used in the literature (see §4.3).

PROPOSITION 2. Assume that €(p, x) and rfé(ﬁ, X) are
increasing in x for all p and p.

RIGHTS L

(a) The stochastic pricing model (S) has a unique solu-
tion (p°, p°, k°) that solves

k
[ L @~ ) dy

K—k _ _
=[ Lena-EGydy=0,  ©
pLp, ) =pL(p, K =), ke[0,K.  (10)

(b) The optimal price for each product under model (S),
keeping all other variables constant, is decreasing in its
own allocation and is independent of the other product’s
price.

Although the three-variable objective of model (S)
is not jointly concave in general, the proof of Propo-
sition 2 shows that it can be optimized as a concave
univariate function along the optimal price paths for
each segment, as determined by (9). Condition (10)
states that capacity should be partitioned so as to
balance the marginal expected revenue per inven-
tory unit from each segment. These conditions resem-
ble the deterministic marginal revenue condition in
Remark 1.

The increasing LSR elasticity conditions thus extend
the elasticity results for the deterministic model (D);
in particular, from (9), the lost sales rate at the optimal
solution is elastic, €(p°, k) > 1 and €(p°, K — k%) > 1.
The first part of Proposition 2 extends the single-
product newsvendor results in Kocabiyikoglu and
Popescu (2011) to the case of two products sharing a
limited resource. A multiproduct extension of Propo-
sition 2 follows along the same lines, generalizing the
result obtained by Bertsimas and de Boer (2005) for
additive-multiplicative demand models.

4.2. Structural Results for Hierarchical Models
A hierarchical process uses the prices determined by
models such as (D) or (S) to make nested capacity
allocation decisions based on the revenue manage-
ment model (H). We next investigate how these pro-
tection levels should be set and how they respond to
a change in prices. Suppose that in an uncoordinated
environment, the marketing department announces a
price cut for the high-end segment. Should the rev-
enue management department respond by increas-
ing or decreasing the allocation for this segment?
The answer depends on the underlying price-sensitive
demand uncertainty, and it helps also to establish
structural properties for coordinated models in §5.
The objective function R(p,p,x) in (1) is quasi-
concave in x, so for any p <p, the optimal protection
level x*(p, p) for (H) is the unique solution of

L(p, x) =P[D(p) = x]=p/p, (11)

if less than K (i.e., if L(p, K) < p/p) and equals K other-
wise. Although we refer to p as the “high-end” price,
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our models do not exclude the theoretical possibility
that p < p, in which case all policies based on (H), (C),
and (F) prescribe x* =0, i.e., no availability control.*

Proposition 3 provides the optimal solution and
sensitivity results for hierarchical models (HD) and
(HS) based on results from §4.1 and existing compar-
ative statics for the newsvendor with pricing prob-
lem (Kocabiyikoglu and Popescu 2011, Theorem 1(b)).
We focus on sensitivity of x*(p) = x*(p, p) to the high-
end price p; the optimal protection level decreases in
the low-fare price p, regardless of price sensitivity, so
we selectively omit functional dependence on p from
notation.

ProrosITION 3. (a) Model (HD) admits a unique opti-
mal solution (p°,pP, xHP = x*(pP, pP)) that solves (7),
(8), and (11). If €(p,x) and E(p,x) are increasing
in x, then model (HS) admits a unique optimal solution
(P, p°, xHS = x*(p°, p°)) that solves (9)—(11).

(b) The optimal protection level x*(p) is decreasing in
the high-end price p if and only if €*(p) =€(p, x*(p)) = 1.
Moreover, the following alternative conditions are sufficient
for x*(p) to be decreasing in p: (i) ‘€*(p) is increasing in p,
and (ii) €(p, x) is increasing in p for all x.

Part (a) shows how hierarchical models can be effi-
ciently solved as a system of equations if demand is
stochastically decreasing in price in hazard rate order.
An example with additive-linear demand is solved
explicitly in §4.3, showing that even for such simple
models, the optimal (HD) and (HS) policies are gen-
erally not comparable.

Part (b) elucidates the relationship between price
and protection level for the high-end segment; intu-
itively, this is determined by two effects that are
typically opposed. On the one hand, a price hike
increases the marginal return from protecting more
capacity for this class, suggesting higher protection
levels. On the other hand, increasing (high-end) prices
implies a lower rate of lost sales (due to decreased
demand) and hence a decrease in protection levels.
Whichever effect dominates will determine the direc-
tion of change in x*(p). For example, when demand
is not a function of price (D(p) = D), price changes
have no impact on the rate of lost sales (€ = 0),
and the protection level increases in p. This effect
is reversed, however, when demand is sufficiently
price sensitive—specifically, whenever the rate of lost
sales is elastic with respect to changes in price (along
the optimal allocation path; i.e., when €*(p) > 1).
The pathwise bound on LSR elasticity fully charac-
terizes this sensitivity result since it is both necessary
and sufficient. Verifying the bound or condition (i)

* Alternatively, constraining p < p would instead prescribe no price
discrimination; i.e., p = p. All our results extend when this con-
straint is added to our models.
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requires inverting the demand distribution to obtain
x*(p). A sufficient condition that does not require cal-
culating an inverse is that LSR elasticity be increasing
in price.

4.3. Examples and Implications for
Modeling Demand

The results so far have shown that increasing LSR
elasticity conditions, which emulate the well-known
deterministic elasticity conditions for model (D),
guarantee structural properties for both (HD) and
(HS) models. We briefly argue that these demand
conditions are intuitive, easy to verify, and relatively
unrestrictive. It is natural to assume that demand is
decreasing in price in a stochastic sense, and this is
precisely what the increasing LSR elasticity condition
means:

ReEMARK 2 (KocABIYIKOGLU AND Porescu 2011).
€(p,x) is increasing in x if and only if D(p) is
stochastically decreasing in p with respect to the haz-
ard rate order. In particular, this holds for additive-
multiplicative models d(p, Z) = a(p)Z + B(p) if Z is
IFR or if =0 and Z is IGFR.®

The IFR assumption, which implies IGFR, is com-
mon in the operations literature and imposes mild
restrictions on the demand distribution. A broad
class of demand models have increasing LSR elas-
ticity with respect to both x and p; these include
additive-multiplicative and attraction models such as
(i) additive-linear, logit, and exponential models with
IFR risk Z and (ii) multiplicative-linear, isoelastic, and
power models with IGFR risk Z (see Kocabiyikoglu
and Popescu 2011, §5). In particular, our numeri-
cal experiments in §6 consider linear demand mod-
els with additive and multiplicative uncertainty, with
normal (IFR) and gamma (IGFR) distributed risk,
respectively; for these models, €(p, x) is increasing
in x as well as in p.

Not all demand models take the form d(p,Z)
assumed in this paper. For example, the Poisson
model with price-dependent demand rate A(p), which
is commonly used in revenue management (Gallego
and van Ryzin 1994), does not fit the d(p, Z) form.
However, its normal approximation D(p) = A(p) +
VA(p)Z, with Z~ N(0,1) (hence IFR), is of additive-
multiplicative form. For this model, €(p, x) increases
in x; it also increases in p if A(p) is concave (or if pA’(p)
is decreasing).

®By definition, Z is IFR if it has increasing failure rate
¢(z)/(1 — ®(z)) and Z is IGFR if it has increasing generalized failure
rate z¢(z)/(1 — ®(z)). A distribution D(p) is said to be stochasti-
cally decreasing in p with respect to the hazard rate order if its
hazard rate f(p, x)/L(p, x) is decreasing in p; this stronger order is
equivalent to first-order dominance for a large class of parametric
families (Mtiller and Stoyan 2002, Table 1.1).
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Table 2 (p, x), €*(p) and p,,, for Additive-Linear (a — bp +Z, a, b > 0) and Multiplicative Isoelastic (ap~°Z,a> 0,b > 1)
Demand Models with Uniform (0, /) and Mean-/ Exponential Risk Z

d(p,7) €(p, x) €*(p) Prin

A Uniform Exponential Uniform Exponential Uniform Exponential
bp bp bp? bp _[Ip _

a—-bp+12 T—x+a—tp T N3 T max(p, 5) max(p, E)
bx bx D p _ 1 _

—b - r_ L - 1/b
ap~1 T —x T b(ﬁ 1> IbIn 5 p<1 + b> pe

ExamrLE 1. To further illustrate the assumptions
underlying our results, Table 2 provides expressions
for €(p,x), €*(p), and p,;, for the additive-linear
and the multiplicative isoelastic demand models fre-
quently used in the literature (see, e.g., Petruzzi and
Dada 1999) with uniform (0, ) or mean-/ exponential
risk Z; both distributions are IFR. It is easy to verify
that €(p, x) is increasing and that €*(p) > 1 whenever
P = Pmin- Moreover, if b > [/p (i.e., if high-fare demand
is sufficiently price sensitive), then p,;, = p for the
additive model with exponential risk Z, and so the
lower bound p,,;, is unrestrictive.®

To this end, we illustrate how Propositions 2 and 3
serve to solve models (HD) and (HS) under linear-
additive demand with exponential mean-I risk; we
present this model because it yields closed form solu-
tions. For (HD), we first compute prices by solving
model (D) via Remark 1: p” = (@ + I + «)/2b and
pP = (a+1+k)/(2b), where k=((a+I1+a+1)/2—K)*.
Then, from (11), we obtain the protection level for
any price pair (p,p), x*(p,p) = min(K, (a — bp +
llog(p/p))*), which, in particular, for (HD) gives
xHP = x*(pP, pP) = min(K, ((a —1—«)/2 + llog((a +
I+ k)/(a+1+«))(b/b))"). Similarly, (HS) prices solve
model (S) via Proposition 2(a): p° = I/b, and p° =
I/b, and the corresponding protection level is x"° =
x*(p°, p°) = min(K, (a—1+1log(Ib/Ib))*). Even for this
simple model, no systematic ranking of (HS) and (HD)
policies holds for all parameter values.

5. Structural Results for
Coordinated Models

In a centralized environment, pricing and allocation
decisions are made jointly by a single unit of the
firm. Alternatively, coordination can be achieved if
the marketing function makes pricing decisions while
considering the subsequent optimal allocation deci-
sion to be made by the revenue management system.
In this section we investigate the coordinated model
(C), which optimizes expected revenue R(p, x) as a
function of high-end price p and allocation x; we

¢ This lower bound is used for sufficiency conditions in Proposi-
tion 3(b(i), (ii)). By definition, p,;, > p yields the largest possible
protection level in (11).
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omit for simplicity the functional dependence on the
low-end price p, which is kept fixed in this section.
In contrast with the full recourse problem (F) which
is generally nonconcave, model (C) is shown to be
tractable under similar conditions as the hierarchical
policies studied in §4.

Practical considerations endorse the relevance of
managing the price and allocation decisions for the
high-end segment for a given low-end price. In many
revenue management settings, such as concerts and
sporting events, low-end prices are kept fixed for
brand image and for historical, fairness, or social
considerations, whereas high-end prices are actively
managed. There are also settings—such as airlines,
hotels, car rentals, and advertising—in which the
low-end market is highly competitive and with lit-
tle degree of pricing power relative to the high-
end segment (Zhang and Kallesen 2008). In fact, the
first North American revenue management initiative,
the American Airlines “Ultimate Super Saver” pro-
gram, was purposely designed to conditionally match
low-fare competitor People Express in the low-end
segment while reserving capacity for higher-margin
sales. Major airlines continue to offer low-fare prod-
ucts on a limited basis to compete against low-cost
carriers such as Southwest, Ryanair, and EasyJet. In
the high-end market, however, airline price dispersion
is extremely high (up to 700%, according to Donofrio
2002) and competition less severe, suggesting that
price is an important profit lever. These examples fur-
ther motivate our focus on jointly optimizing alloca-
tion and pricing decisions for the high-end segment
in this section.

5.1. Regularity Conditions for Model (C)

Model (C) is generally not jointly concave in the price
and allocation decision for the high-end class. This
coordinated problem can be viewed, equivalently, as
a pricing model with recourse: the high-end price p
is determined by anticipating that the protection level
is optimally set in response to this price, x = x*(p),
so the problem amounts to optimizing the univari-
ate objective R*(p) = R(p, x*(p)). We show that this
univariate objective is concave if the LSR elasticity is
increasing in price or, alternatively, if it is larger than
1/2 along the optimal allocation path x*(p).
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PrOPOSITION 4. Suppose that one of the following con-
ditions holds: (a) €*(p) > 1/2 for all p, (b) €*(p) is increas-
ing in p, or (c) €(p, x) is increasing in p for all x. Then
model (C) can be efficiently solved as a concave univariate
problem and admits a unique optimal solution (p*™, x**).

In short, the conditions that guaranteed sensitiv-
ity results for hierarchical models (Proposition 3(b))
ensure regularity of the coordinated model (C). The
conditions in Proposition 4 are satisfied by most
demand functions of practical interest, as we argued
in §4.3. This result also shows that regularity con-
ditions in the revenue management context are no
stronger than those that coordinate the simpler, price-
setting newsvendor problem (Kocabiyikoglu and
Popescu 2011, Theorem 2). In some cases, the lower
bounds of 1/2 on LSR elasticity are not only suf-
ficient but also necessary for concavity of the rev-
enue function. For example, if d is linear in p (i.e.,
if d(p,z) = {(z) — pé(z)), then it can be shown that
€* >1/2 is both necessary and sufficient for the con-
cavity of R*(p). Therefore, no weaker constant bound
can be expected to hold for all demand functions.

5.2. [Extension: Substitution Effects

The coordinated model described so far assumes that
demand for each class depends on its own fare price
but not on the fare price of the other class since the
market is perfectly segmented into low- and high-fare
customers. Traditionally, airlines have achieved this
segmentation by designing product fences (restric-
tions) such as booking more than 14 days prior to
departure or staying over a Saturday night. How-
ever, in other practical settings (e.g., event ticket-
ing) where perfect segmentation is more difficult to
achieve, firms offer comparable products and the
demand for a product may increase with the price of
a substitute.

In this section we show that our results for
model (C) extend when decisions on the high-end
price p also affect low-fare demand, D(p) = d(p, Z),
where d(p, Z) is increasing in p; we omit again the
functional dependence on p for notational conve-
nience. The effect of the high-end price p on both
demand classes complicates our original model (C) as
follows:

max [ED[ﬁmin{]_)(p), K —x}
+pEp[min{D(p), max{x, K= D(p)}}]]. (12)

ProrosITION 5. Assume that d_pp <0. Then (12) has a
unique price—allocation solution if either of the following
conditions holds: (a) €(p, x) is increasing in p or (b) €*(p)
is increasing in p.
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This result shows that increasing LSR elasticity con-
ditions continue to ensure structural properties even
when the segmentation between classes is imperfect.
The additional assumption of diminishing marginal
impact of substitute high-end prices on low-fare
demand holds for additive-linear demand systems
D(p) = Z — bp, D(p) = Z + bp (e.g., Elmaghraby and
Keskinocak 2003) as well as for multiplicative isoe-
lastic models D(p) =p~*Z, D(p) = p’Z, where b, b > 0.
For these models, €(p, x) increases in p if Z is IGFR
(see Kocabiyikoglu and Popescu 2011, Table 2). Our
model assumes independent risks Z, Z and captures
substitution through price response; future research is
needed to account for correlations between demand
classes, in the spirit of Brumelle et al. (1990).

5.3. Summary and Sensitivity Results

We conclude our analytical investigation by provid-
ing sensitivity results that characterize the impact of
capacity on joint pricing and allocation decisions as
well as on optimal revenues.

In a hierarchical revenue management process, Lit-
tlewood’s rule (11) implies that for a given price p, the
optimal protection level is independent of capacity (or
equal to it). However, this statement no longer holds
when price and allocation decisions are made jointly.
Our next result characterizes the effect of capacity
on the optimal coordinated price-allocation solution.
In particular, it confirms that optimal high-end prices
decrease with capacity even when these prices are
coordinated with allocation decisions. We shall fur-
ther study the effect of capacity on the (marginal) rev-
enues of model (C), R*(K) = R(p**, x**; K) and on the
revenue rate per capacity unit R**(K)/K.

ProrosITION 6. (a) If €(p, x) is increasing in p and x,
then p**(K) decreases with capacity K and x**(K) increases
with capacity K. (b) The optimal revenue R**(K) from the
coordinated model (C) is increasing and concave in capac-
ity K, whereas the optimal revenue per unit of capacity,
R*(K)/K, is decreasing in K.

In sum, firms that experience a freeing up or expan-
sion of capacity should expect more revenue but
lower revenue rates (e.g., lower RAS for airlines and
lower REVPAR for hotels). Such firms should there-
fore set lower prices for the high-end segment but
at the same time increase the protection level, if LSR
elasticity is increasing in price and quantity. Our
numerical results in the next section suggest that these
sensitivity properties for model (C) mirror those for
the fully coordinated model (F) and extend to all the
sequential models described in Table 1.

To conclude, our analytical results suggest that
increasing LSR elasticity is a unifying condition that
enables us to solve efficiently the four pricing and
revenue management models in Table 1 and also to
characterize their sensitivity properties.
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Table 3 Regularity Conditions for Hierarchical and Coordinated
Models in Terms of LSR Elasticity

DETERMINISTIC PRICING STOCHASTIC PRICING
COORDINATED (CD) (CS)
% increasing in p

% increasing in p and x

HIERARCHICAL (HD) (HS)
— % increasing in x

CoroLLARY 1. Sufficient regularity conditions for the
models (HD), (HS), (CD), and (CS) are summarized in
Table 3. In particular, these models can all be solved as con-
cave univariate problems for demand models that feature
increasing LSR elasticity in p and x.

6. Performance Assessment:

Numerical Insights

In this section we provide a numerical analysis to
evaluate the performance of the hierarchical and coor-
dinated policies for pricing and revenue management
described in Table 1. We quantify the benefits of coor-
dinating decisions on pricing and allocation and of
accounting for demand uncertainty in pricing. Moti-
vated by existing literature (e.g., Weatherford 1997)
and by our analysis of a booking data set for rental
cars provided by Avis Europe in §6.2, our numeri-
cal experiments focus on linear demand models with
either additive or multiplicative uncertainty. Our gen-
eral insights appear to be robust to the specification
of the demand function, the distributional assump-
tions on the risk variables Z and Z, and the choice of
parameter values.

6.1. Random Parameter Sampling

As a first step toward assessing the relative per-
formance of the various policies, we designed a
simulation study (as in, e.g., Jain et al. 2011) to gener-
ate problem instances under linear demand with both
additive and multiplicative uncertainty. The additive-
linear demand model is given by D(p) =a —bp+ oZ
and D(p) = a — bp + 6Z, where Z and Z have inde-
pendent standard normal distributions. The linear-
multiplicative model is D(p) = (a — bp)Z and D(p) =
(a—bp)Z, where Z and Z have independent gamma
distributions with unit mean. Under both models,
the LSR elasticity is increasing in both p and x, and
7(p, z) is strictly concave in p. According to Corol-
lary 1, all models in Table 1 can be solved efficiently
and admit a unique solution.

At each of 200 iterations, we randomly chose the
parameters of these demand models, computed the
optimal revenues from all policies A € {HD, HS,
CD, CS}, and assessed their performance relative to
the optimal revenue from the fully coordinated pol-
icy (F), R[A]/R[F]. We find the optimal (F) solution
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via a search algorithm; preliminary analysis suggests
that our demand conditions may not be sufficient for
(F) to be (pathwise) quasi-concave.

6.1.1. Additive Demand Models. To reduce the
number of parameters (from seven to five) for the
simulation scenarios, we used the following reparam-
etrization. Without loss of generality, we take the total
capacity K =1. We denote the total market size by
M (effectively measured in multiples of K) and the
fraction of high-end customers in the market by f €
[0, 0.5]; with this notation, a = fM and a=(1—f)M
in the original demand models. We also rescale prices
so that without loss of generality E[D(p)] = Mf(1—p)
and E[D(p)] = M(1— f)(1—p/v), where y € [0, 1] (i.e.,
the high-end demand has a higher maximum willing-
ness to pay). To ensure a high probability of positive
demand, we set an upper bound of 1.2 on the coef-
ficient of variation of demand cv = cv(D(p°)) = 20/a
at unconstrained prices p° = a/2b and similarly for
D(p).” Then, at each iteration we randomly and inde-
pendently generated five parameters: M from the uni-
form distribution on [0, 12] (i.e., the overall market
size can reach up to 12 times capacity); f from the
uniform distribution on [0, 0.5]; ¥ from the uniform
distribution on [0, 1]; and cv and ¢v from the uniform
distribution on [0, 1.2].

Figure 1 plots the histograms over all iterations of
R[A]/R[F], the performance of each policy A relative
to the optimum F;® the optimality gap 1 — %[A]/%[F]
illustrates the value of full coordination. It is apparent
that the policies based on stochastic pricing (HS and
CS) generally lead to revenues closer to the optimal
revenue %[F] than do the policies based on determin-
istic pricing (HD and CD). Moreover, the similarity of
histograms for (CD) and (HD), as well as that of his-
tograms for (CS) and (HS), suggests that for any given
pricing strategy, the benefits of coordination over a
hierarchical approach are generally marginal.

We examine these insights in more detail by sep-
arately assessing the differential value of stochas-
tic pricing and of coordination, thereby confirming
and complementing the insights from Proposition 1.
To assess the value of stochastic pricing, Figure 2
plots the performance difference between the stochas-
tic pricing policies (CS) and (HS) and their respective
deterministic pricing counterparts (CD) and (HD),
relative to the optimum revenue Z[F]. The bene-
fit of using (S) over (D) to set prices is prevalent
and can be substantial for both hierarchical and par-
tially coordinated heuristics. Figure 3 illustrates the
value of (partial) coordination, as measured by the

7Indeed, this implies P(D(p = 0) > 0) = P(Z > —a/o) > P(Z >
2/1.2) > 0.95.

8 For simplicity, in the figure captions we omit the operator % from
notation.
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Figure 1 Histograms of Policies’ Performance Relative to Optimum (F), Additive Demand Model
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Figure 4 Relative Performance of (HS) and (CD), Additive
Demand Model
(HS - CD)/F
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performance difference between the coordinated poli-
cies (CD) and (CS) and their respective hierarchical
counterparts (HD) and (HS), relative to the optimum
revenue R[F]. This value is always positive, consis-
tent with Proposition 1, but relatively small, espe-
cially for models based on (S) prices. Confirming the
insights from Figure 1, these histograms show that
policies (HS) and (CS) have almost identical perfor-
mance and dominate (HD).

Figure 4 assesses the relative performance of (HS)
and (CD) as the difference of their revenues relative to
the optimal revenue % [F]. Typically (HS) outperforms
(CD) in 85% of iterations; otherwise, the difference
tends to be small, although in a very few cases it can
be substantial (up to 41% of %[F]). These insights are
confirmed throughout our numerical experiments.

6.1.2. Multiplicative Demand Models. We repli-
cated the simulation study under the assumption
that demand follows a multiplicative model of the
form D(p,Z) = (a — bp)Z and D(p,Z) = (@ — bp)Z,
where demand risks Z and Z have unit mean gamma
distributions.” Using a similar parametrization and
parameter ranges as in §6.1.1, we assessed the rela-
tive performance of all policies over 200 iterations of
randomly generated parameters. Figures 5-8 plot the
histograms of policies” performance for multiplica-
tive demand, similar to the histograms for the addi-
tive model from §6.1.1. These graphs suggest that our
insights about the superior performance of (HS) ver-
sus (CD), and about the relative benefits of stochastic
pricing versus coordination, are robust for multiplica-
tive demand models across a wide range of parameter
scenarios.

*The coefficients of variation of high-fare and low-fare demand
are then equal to the standard deviations of Z and Z, respectively;
these are then sampled randomly from the uniform distribution on
[0,1.2], like for the additive model.
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6.2. Sensitivity Analysis: Factors

Affecting Policy Performance
In this section we conduct sensitivity analysis to bet-
ter understand which factors affect the performance
of the policies defined in Table 1. We focus on a linear-
additive demand model and anchor our experiments
on the following set of parameters inspired by the
analysis of a car rental data set obtained from Avis:
a =30, b=0.25, o =2 for the high fare class and a =
80, b =2.00, & = 12 for the low-fare class.'® We further
vary these parameters, as well as capacity levels K, to
provide sensitivity results. Extensive numerical exper-
iments with a wide range of parameters suggest that
the insights illustrated here are robust (see also §6.3).
In particular, we repeated these experiments with
parameters anchored on Weatherford (1997) and con-
firmed the same insights under both additive and
multiplicative demand uncertainty.

6.2.1. The Effect of Capacity. In revenue manage-
ment, the load in the market is measured ex ante
by the demand factor, which is the ratio of expected
demand to capacity. In our set-up, expected demand
is a function of selling prices that are not deter-
mined a priori, so the demand factor is policy specific.
The results in this section are obtained by varying
the capacity K via the (unconstrained) demand fac-
tor, A = A(p®, ) = (u(p") + AGF)/K = L(a + d)/K,
corresponding to the optimal unconstrained prices
(p° =pP(K=00) =a/2b and p° = p° (K = 00) = d/2b) as
defined in §4.1." Revenue management is most rele-
vant when capacity is binding yet ample enough to
serve both segments (A € [1, 5] for the fluid model);
for completeness, we report results for A € [0.5, 5].

The upper-left panel of Figure 9 shows how the
performance of each policy as a percentage from
optimum revenue, A[F], varies with capacity, as
reflected in the demand factor A. Confirming our
insights from §6.1, the performance of (HS) is very
close to the upper bound of (F) and practically undis-
tinguishable from its partially coordinated counter-
part (CS). In contrast, (CD) and (HD) typically exhibit

10The data consisted of prices and car rentals by individual cus-
tomers at four major European airports between January 1, 2008,
and March 31, 2008. Demand for car rentals is highly heterogeneous
and has complex dynamics driven by regional and socioeconomic
factors, so from our price-only data it was not possible to pro-
vide an exhaustive analysis of the price-demand relationship for
car rentals in the absence of other factors. Instead, we used these
data to derive an anchor set of parameter values for the additive
demand model with normal risk (this model fit our data better than
other, e.g., multiplicative, specifications). For this model, the lower
bound on price p,;, introduced in §4 is practically unconstraining,
as illustrated in the appendix.

' We emphasize that A is different from (and typically much larger
than) the actual demand factor, which depends on the firm’s pricing
policy. In fact, as long as A > 1, the demand factor at deterministic
prices is A(p®, p°) = (u(p®) + £(p°))/K =1; i.e., capacity is binding
in the fluid model (Remark 1).
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Figure 5 Histograms of Policies’ Performance Relative to Optimum (F), Multiplicative Demand Model
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Figure 8 Relative Performance of (HS) and (CD), Multiplicative
Demand Model
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significantly larger optimality gaps. The panels on the
right show that (HS) systematically sets nearly opti-
mal prices, which can be significantly higher or lower
than those set by (HD) or (CD); this explains the supe-
rior performance of (HS) relative to these policies.

The value of coordination is small for low demand
factors because revenues from all policies tend to be
the same. Intuitively, when capacity is ample, the
value of protecting capacity diminishes and demand
uncertainty becomes less relevant for pricing as
prices converge to the unconstrained optima (p° = 60;
p° =20). Figure 9 further suggests that capacity has
a nonmonotone effect on policy performance. In par-
ticular, there appears to be an intermediate capac-
ity level (here, A >~ 1.5) where pricing policies deter-
mined by (D) and (S) single-cross the optimal pricing
policy, so all heuristics perform near optimally.'* Con-
firming Proposition 6, the absolute revenue per capac-
ity unit (not reported here) decreases with capacity
for all policies, as do the optimal prices (right panels
of Figure 9).

In summary, relative to the hierarchical model with
deterministic prices (HD), the value of full coordina-
tion is typically substantial, particularly when capac-
ity is scarce. Relative to (HS), however, the value
of full coordination is substantially lower, suggest-
ing that most coordination benefits actually stem from
adjusting prices (up or down) to reflect demand risk,
consistent with the insights from §6.1.

6.2.2. The Effect of Demand Variability. We next
investigate the effect of demand variability on policy
performance, complementing the theoretical bounds
in Proposition 1. We keep the same parameters as

12 This is similar to a 0.5 critical fractile in newsvendor models with
symmetric demand distribution, where the deterministic model
policy is optimal.
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in the previous section (a2 =30, b =0.25, a = 80, b=
2.00, 0 =2, ¢ =12) and fix A =2—a choice that is
explained and expanded by our analysis in the next
section.

To study the impact of overall demand variability,
we first scale ¢ and & proportionally by a factor 6 €
[0,1]. We then plot, in the left panel of Figure 10,
the percentage revenues relative to the optimal pol-
icy (F) as a function of 0. As the left panel confirms,
all policies converge as demand becomes more pre-
dictable (6 — 0). The relative value of full coordi-
nation increases with overall demand variability—in
other words, as the system becomes more difficult to
control. As before, the (HS) policy outperforms (HD)
and (CD) and is close to the fully coordinated upper
bound (F). As variability increases, prices set with
(HD) and (CD) are increasingly distant from the (F)
optimal ones, which are closely replicated by (HS)
(Figure 10, right panel). Low-end prices, not reported
here, exhibit similar patterns. This disparity in prices
appears to drive the trend in the value of coordina-
tion, illustrating the high cost of ignoring demand
uncertainty when deciding on prices.

We also study the revenue impact of unilaterally
increasing either high-end or low-end demand vari-
ability as measured by the corresponding coefficients
of variation. We separately vary the values of the stan-
dard deviations o and & of Z and Z so that the coef-
ficients of variation of the base demand D(p°) and
]_)(;5“), cv =20/a, and ¢v =24 /a range between 0.1
and 1.0. This corresponds to a range of (1.5, 15.0) for
o and of (4.0,40.0) for ¢. For consistency with the
values in the rest of this section, when o varies we fix
0 =12 and when ¢ varies we fix o =2.

Figure 11 plots the percentage revenues relative to
the optimal policy (F) as a function of variability
in the high- and low-end demand, respectively. The
value of full coordination is greater for all policies
when low-end demand becomes more variable, con-
firming our previous insights. For high-end demand,
however, this effect reverses for policies (HD) and
(CD) based on deterministic prices, as the left panel of
Figure 11 illustrates. In particular, this figure captures
a situation where (CD) modestly dominates (HS).
This occurs when high-end demand is highly variable
(cv > 0.65 ~ 2¢V); in this case, intuitively, coordinating
decisions on high-end price and allocation becomes
more important. Even so, the next section suggests
that the situation depicted in Figure 11 is not typi-
cal and it is contingent on the value of the demand
factor.”®

3 We emphasize that all measures reported here are relative; the
absolute expected revenues from all policies (not reported here)
decrease with variability in both demands and with overall vari-
ability (0) because the value of information increases.
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Figure 9 Demand Factor (Capacity) vs. Percentage from Optimum Revenue 2[F] and Optimal Prices and Protection Levels
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6.2.3. Capacity and Demand Variability: Joint
Analysis. To better understand what drives the rel-
ative performance of policies (HS) and (CD), we
jointly analyze the impact of capacity and high-end
demand variability. We computed the optimal rev-
enues from (HS), (CD), and (F) for a grid of values of
the demand factor ranging from 0.5 to 3 and values

Figure 10
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of the coefficient of variation of high-end demand
ranging from 0.1 to 1.2. Figure 12 presents a two-
dimensional comparison between the performance of
(HS) and (CD) relative to the optimal policy (F); the
vertical axis represents the demand factor A, and the
horizontal axis gives the coefficient of variation of
high-end demand at optimal unconstrained prices, cv.
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Figure 11 Percentage Revenue from Optimum (F) vs. High-End and Low-End Demand Variability; A =2
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The bubble size is proportional to the magnitude of
the percentage difference between the revenues of
(HS) and (CD) relative to (F); empty bubbles corre-
spond to negative values, and filled ones stand for
positive values. Consistent with Figure 11, (HS) out-
performs (CD), unless the coefficient of variation of
high-end demand is very high (above 0.7). Moreover,
the effect is limited to a particular range of demand
factors A ~2.

To further illustrate the drivers and magnitude of
these effects, Figure 13 presents in several graphs
the relative performance of (HS) and (CD) policies
as a function of the demand factor and of the vari-
ability of high-end demand. The top two panels are
plots of the value of full coordination for (HS) and
(CD), as captured by the percentage optimality gaps
100 * (1 — R[HS]/%[F]) and 100 * (1 — Z[CD]/%[F]),
respectively. It is apparent that the optimality gaps
are generally nonmonotone with the demand factor.
The performance of (HS) deteriorates with increas-
ing variability of high-end demand, whereas that of
(CD) improves, at least for sufficiently high demand

Figure 12 Relative Performance Difference of (HS) and (CD) as
Percentage of (F)
100 * (HS — CD)/F
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factors. Nevertheless, the optimality gaps for (CD) are
in most cases up to an order of magnitude larger
than the optimality gaps for (HS). Consistent with the
insights from Figure 12, the bottom two panels of Fig-
ure 13 give three-dimensional and contour plots of
100 % (R[HS] — #[CD])/%[F], the percentage revenue
difference between (HS) and (CD) relative to the opti-
mum revenue of (F).

6.3. Summary of Insights and Robustness

To summarize, our numerical analysis generated the
following insights. (1) The value of fully integrating
pricing and revenue management (F) is high, relative
to sequential heuristics based on deterministic prices
(HD, CD). This value increases with system variabil-
ity and when capacity becomes very scarce. (2) This
value of coordination can be captured to a large extent
by adjusting prices to reflect demand risk, based on
the stochastic model (S). Indeed, in most practically
relevant demand scenarios, the hierarchical heuris-
tic (HS) achieves near-optimal performance because
it sets near-optimal prices (so does CS, unlike HD
and CD). (3) The cost of ignoring demand uncertainty
when making pricing decisions is significant and may
not be effectively mitigated by improving coordina-
tion. In particular, the hierarchical policy (HS) typi-
cally dominates the coordinated policy (CD) for most
cases of practical interest; exceptions do occur when
high-end demand is extremely volatile under addi-
tive (but not multiplicative) models, but only around
a critical capacity level.

These insights suggest that capturing market uncer-
tainty when deciding on static prices can be particu-
larly useful to mitigate the lack of coordination with
revenue management. Extensive simulations with a
wide range of parameters and distribution classes
indicate that these insights are robust, as also illus-
trated in the next subsection. Finally, we remark that
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Figure 13
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revenue figures can have a strong influence on prof-
itability: given the industry’s notoriously thin mar-
gins, a 1% increase in revenue could actually double
profits.

6.3.1. Robustness. Distributional Assumptions
and Miscalibration. Our insights in this paper em-
phasize the importance of modeling demand uncer-
tainty for pricing and revenue management decisions.
We conclude this section by assessing the sensitivity
of optimal revenues to assumptions about the distri-
bution of demand risks Z and Z. We briefly study
the impact on optimal revenue of incorrectly assum-
ing a certain distribution (i.e., when another distri-
bution fits the data better). How does the potential
revenue loss from such mis-estimation compare with
the revenue impact of using different pricing policies
with the correct demand distribution? Is the robust-
ness of the demand assumption more or less impor-
tant than the approach to pricing?

Although demand estimation is a broad topic that
goes beyond our scope, we provide some preliminary
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answers to the above questions by focusing on three
distributions (normal, gamma, and uniform) for the
demand risks Z and Z; for each of these distribu-
tions, we generate one data set of 100 demand real-
izations.!* Then, for each of the three demand data
sets and each pricing policy, we compute the optimal
revenues separately under the assumption that the
demand risks have normal, gamma, or uniform distri-
butions. Table 4 gives the robustness gaps, which for
each case are computed as the percentage difference
between the expected revenues under the assumed
demand model and the true model for all pricing poli-
cies. The robustness gaps are small unless the uniform
distribution is incorrectly assumed for the demand

4 For consistency with the previous section, the model parameters
are set at the Avis values (a2 =30, a =80, b = 0.25, b=2 A= 2)
and the normal distributions have mean 0 and standard deviations
o =2 and ¢ =12. The gamma distributions have scale parameters
¢=1.30 and ¢ =2.30 and shape parameters d =1.30 and d = 2.30;
and the uniform distributions are defined on the intervals (—h, h)
and (—7, h), where h=2.50 and & = 6.00.
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Table 4 Robustness Tests: Percentage Gaps in Revenues Under
Different True and Assumed Demand Models

True model Fitted model (F) (HS) (CD) (HD)
Normal Gamma 1.09 1.13 1.94 2.04
Uniform 3.63 5.63 21.74 33.11
Gamma Normal 0.30 0.26 0.22 0.14
Uniform 7.50 7.47 10.10 10.81
Uniform Normal 0.58 0.55 1.08 1.44
Gamma 1.05 1.10 1.32 1.45

risks. Assuming a normal distribution when the true
model is not normal has a small negative impact on
optimal revenue across all pricing policies; in most
cases, the robustness gaps for the normal distribution
are less than 1%. We thus conclude that if a normal
distribution is assumed for the demand risks, then the
potential violation of this assumption has less effect
on optimal revenues than does the choice of pricing
policy.

Our insights imply that forecasting and estimating
the distribution of demand is important not only for
revenue management but also for pricing decisions.
In particular, more research is needed to quantify
how ignoring the demand censoring resulting from
capacity controls would bias prices and revenues;
the importance of such effects was demonstrated in
Cooper et al. (2006). Although demand estimation
goes beyond our focus in this paper, we have also
undertaken some preliminary numerical experiments
that suggest our insights concerning the superior
performance of (HS) are robust when demand is cen-
sored; the value of demand uncensoring can be signif-
icant. In practice, any analysis of booking data should
start with demand untruncation (Queenan et al. 2007)
before determining the specific impact of prices.

7. Summary and Conclusions

We have investigated the value of coordinating price—
allocation decisions in a framework of static, two-
fare-class revenue management. In this context, we
considered two pairs of pricing and revenue man-
agement models that differ in their approach to pric-
ing and degree of coordination. The first part of this
paper characterized the associated demand conditions
under which these models admit unique solutions
with natural sensitivity properties. The second part of
this paper relied on numerical experiments to assess
the performance of these heuristics and the benefits of
integrating the decisions on price and revenue man-
agement. Here we summarize our main findings and
insights along these two dimensions.

First, from a methodological perspective, we have
identified a broad class of demand models for which
the hierarchical and coordinated pricing and revenue
management models (HD), (HS), (CD), and (CS) can
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be solved efficiently as concave univariate problems.
Our approach is valid if LSR elasticity is increasing in
both x and p, a condition satisfied by most demand
models of practical interest. This condition also led
to sensitivity results—for instance, that the optimal
protection level is decreasing in price for sequential
heuristics and that the joint optimal price-allocation
solution is monotonic with respect to capacity.

Second, in terms of assessing benefits, our numeri-
cal experiments suggest that a fully integrated pricing
and revenue management model (F) can yield sig-
nificant value relative to sequential approaches based
on deterministic pricing (HD, CD). Although the fully
coordinated model (F) remains intractable, we find it
interesting that in our numerical experiments its per-
formance is closely approximated by a simple two-
stage heuristic (HS), which adjusts prices to capture
demand uncertainty (based on a nonnested model)
and then optimizes corresponding booking limits.
This policy can be operationalized via Proposition 3(a)
as long as demand is stochastically decreasing in
price in the hazard rate order (i.e., if LSR elasticity is
increasing in x). Figure 14 illustrates the relative per-
formance ranking of the four policies summarized in
Table 1 in the context of our numerical experiments.
In particular, it appears that accounting for demand
uncertainty in pricing decisions (i.e., stochastic pric-
ing) can be particularly valuable in this context, more
so than improving the integration of price and alloca-
tion decisions at the segment level.

Our model and results have several limitations.
First, the analytical results presented here do not
optimize the low-end price, a modeling choice moti-
vated by the practical considerations discussed in
the introduction and in §4. From a technical stand-
point, preliminary analysis suggests that the general
demand conditions used in this paper would need
to be strengthened in order for the fully coordinated
model (F) to be tractable. However, our numerical

Figure 14 Relative Performance of the Heuristics from Table 1 in the
Context of Our Data
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experiments indicate that the practical benefits of such
full coordination may be negligible because the aver-
age difference in performance between (F) and the
tractable sequential heuristic (HS) was less than 0.02%
in our simulation study. Although these values are
compelling, they are based on numerical experiments;
obtaining analytical performance bounds remains an
open challenge.

The results we present pertain to a static, two-
fare-class monopolistic model. This stylized model
is limited because it ignores dynamic, multidimen-
sional, and competitive aspects of the revenue man-
agement context; whether our results extend in such
settings remains to be investigated. Nevertheless,
static pricing is common in practice, and it is sup-
ported by theoretical considerations, as discussed
in the introduction. Preliminary analysis suggests
that our two-class insights extend to three or more
fare classes. A fully coordinated system, which is
clearly intractable in this case, is closely approx-
imated by a (provably tractable) hierarchical pol-
icy that makes static pricing decisions based on a
multiproduct extension of the stochastic model (S)
and then uses those prices to make nested alloca-
tion decisions recursively (cf. Brumelle and McGill
1993). This hierarchical process with stochastic pric-
ing is a natural extension of our two-fare-class model
(HS) and appears to perform well in our numerical
experiments.

In sum, our insights from this research emphasize
the importance of modeling price-sensitive demand
uncertainty in pricing decisions. In a static environ-
ment, we propose that heuristics based on stochastic
pricing could provide capacitated firms with a techni-
cally tractable and practically compelling alternative
to full coordination.
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Appendix

First we review briefly the notation, most of which is
summarized in Table A.l. Functions related to low-fare
demand are denoted with an overline. We use {*(p) =
f(, X)|x=x=( to denote the evaluation of any generic func-
tion { along the optimal solution path x*(p), and we use
f1(p) =1.(p, X)|s=a=(y) to denote the derivative of f(p, x) with
respect to x evaluated at the optimal quantity. In this nota-
tion, which is used throughout the paper, the derivative
always precedes functional evaluation. We employ the stan-
dard joint expectation notation: E[A; B] =E[A | B]P[B].
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Table A.1 Summary of Notation

K Capacity

X Protection level

pandp High-end and low-end price

Prmin Lower bound on high-end price

D(p)=d(p,Z) High-fare stochastic demand function

z(p, X) Inverse of the deterministic demand
a(p, z(p, x)) =x

w(p, 2)=pd(p, Z) Riskless profit for a given price p and

L(p, x)=P[D(p) = x]
f(p, x) and F(p, x)
¢(z) and ®(2)

&(p, x) =—pLy(p, X)/L(p. X)

realization z of Z

Lost sales rate (LSR); high-fare demand
survival function

Density and cumulative distribution
function of D(p)

Density and cumulative distribution
function of Z

LSR elasticity (elasticity of the rate of
lost sales)

D(p)=d(p,2) Low-fare stochastic demand function
L(p, x) =P[D(p) > x] Survival function of D(p)
(B, x) and F(B, X) Density and cumulative distribution
function of D(p)
w(p) =E[D(p)], Expected high-fare and low-fare demand
i(p) =E[D(p)]
Q=(D(p) <x) Event that high-fare demand does not

exceed x

Event that low-fare demand does not
exceed K — x

Excess capacity after all low-fare demand
has been served

Proor or ProrosiTiON 1. First,

G[F] = maxR(f, p, x) = A[CA]
p.p,x

= maxR(ﬁA, p, x)
p,x

> max R(p"*, p?, x) = Z[HA].

To prove %[F] < %, consider the sample path revenue for
a given feasible policy p, p, x € [0, K] and demand realiza-

tion (g, 9):

R(p,p,x,q,q) = plmin{g, K — x}]
+ p[min{g, max{K — g, x}}]. (13)

Using Q and Q to denote (respectively) the number of
units actually sold to high- and low-fare customers, so
that Q = min{g, K —x} and Q = min{q, max{K —§, x}} =
min{q, K — Q}, we obtain

R(p, p, x,q,§) =max pQ+pQ
Q. Q

st. Q=<q, Q=7 (14)
Q+Q<K,
QfK—x

The right-hand side is a linear program, so R is con-
cave in q and 4. This allows us to apply Jensen’s inequal-
ity to show that R[F] = max; , . E[R(p, p, x, D(p), D(p))] <

N p.p
max; ,  R(p, p, x, E[D(p)], E[D(P)]) = 2.
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For any feasible p, p, x € [0, K], the objective in (S) can be
equivalently written as

Vip,p,x):=r(p,x)+7(p, x), (15)

where

r(p, x) = pE[min{D(p), x]] and
7(7,x) = PE[min(D(p), K - x)]

are the respective expected revenues from the high and
low segments. Because r(p, x) is increasing in x, we obtain
= 1, k) + 7%, K) = Elr(p’, max(K ~ D), k)] +
F5°, k) = R(p®, 7, k%) < max, R(p*, 5°, x) = S[HS].

For the lower bound, observe that R[HS] > & >
max, V(pP, pP, x), which also bounds %[HD] = max, R(p?,
pP, x) > max, V(pP, pP, x). Moreover, max, V (p?,pP, x) >
2, n(p) + PO, pP) = (P, wpP) + F(0 K —
A7) = pPu(pP) (1 — (evP)/2) + PAGEP) (1 — (VP)/2) = (1 -
%max{ch, &P N, where the third inequality follows, e.g.,
from Bitran and Caldentey (2003, Proposition 6), for each
segment. Finally, it is easy to see that when either demand
is deterministic, nesting becomes superfluous, so models (S)
and (F) are equivalent. O

Proofs of the Results in §4

The proofs in this section rely on results for the price-
setting newsvendor problem with objective Il(p,x) =
I(p, x; c, D) = pE[min{D(p), x}] — cx = r(p, x) — cx. The
newsvendor-optimal price path and quantity path are
defined as pN(x) = argmax,., II(p, x) and WNp) =
argmax,_y II(p, x), respectively. The next lemma combines
results from Theorems 1 and 2 of Kocabiyikoglu and
Popescu (2011) under our demand model and assumptions.
These results are used to obtain structural results for the
more complex models (S) and (H).

LemMAa 1. (KocaBrvikoGLu AND Popescu 2011). (a) If
€(p, x) is increasing in x, then T1(pN(x),x) is concave in x
and pN(x) is decreasing in x. The latter holds if and only
if €(pN(x),x) > 1. (b) If €(p,x) is increasing in p, then
I(p, xN(p)) is concave in p and xN(p) is decreasing in x. The
latter holds if and only if €(p, xN(p)) > 1.

PrOOF OF PROPOSITION 2. Use (15) to define the optimal
price paths for each product as p°(x) = arg max, V(p, p, x)
= argmax, r(p,x) and pS(x) = arg max; Vip,p,x) =
arg max; 7(p, x) for any x € X = [0, K]. In particular, these
are independent of the price of the other product, proving
the last part of (b). The first-order conditions can be
written as r,(p,x) = 7;(p,x) = 0 and r.(p, x) = (P, x).
Specifically, (9) and (10) follow by writing r(p,x) =
pE[min{D(p), x}] =p [y L(p, y)dy, so r.(p, x) =pL(p, x) and
1, )= Jg Lp, Y +pL,(p, ) dy = [5 L(p, y)(1 = €(p, ) dy.
Analogous reasoning apphes to p. The resulting solution of
(9) and (10) is either interior x € (0, K) or else it is optimal
to allocate all the capacity to one segment; i.e., x € {0, K}.

We next argue that r(p5(x), x) and 7(p°(x), x) are both con-
cave in x under the assumptions of the proposition, implying
that V(p°(x), p°(x), x) = r(p°(x), x) + 7(7°(x), x) is concave in
x.Indeed, both r(p, x) and 7(p, x) can be viewed as newsven-
dor pricing problems with zero cost. Formally, r(p, x) =
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I(p, x; c = 0) and p5(x) = pN(x). Hence, by Lemma 1(a),
r(p5(x), x) = II(pN(x), x; ¢ = 0) is concave in x if E(p, x) is
increasing in x and similarly for 7(7, x) = I(p, K — x; ¢ = 0);
this proves part (a). Finally, Lemma 1(a) also implies that
p°(x) = pN(x) is decreasing in x and that p°(x) = pN(K — x) is
increasing in x, which proves part (b). O

ProOOF OF ProOPOSITION 3. Part (a) follows by combin-
ing the results in §4.1, in particular Proposition 2, and
Littlewood’s rule (11). The latter implies that the optimal
protection level of problem (H) coincides with the opti-
mal quantity decision of a (price-sensitive) newsvendor fac-
ing unit cost ¢ = p because both satisfy the same critical
fractile condition (even though their objectives are quite
different). Formally, x*(p) = xN(p; ¢ = p). By Lemma 1(b),
this decreases in p whenever 1 < €(p, xN(p)) = €(p, x*(p)) =
€*(p) and, in particular, if €(p, x) is increasing in p. Finally,
condition (ii) in part (b) is sufficient because €*(p;,) > 1
by the definition of p,;,, so €*(p) increasing implies that
€*(p) = 1 on P. For an alternative, direct proof that com-
putes the marginal effect of price on allocation, see Equa-
tion (20) to follow. O

Proofs of the Results in §5

Note that to simplify notation, in all remaining proofs we set
p=1, so p can be interpreted as a percentage markup over
the low fare price p, which is fixed in this section. Further,
we work with the unconstrained protection level x*(p) given
by (11); i.e.,, L*(p) = L(p, x*(p)) = 1/p. All this is without loss
of generality.!® Define z(p, x) so that d(p, z(p, x)) = x; the
inverse is unique because d(p, z) is monotone in z. Denote
Q=Q(p,x) = (D) <x) = (Z = 2(p, %)) and Q= Q(x) =
(D < K —x) = (K > x) the events that high- and low-fare
demand fall short of their allocations; here K=K — D is
the uncertain excess capacity after all low-fare demand has
been served.

PROOF OF PROPOSITION 4. We write R(p) = E[min{D, K —
x}J] + E[r(p, max{x, K})], which is concave in p because so
is r(p, x) = pE[min{D(p), x}] = E[min{=(p, Z), px}], by con-
cavity of 7 (the low-fare class revenue is independent of p).
Because x*(p) is unique and differentiable, we can apply the
envelope theorem:

%}SP) = R, (p) =R, (p, X)| =) = Elr,(p, max{x*(p), K]

= L*(p)r, (p) +Elr, (p, K); " (p)]- (16)
Here the second term is the marginal revenue in the event
Q= 0*(p) = (D <K —x*(p)) = (K = x*(p)) that low-fare
demand is not constrained by the optimal booking limit,
and L*(p) = L(K — x*(p)) = 1 —P[Q*] is the lost sales rate for

the low-fare class. If we put f*(p) = f(K — x*(p)), then the
derivative of (16) is

IRx(p) L *()
—F =T+ L

dx (P)

+E[r,,(p, K); ]

-, 17)

Indeed, the argument that marginal revenues decrease along the
unconstrained path x*(p) extend when this (decreasing) path is
capped at K.
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We want to show that expression (17) is negative. Because
AL*(p)/dp = f* (p)(9x*(p)/dp), the first and last terms cancel.
The third term (and hence r) is negative by concavity of 7,
as argued previously. We next show that the second term is
also negative. Evaluated at x*(p), the derivative of r(p, x) =
pxL(p, x) + E[w(p, Z); Q] is

ro(p) = 1,(p, x*(p)) =E[m,(p, Z); Q*(p)] +x"(p)L"(p)

= £, 2; @)+ =2, 19)

where Q* = Q*(p) = (D(p) < x*(p)) and the second equality
holds because L*(p) =1/p. We obtain

J . e O J (x(p)
@rp () = [E[pr(p’ 2); ] - wp(p)@L () + %<7>

P _x(p) 10 (p)
p? P p 9

= E[n ;,,Q*]Jr[ } (19)

The first term is negative because 7 is concave. Since
m,(p) = pd,(p) + d*(p) and d*(p) = d(p, z(p, x*(p)) = x*(p),
the term in brackets equals d; (p) + dx*(p)/dp. This value is
negative if x*(p) is decreasing—in particular, under the con-
ditions of Proposition 3(b)—which proves parts (b) and (c).
To prove part (a), we argue that

wr(p) L) 1 \_ Lo 1
p  Lip (HPZL;(p))_ L:(p) (1 %*(P)>

~ (1 -

1
%> . (20)

Indeed, the first equality obtains from differentiating both
sides of L(p,x*(p)) = 1/p with respect to p. The second
equality is derived from €*(p) = —pL:(p)/L*(p) = —p°L;(p)
by (11). Finally, the last equality follows by differentiat-
ing L(p,d(p,z)) =1 — ®(z) with respect to p to obtain
L,/L, = —d,. This proves (20) and so provides an alterna-
tive, direct proof of Proposition (3b). It also implies that
dy(p) + 9x*(p)/op = d; (p)(2 — 1/€*(p)) <0 whenever €*(p) =
1/2, which completes the proof. O

PROOF OF PROPOSITION 5. Because here D(p) is a function
of p, the expressions involving low-fare demand are differ-
ent from those in the previous proofs. By abuse of notation,
we keep the same letters for the same concepts even though
their mathematical expressions are changed. In particular,
we use R to denote the more complex objective in (12); we
use 7(p, x) = 7(p, x; K) = E[min{K — x, D(p)}] for the low-
class expected revenue, 7(p, z) = pd(p, ) for the pathwise
revenue, L(p, x) = P[D(p) > K — x] for the lost sales rate,
K(p) = K — D(p), and so on. We next show that R*(p) =
R(p, x*(p)) is concave in p.

By the envelope theorem, we have dR*(p)/dp = R} (p) =

T (p) + L*(p)r () +Elr,(p, K(p)); Q*]. The first term is the
margmal revenue from the low-fare class, and the other
two terms give the marginal revenues from the high-
fare class depending on whether low-fare demand does
or does not exceed the optimal booking limit; the latter
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event is Q=0*(p)=(D(p) < K—x*(p)) = (K(p) = x*(p)).
The derivative of each term is

0w 4 *
L = o Eld (0, 2 ]
ﬂmmnﬂlmww“@,an
d T * * T * ar*(p) aL ( ) r
%ng@=L@{%f =)
_p e (p) +—f'(p)ax D). @)

We write the third term of dR*(p)/dp as E[r,(p, K(p)) Q=
A+ B, where A =[E[m,(p,Z); D(p) < K(p); ©*] and B =
E[(K — 7, (p, Z))L(p, K(p)); ©*]. Here A corresponds to the
unconstrained case in which there is excess capacity and
the booking limit is nonbinding; B is the same except capac-
ity K is binding. The respective derivatives of these terms
are (we omit some functional arguments for readability)

A, =E[m,,;D(p) <K(p); Q"1 -E[(K—d+pd,)(d,+d,) f; Q"]
[m; Q1 F(p )6x (P)

B,=—E[,L(p,K(p)); Q*]Jr[E[(K—d_Jrlﬂﬂi )(d,+d,) f; 2]

— () - pd ()L () () ?

Combining the second terms of each expression, regrouping
the last terms, and using (18), we obtain

%Hwnkwxﬂﬂ

=E[m,,; D(p) <K(p); @]~ E[7, L(p, K(p)); ©°]

6x*(p)

W 4

—PE[(dp+Jp)2f; Q- F(p)r (p)

(p)

+ f*(p)d; (p)pL*( (23)

If we combine (21)—(23), then the last term of (22) and the
fourth term of (23) cancel; the last terms of (21) and (23) also
cancel because p*L*(p) = 1. Furthermore, we can use (19) to
obtain
R;(p)
ap

= E[m,,; D(p) <K(p); @] —2E[d,L(p, K(p)); @]

- [E[d_pp(pL(p/ R(p)) - 1)/ Q*]

—E[p(d, +d,)f; ] (p)

(24)

The second and third terms are obtained by writing 7, =
2d, +pd,,. The first term is negative by concavity of 7 (p, z)
and the second because d_p(p, z) > 0. Negativity of the third
term follows because d_m,(p, Z) <0 and L(p, K(p)) < L*(p) =
1/p on Q* = (K(p) = x*(p)). The fourth term is obviously
negative. From the proof of Proposition 4, the last term
(which is unchanged because it does not involve D) is also
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negative under the assumptions of this proposition. It fol-
lows that R;(p) is decreasing, so R*(p) is concave in p. [

PrOOF OF ProrosiTioN 6. (a) For the first part, by
definition we have p*™(K) = argmax,, R(p, x*(p; K); K) =
argmax, R*(p; K). By the envelope theorem, dR*(p; K)/dp =
R,(p, x*(p; K); K). From (11), the (unconstrained) optimal
protection level for a given price, x*(p; K) = x*(p) solves
L(p, x) =1/p, so it is independent of capacity. This allows
us to write (3/9K)(IR*(p; K)/dp) = (3/IK)R,(p, x*(p); K) =
R,k (p, x*(p); K). Furthermore,

Ry (p, x; K) =E[r,x (p, K); Q] = E[(1 - €(p, K))L(p, K); Q]
< (1-%(p, x))E[L(p, K)); O]

because %(p, x) is increasing in x and Q = (K > x). We thus
obtain R, (p, x*(p)) < (1 — €*(p))E[L(p, K); @] < 0 when-
ever €*(p) = €(p, x*(p)) = 1, which follows by Proposition 3,
since €(p, x) is increasing in p. This shows that p**(K) is
decreasing in K as long as the protection level is inte-
rior, ie., if L(p, K) < 1/p. Otherwise, x* = K, so the objec-
tive R reduces to a newsvendor model, and p**(K) = pN (K)
is decreasing in K via Lemma 1; the result follows by
continuity.

For the second part, x**(K) = x*(p**(K))) given by (11)
is increasing in K because p**(K) is decreasing in K (from
part (a)) and because x*(p) is decreasing in p whenever
€(p, x) is increasing in p (by Proposition 3).

(b) We show by a sample path argument that R(p, x; K),
and hence R**(K), is increasing and concave in K. It is suf-
ficient that these properties hold for each sample path rev-
enue for a given policy and demand realization—in other
words, for R(p, p, x, 9, q) as defined in (13). Based on (14),
this can be formulated as a linear program parametrized
by K, so it is indeed increasing and concave in K.

For the second part, we show that (d/dK)(R**(K)/K) =
(KR (K) — R**(K))/K? < 0. We write

R(K) = #(x; K) +E[r(p, max(x, K — D)]
= 7(x; K) + L(K = x)r(p, x) + E[r(p, K= D); Q]. (25)

The derivative of the low-fare revenue 7(x;K) =
E[min{D, K — x}] = f;" *L(y)dy is a7(x; K)/9K = L(K — x).
The derivative of the high-fare revenue with respect to K is
pE[L(p, K — D); ﬂ], as we show next.

Indeed, the derivative of the second term of Equa-
tion (25) is (9/dK)(L(K — x)r(p, x)) = —f (K — x)r(p, x). The
last term of (25) can be written as E[r(p, K); Q] = E[p(K —
D)L(p, K); Q] +E[7(p, Z); D(p) < K; Q], and its derivative
(after canceling boundary terms) is (3/3K)E[r(p, K)Q] =
ElpL(p, K); Q]+ f(K=x)r(p, x). o

We obtain Ry (K) = L(K — x) + E[pL(p, K); Q]. From the
envelope theorem, KR%*(K) — R**(K) = —L(K — x)x(pL(p, x)
= 1) = L(K = x)E[=(p, Z); @] + E[(pL(p, K) — 1)D; Q] —
E[m(p, Z); D(p) < K; Q]|+, popre- The first term is equal
to 0 because p™L(p**, x**) =1, and negativity of the third
term follows because L(p**, K) <1/p** on Q* = (K > x*™).
Hence KR} (K) — R**(K) <0, concluding the proof. O
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Table A.2 Lower Bound on Price p,,;, for Different Demand
Distributions

Z distributon 20 25 30 35 40 45 50 55 60

Normal 28 33 38 42 47 52 57 62 67
Gamma 20 25 30 35 40 45 50 55 60
Uniform 26 29 32 35 40 4 50 55 60

Numerical Assessment of the Lower Bound p,;,

The regularity conditions derived for partially coordinated
models (CS) and (CD) rely on a lower bound p,,;, on high-
end prices, defined in §4. We conclude by evaluating p,;,
for the three demand models presented in §6.3 and for a
wider range of low-end prices p than would be suggested
by the data and models. Recall that the linear model implies
p < a/b=40. The values for p,,;, reported in Table A.2 are
consistently close to the low-end prices p, which suggests
that the technical assumption p > p,.,;, for optimizing the (C)
model is practically unrestrictive. The largest difference for
normally distributed Z amounts to a markup of approxi-
mately 1.4 on the low-fare price; for Z with a gamma dis-
tribution we have p,,;, = p, which (in effect) imposes no
additional constraints on the high-fare price.
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