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REWARD-RATE MAXIMIZATION IN SEQUENTIAL
IDENTIFICATION UNDER A STOCHASTIC DEADLINE∗
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Abstract. Any intelligent system performing evidence-based decision making under time pres-
sure must negotiate a speed-accuracy trade-off. In computer science and engineering, this is typically
modeled as minimizing a Bayes-risk functional that is a linear combination of expected decision delay
and expected terminal decision loss. In neuroscience and psychology, however, it is often modeled as
maximizing the long-term reward rate, or the ratio of expected terminal reward and expected decision
delay. The two approaches have opposing advantages and disadvantages. While Bayes-risk minimiza-
tion can be solved with powerful dynamic programming techniques unlike reward-rate maximization,
it also requires the explicit specification of the relative costs of decision delay and error, which is
obviated by reward-rate maximization. Here, we demonstrate that, for a large class of sequential
multihypothesis identification problems under a stochastic deadline, the reward-rate maximization is
equivalent to a special case of Bayes-risk minimization, in which the optimal policy that attains the
minimal risk when the unit sampling cost is exactly the maximal reward rate is also the policy that
attains maximal reward rate. We show that the maximum reward rate is the unique unit sampling
cost for which the expected total observation cost and expected terminal reward break even under
every Bayes-risk optimal decision rule. This interplay between reward-rate maximization and Bayes-
risk minimization formulations allows us to show that maximum reward rate is always attained. We
can compute the policy that maximizes reward rate by solving an inverse Bayes-risk minimization
problem, whereby we know the Bayes risk of the optimal policy and need to find the associated unit
sampling cost parameter. Leveraging this equivalence, we derive an iterative dynamic programming
procedure for solving the reward-rate maximization problem exponentially fast, thus incorporating
the advantages of both the reward-rate maximization and Bayes-risk minimization formulations. As
an illustration, we will apply the procedure to a two-hypothesis identification example.

Key words. reward-rate maximization, Bayes-risk minimization, sequential multihypothesis
testing, dynamic programming, speed-accuracy trade off
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1. Introduction. Evidence-based decision-making under conditions of uncer-
tainty is a fundamental problem facing any intelligent, interactive system. The brain
excels in making such decisions under changing and competing objectives, a feat
particularly impressive given its noisy sensors, fallible communication channels, and
imperfect controllers. Similar challenges riddle artificial systems, for many applica-
tions in computer science and engineering. Understanding the computational basis
of decision making within an optimality framework, therefore, would not only shed
light on a critical problem in natural intelligence, but may also inspire new designs
for artificial systems.

One major challenge of evidence-based decision-making is negotiating the trade-
off between speed and accuracy: longer deliberation duration tends to improve the
quality of the decision, but incur a concomitant opportunity cost in time. In neuro-

∗Received by the editors December 13, 2010; accepted for publication (in revised form) May 21,
2013; published electronically July 16, 2013.

http://www.siam.org/journals/sicon/51-4/81800.html
†Bilkent University, Departments of Industrial Engineering and Mathematics, Bilkent 06800,

Ankara, Turkey (sdayanik@bilkent.edu.tr). This author’s work was partially supported by the
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REWARD-RATE MAXIMIZATION IN IDENTIFICATION 2923

science and psychology, humans [4] and animals [14] are often modeled as maximizing
the long-run average reward rate, or the ratio of accuracy to expected temporal delay.
In computer science and engineering modeling, the speed-accuracy trade-off is typi-
cally formalized in terms of Bayes-risk minimization, which minimizes a linear com-
bination of expected temporal delay and response errors [18, 16, 10, 11, 15, 9, 8, 12].
The advantage of the risk minimization formulation is that the linear speed-accuracy
trade-off makes it amenable to a substantial body of tools for solving or characteriz-
ing the optimal solution, including Wald’s sequential statistical decision formulation
[17] and Bellman’s dynamic programming principle [1]. The disadvantage is the need
for a free parameter specifying the relative importance of time and error, which may
not be easily determined or uniquely constrained in a given application. The reward
rate formulation has just the converse properties: it obviates the need for that ex-
tra speed-accuracy parameter, but also does not lend itself easily to theoretical or
computational analysis. In practice, when maximizing reward-rate in neuroscience
modeling, a particular parametrized class of policies is typically assumed for com-
putational ease [14, 6, 4, 19], but which may contain neither the optimal policy nor
the actual policy effectively implemented by the brain. Relatedly, when experimental
subjects’ behavior deviates from the conditionally optimal policy within the assumed
policy space, it cannot be known whether the brain is suboptimal or the policy space
itself is unsuitable.

The goal in this paper is to investigate the formal relationship between reward-rate
maximization and Bayes-risk minimization, in a setting where a subject repeatedly
performs statistically independent and identical experiments to identify an unknown
distribution from which a stream of noisy data is being observed, while there are
costs associated with misidentification, number of samples (amount of time) taken,
and exceeding a stochastically distributed decision deadline. In a typical experiment,
the subject samples, as long as she wants, independently and identically distributed
random variables X1, X2, . . . with some unknown common probability density func-
tion f , which is selected by nature or the experimenter according to some known
prior probability distribution from a set of m distinct alternative probability density
functions f1, . . . , fm. The subject eventually stops sampling to identify the unknown
density function (chooses one of the m hypotheses), with her choice registering after
an additional T0 > 0 units of time that captures any fixed and known nondecision
time such as motor delay. Independently of the the subject’s observation and decision
process, a random deadline Θ, selected by nature or the experimenter, may prema-
turely terminate the experiment without allowing the subject to register her choice.
The subject earns a positive reward rj for some 1 ≤ j ≤ m if (i) fj is the true density
and the subject correctly identifies it, and (ii) if the subject’s decision is registered
before the deadline Θ. At every moment in time, the subject faces the trade-off be-
tween taking longer samples to increase the probability of getting positive reward and
acting fast enough to register an answer before the deadline arrives. We are interested
in finding a decision rule (τ, µ) that maximizes the reward rate per unit time in the
long run, whereby τ is the decision time or the number of samples observed, and
µ ∈ {1, . . . ,m} is the terminal decision (choice) of one of the m hypotheses.

If M identifies the unknown true density function of the observations, then the
reward in a typical experiment equals R = 1{τ+T0<Θ}

∑m
j=1 rj1{µ=j,M=j}, where 1{·}

is the indicator function evaluating to 1 only when its argument is satisfied. The
experiment is terminated at time T = (τ + T0) ∧Θ by the deadline Θ, or by the suc-
cessful registry of the subject’s decision, whichever occurs earlier—“∧” denotes the
minimum of the two arguments on either side. Then by the strong law of large num-
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2924 SAVAS DAYANIK AND ANGELA J. YU

bers the long-run average reward per unit time equals ER/ET with probability one.
Therefore, the maximum reward-rate problem is equivalent to solving the stochastic
optimization problem

V := sup
(τ,µ)

E
[
1{τ+T0<Θ}

∑m
j=1 rj1{µ=j,M=j}

]

E [(τ + T0) ∧Θ]

for which we will show that an optimal solution always exists and describe how to
calculate the supremum and an admissible decision rule (τ, µ) which attains the supre-
mum.

An important theoretical question is whether and how Bayes-risk minimization
and reward-rate maximization are related to each other. In this work, we assume that
a known prior distribution of m hypotheses is initially available and that random
deadline Θ has a known geometric distribution. We demonstrate that reward-rate
maximization for this class of problems is formally equivalent to solving the family
(W (c))c>0 of Bayes-risk minimization problems,

W (c) := inf
(τ,µ)

E
[
c
(
(τ+T0)∧Θ)+1{τ+T0<Θ}

∑

i#=j

rj1{µ=i,M=j}+1{τ+T0≥Θ}

m∑

j=1

rj1{M=j}

]
,

indexed by the unit sampling (observation or time) cost c > 0, thus rendering the
reward-rate maximization problem amenable to a large array of existing analytical
and computational tools in stochastic control theory. In particular, we show that the
maximum reward rate V is the unique unit sampling cost c > 0 which makes the
minimum Bayes risk W (c) equal to the maximal expected reward

∑m
j=1 rjP(M = j)

under the prior distribution. Using the identity

W (c) =
m∑

j=1

rjP(M = j) + inf
(τ,µ)

E
[
c
(
(τ + T0) ∧Θ

)
− 1{τ+T0<Θ}

m∑

j=1

rj1{µ=j,M=j}

]
,

we also derive the striking relationship

c ! V if and only if inf
(τ,µ)

E
[
c
(
(τ + T0) ∧Θ

)
− 1{τ+T0<Θ}

m∑

j=1

rj1{µ=j,M=j}

]
! 0;

namely, that the maximum reward rate V is the unique unit sampling cost c for
which expected total observation cost E[c((τ∗ + T0) ∧ Θ)] and expected terminal re-
ward E[1{τ∗+T0<Θ}

∑m
j=1 rj1{µ∗=j,M=j}] break even under any optimal decision rule

(τ∗, µ∗). Intuitively, it also makes sense that the unit sampling cost that strikes an op-
timal balance between speed and accuracy in the above sense should be the maximum
expected reward that can be gained per unit time.

Unlike the standard Bayes-risk minimization problem in which the unit sampling
cost is a fixed known constant and the minimum Bayes risk is sought, in the Bayes-
risk minimization problem dictated by the reward-rate maximization problem the
minimum Bayes risk is known and the unknown unit sampling cost is sought. In
other words, solving the reward-rate maximization problem is equivalent to solving
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REWARD-RATE MAXIMIZATION IN IDENTIFICATION 2925

an inverse Bayes-risk minimization problem. The unit sampling cost in the inverse
Bayes-risk minimization problem determines the optimal trade-off between speed and
accuracy if and only if it coincides with the maximum reward rate of the reward-rate
maximization problem.

In section 2, we characterize the Bayes-risk minimization solution to the multihy-
pothesis sequential identification problems W (c), c > 0 under a stochastic deadline.
This treatment extends our previous work on Bayes-risk minimization in sequential
testing of multiple hypotheses [7] and of binary hypotheses under a stochastic dead-
line [13], in which there are penalties associated with breaching a stochastic deadline
in addition to typical observation and misidentification costs. In section 3, we char-
acterize the formal relationship between reward-rate maximization and Bayes-risk
minimization, and leverage it to obtain a numerical procedure for optimizing reward
rate. Significantly, we will show that the optimal policy for reward-rate maximization
depends on the initial belief state, unlike for Bayes-risk minimization—this is because
the former identifies with a different setting of the latter depending on the initial
state. This dependence on initial belief state shows explicitly that the reward-rate
maximizing policy cannot satisfy any iterative, Markovian form of Bellman’s dynamic
programming equation [1]. Finally, in section 4, we demonstrate how the procedure
can be applied to solve a numerical example involving binary hypotheses.

2. Multihypothesis sequential testing: Bayes-risk minimization. In the
Bayes-risk minimization, the objective is to minimize a linear combination of sampling
(observation or time) cost and response errors. In our problem, the response errors
are of two types, misidentification and exceeding the deadline. In the following, we
characterize properties of the Bayes-risk minimization problem:

• it reduces to an optimal stopping problem (section 2.1);
• value iteration yields successive approximations that converge to the optimal
solution exponentially fast (section 2.2);

• the optimal stopping region, before the deadline, is a union of m convex
regions containing the m respective cases of perfect identification certainty
(section 2.3); the associated optimal policy is stationary and a random-walk
process with absorbing boundaries

2.1. Bayes-risk minimization as optimal stopping. Assume we have a
probability space (Ω,F ,P), and let X1, X2, . . . be a sequence of independent and
identically distributed random variables with common but unknown probability den-
sity function f(·). We know that f(·) is one of m known densities f1(·), . . . , fm(·),
and the index M of the true density function is a random variable with the discrete
prior probability distribution π = (π1, . . . ,πm), where

πj = P{M = j}, j = 1, . . .m.

The problem is to identify the unknown density f(·) before a random deadline Θ,
which is unknown but observable and has geometric distribution

P{Θ = n} = (1− p)n−1p, n = 1, 2 . . .

for some known constant 0 < p < 1 independent ofX1, X2, . . . . In addition, we assume
that the observer’s choice is registered T0 > 0 units of “nondecision time” after the
decision is made, so that the deadline may occur during that extra time interval even if
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2926 SAVAS DAYANIK AND ANGELA J. YU

it had not appeared before the decision time. In a real application, this may represent
motor delay or any other nontrivial delay in registering the choice after the decision
has been made.

Let us denote any decision rule by a pair δ = (τ, µ) consisting of a stopping time
τ of observation filtration

F0 = {∅,Ω},
Fn = σ{X11{Θ≥1}, X21{Θ≥2}, . . . , Xn1{Θ≥n},Θ1{Θ≤n}, 1{Θ>n}}, n ≥ 0,

and {1, . . . ,m}-valued Fτ -measurable random variable µ that indicates the terminal
choice. Observe that Θ is a stopping time of (Fn)n≥0. Let us also define the (Fn)n≥0-
adapted process

Sn = 1{Θ≤n}, n ≥ 0,

indicating whether the deadline Θ has already been observed. Suppose that initially
S0 = s ∈ {0, 1}.

For each (π, s) ∈ Sm−1 × {0, 1}, Sm−1 = {(π1, . . . ,πm); πj ≥ 0, 1 ≤ j ≤
m, and π1+· · ·+πm = 1} being the (m−1)-dimensional simplex, we define Rτ,µ(π, s) ≡
Rτ,µ(π, s; c, T0) as the expected total cost associated with admissible rule (τ, µ),

(1) Rτ,µ(π, s) := Eπ,s

[
c
(
(τ+T0)∧Θ) +

m∑

j=1

∑

i:i#=j

cij1{τ+T0<Θ, µ=i,M=j}

+
m∑

j=1

dj1{τ+T0≥Θ,M=j}

]
,

where c is the observation cost, cij is the cost of misidentification of j with i for every
1 ≤ i (= j ≤ m, and dj is the cost of missing the deadline when fj(·) is the true
common probability density function for every 1 ≤ j ≤ m. If the deadline has not yet
passed (i.e., Θ > 0), then we say s = 0; otherwise (i.e., Θ ≤ 0), we have s = 1.

Consider now the Bayes-risk minimization problem

(2) W (π, s) ≡ W (π, s; c, T0) := inf
(τ,µ)

Rτ,µ(π, s; c, T0), (π, s) ∈ Sm−1 × {0, 1} .

We first write down the Bayesian belief update equations and then show that

it is a Markov process. Let Π(j)
n := P{M = j | Fn}, 1 ≤ j ≤ m, and recall that

Sn = 1{Θ≤n} for every n ≥ 0. Then the posterior distribution is

Π(j)
n+1 = Sn+1Π

(j)
n + (1− Sn+1)

Π(j)
n fj(Xn+1)

∑m
k=1 Π

(k)
n fk(Xn+1)

, 1 ≤ j ≤ m, n ≥ 0,

and the predictive distribution is

P{Xn+1 ∈ dx, Sn+1 = 0 | Fn} = (1− Sn)(1 − p)
m∑

j=1

Π(j)
n fj(x)dx, n ≥ 0 .
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REWARD-RATE MAXIMIZATION IN IDENTIFICATION 2927

The sequence (Πn, Sn)∞n≥1 is a Markov process, because for every n ≥ 0 we have

Πn+1 = Sn+1 + (1− Sn+1)D(Πn, Xn+1), where

D(π, x) =

(
π1f1(x)∑m
j=1 πjfj(x)

, . . . ,
πmfm(x)∑m
j=1 πjfj(x)

)
,

P{Sn+1 = 1 | Fn} = 1− (1− Sn)(1 − p) = p+ Sn − pSn,

which imply for every n ≥ 0 and bounded function f : Sm−1 × {0, 1} )→ R, that

E[f(Πn+1, Sn+1) | Fn] = E
[
Sn+1f(Πn, 1) + (1− Sn+1)f

(
D(Πn, Xn+1)

)∣∣Fn

]

= (p+ Sn − pSn)f(Πn, 1)

+ (1− Sn)(1 − p)

∫
f
(
D(Πn, x), 0

) m∑

j=1

Π(j)
n fj(x)dx ,

which is (Πn, Sn)-measurable.
Following Shiryaev [16, p. 167], we first reduce the Bayes-risk minimization prob-

lem to a pure optimal stopping problem of a suitable Markov process. Shiryaev
showed that the posterior probability process (Πn)∞n=0 is a sufficient Markov statistic
for the classical Bayes-risk minimization problem. In our new Bayes-risk minimiza-
tion problem motivated by the setup of the neuroscience experiments, however, both
running and terminal costs account for the extra cost incurred during the registration
of terminal decision T0 time units after stopping and depend in the first place on
whether the decision is successfully registered before the random deadline. Therefore,
the costs are more complex, and the sufficient Markov process now becomes the pair
(Πn, Sn)∞n=0, consisting of posterior probability and survival processes, which together
may be thought of as the killed posterior probability process. Proposition 1 describes
precisely the new equivalent optimal stopping problem by carefully taking care of the
technical differences between old and new formulations of Bayes-risk minimization
problems.

Proposition 1. The original problem in (2) can be reduced to an optimal stop-
ping problem

(3) W (π, s) = inf
τ
Rτ,µ(τ) = inf

τ
Eπ,s

[ τ−1∑

k=0

c(1− Sk) + h(Πτ , Sτ )

]

of the Markov process (Πn, Sn)∞n=0, where µ(τ) is the optimal terminal decision rule
for any stopping time τ :

µ(n) := argmin
1≤i≤m

m∑

i=1

cijΠ
(j)
n for every n = 0, 1, . . . ,(4)

∑τ−1
k=0 c(1 − Sk) is the observation cost, and h(π, s) ≡ h(π, s; c, T0) is the terminal

decision cost function incorporating both misidentifications and the deadline; for each
(π, s) ∈ Sm−1 × {0, 1}

h(π, s) = (1− p)T0(1− s) min
1≤i≤m

[ ∑

j:j #=i

cijπj +
(
(1− (1− p)T0)(1 − s) + s

) m∑

j=1

djπj

+
c

p
(1− (1− p)T0)(1− s)

]
.
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2928 SAVAS DAYANIK AND ANGELA J. YU

Proof. We derive expressions for each of the three terms on the right-hand side
of (1).

(a) We first note

(τ + T0) ∧Θ =
∞∑

k=0

1{(τ+T0)∧Θ>k} =
∞∑

k=0

1{τ+T0>k}1{Θ>k} =
τ+T0−1∑

k=0

1{Θ>k}

=
τ−1∑

k=0

(1 − Sk) +
τ+T0−1∑

k=τ

(1− Sk) =
τ−1∑

k=0

(1 − Sk) +
T0−1∑

k=0

(1− Sτ+k) .

Because E[1 − Sτ+k] = E[E(1 − Sτ+k | Fτ )] = E[(1 − Sτ )P{Sτ+k = 0 | Fτ}] =
E[(1 − Sτ )P{Sτ+k = 0 | τ, Sτ = 0}] = E[(1 − Sτ )(1 − p)k] for every k ≥ 0, the
expected decision delay is

E[(τ + T0) ∧Θ] = E
[ τ−1∑

k=0

(1− Sk)

]
+

T0−1∑

k=0

E(1− Sτ+k) = E
[ τ−1∑

k=0

(1− Sk)

]

+ E
[
(1 − Sτ )

T0−1∑

k=0

(1− p)k
]

= E
[ τ−1∑

k=0

(1− Sk)

]
+

1− (1 − p)T0

p
E(1 − Sτ ).

(b) The misidentification probability is

E[1{τ+T0<Θµ=i,M=j} ]

= P{τ + T0 < Θ, µ = i,M = j}

=
∞∑

n=0

E
[
1{τ=n,µ=i}P{n+ T0 < Θ,M = j | Fn}

]

=
∞∑

n=0

E
[
1{τ=n,µ=i}(1− Sn)P{Sn+T0 = 0,M = j | Fn}

]

=
∞∑

n=0

E
[
1{τ=n,µ=i}(1− Sn)P{Sn+T0 = 0 | Sn = 0}P{M = j | X1, . . . , Xn}

]

=
∞∑

n=0

E
[
1{τ=n,µ=i}(1− Sn)(1− p)T0Π(j)

n

]

= (1− p)T0E
[
1{τ<∞,µ=i}(1− Sτ )Π

(j)
τ

]

= (1− p)T0E
[
1{µ=i}(1− Sτ )Π

(j)
τ

]
for every 1 ≤ i, j ≤ m,

since S∞ = limn→∞ Sn = 1 a.s. and (1 − Sτ )Πτ = (1 − S∞)Π∞ = 0 · ΠΘ = 0 a.s. on
{τ = ∞}. This is because SΘ = 1 a.s., and ΠΘ = SΘΠΘ−1+(1−SΘ)D(ΠΘ−1, XΘ) =
ΠΘ−1. Thus ΠΘ−1 = ΠΘ = · · · a.s.; consequently, Π∞ := limn→∞Πn = ΠΘ and
Πn1{n≥Θ} = ΠΘ1{n≥Θ} a.s. for every n ≥ 0.

(c) The probability of breaching the deadline is

P{τ + T0 ≥ Θ,M = j} = P{τ < Θ, τ + T0 ≥ Θ,M = j}+ P{τ ≥ Θ,M = j}

= E
[(
(1 − (1− p)T0)(1− Sτ ) + Sτ

)
Π(j)

τ

]
,
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because τ ∧Θ is an (Fn)n≥0 stopping time and FΘ ≡ Fτ on {τ ≥ Θ} imply

P{τ ≥ Θ,M = j} = E[1{τ≥Θ}P{M = j | Fτ∧Θ}] = E[1{τ≥Θ}P{M = j | FΘ}]
= E[1{τ≥Θ}P{M = j | Fτ}] = E[1{τ≥Θ}Π

(j)
τ ] = E[SτΠ

(j)
τ ],

and (1 − Sτ )Πτ = 0 a.s. on {τ = ∞} implies

P{τ < Θ, τ + T0 ≥ Θ,M = j}

=
∞∑

n=0

E[1{τ=n}P{n < Θ ≤ n+ T0,M = j | Fn}]

=
∞∑

n=0

E[1{τ=n}(1− Sn)P{n < Θ ≤ n+ T0 | Θ > n}P{M = j | X1, . . . , Xn}]

=
∞∑

n=0

E[1{τ=n}(1− Sn)(1 − (1− p)T0)Π(j)
n ] = (1− (1− p)T0)E[1{τ<∞}(1− Sτ )Π

(j)
τ ]

= (1− (1− p)T0)E[(1 − Sτ )Π
(j)
τ ].

Combining (a), (b), and (c), we can now rewrite Rτ,µ(π, s) of (1) as follows:

Rτ,µ(π, s)

= Eπ,s

[
c
(
(τ+T0)∧Θ) +

m∑

j=1

∑

i:i#=j

cij1{τ+T0<Θµ=i,M=j} +
m∑

j=1

dj1{τ+T0≥Θ,M=j}

]

= Eπ,s

[ τ−1∑

k=0

c(1− Sk)

]
+

c

p

(
1− (1 − p)T0

)
Eπ,s(1− Sτ )

+ (1− p)T0

m∑

j=1

∑

i:i#=j

cijEπ,s

[
1{µ=i}(1− Sτ )Π

(j)
τ

]

+
m∑

j=1

djEπ,s

[(
(1− (1 − p)T0)(1 − Sτ ) + Sτ

)
Π(j)

τ

]

= Eπ,s

[ τ−1∑

k=0

c(1− Sk) + (1− p)T0(1− Sτ )
m∑

i=1

1{µ=i}
∑

j:j #=i

cijΠ
(j)
τ

+
(
(1− (1− p)T0)(1 − Sτ ) + Sτ

) m∑

j=1

djΠ
(j)
τ +

c

p

(
1− (1 − p)T0

)
(1 − Sτ )

]

≥ Eπ,s

[ τ−1∑

k=0

c(1− Sk) + (1− p)T0(1− Sτ ) min
1≤i≤m

∑

j:j #=i

cijΠ
(j)
τ

+
(
(1− (1− p)T0)(1 − Sτ ) + Sτ

) m∑

j=1

djΠ
(j)
τ +

c

p

(
1− (1 − p)T0

)
(1 − Sτ )

]
.

Combined with (2), this proves (3).
Remark 2. For every admissible rule (τ, µ), the rule (τ ∧Θ, µ(τ ∧Θ)) is admissible

and has expected total cost less than or equal to that of (τ, µ) because

Sτ∧Θ = Sτ , Πτ∧Θ = Πτ , and
τ∧Θ−1∑

k=0

c(1− Sk) =
τ−1∑

k=0

c(1− Sk)(5)
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imply that

Rτ,µ ≥ Rτ,µ(τ)

= E
[ τ−1∑

k=0

c(1− Sk) + (1− p)T0(1− Sτ ) min
1≤i≤m

∑

j:j #=i

cijΠ
(j)
τ

+
(
(1− (1− p)T0)(1− Sτ ) + Sτ

) m∑

j=1

djΠ
(j)
τ +

c

p
(1− (1 − p)T0)(1− Sτ )

]

= E
[ τ∧Θ−1∑

k=0

c(1− Sk) + (1− p)T0(1− Sτ∧Θ) min
1≤i≤m

∑

j:j #=i

cijΠ
(j)
τ∧Θ

+
(
(1− (1− p)T0)× (1− Sτ∧Θ) + Sτ∧Θ

) m∑

j=1

djΠ
(j)
τ∧Θ

+
c

p
(1− (1− p)T0)(1− Sτ∧Θ)

]
= Rτ∧Θ,µ(τ∧Θ).

Finally, the identities in (5) follow from

Sτ∧Θ = 0 ⇐⇒ Θ > τ ∧Θ ⇐⇒ Θ > τ ⇐⇒ Sτ = 0,

Πτ∧Θ = Πτ1{τ<Θ} +ΠΘ1{τ≥Θ} = Πτ1{τ<Θ} +Πτ1{τ≥Θ} = Πτ ,

τ−1∑

k=0

c(1− Sk) =
τ∧Θ−1∑

k=0

c(1− Sk) +
!!!!!!!!!!
1{τ>Θ}

τ−1∑

k=Θ

c(1− Sk) =
τ∧Θ−1∑

k=0

c(1− Sk),

because Sk = 1 for every k ≥ Θ a.s.

2.2. Successive approximation of value function. The dynamic program-
ming principle implies that

W (π, s) = min
{
h(π, s), c(1 − s) + E[W (Π1, S1) | (Π0, S0) = (π, s)]

}
,(6)

where the expectation E[W (Π1, S1) | (Π0, S0) = (π, s)] becomes

sW (π, s) + (1− s)E
[
W

(
S1Π0 + (1− S1)D(Π0, X1), 0

)∣∣∣(Π0, S0) = (π, s)
]
.

More precisely, we have E[W (Π1, S1) | (Π0, S0) = (π, 1)] = W (π, 1) and

E[W (Π1, S1) | (Π0, S0) = (π, 0)]

= pW (π, 1) + (1− p)E[W (D(Π0, X1), 0) | (Π0, S0) = (π, 0)]

= pW (π, 1) + (1− p)

∫
W (D(π, x), 0)

m∑

j=1

πjfj(x)dx.

On the collection of bounded functions w : Sm−1× {0, 1} )→ R, let us define operators

(Tw)(π, s) = sw(π, 1) + (1− s)

[
pw(π, 1) + (1 − p)

∫
w(D(π, x), 0)

m∑

j=1

πjfj(x)dx

]
,

(Mw)(π, s) = min{h(π, s), c(1− s) + (Tw)(π, s)}.

(7)

D
ow

nl
oa

de
d 

07
/1

8/
13

 to
 1

32
.2

39
.2

15
.1

07
. R

ed
ist

rib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls/

oj
sa

.p
hp



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

REWARD-RATE MAXIMIZATION IN IDENTIFICATION 2931

The value function W (π, s) is a fixed point of operator M . If S0 ≡ s = 1 in (3),
then S0 = S1 = · · · = 1 and

W (π, 1) = inf
τ

Eπ,1

[ m∑

j=1

djΠ
(j)
τ

]
= inf

τ

m∑

j=1

djπj =
m∑

j=1

djπj for every π ∈ Sm−1,(8)

because Π(j)
n = P{M = j | Fn}, n ≥ 0 is a bounded martingale. Therefore, it

is uniformly integrable, and the optional sampling theorem implies that Eπ,1Π
(j)
τ =

Π(j)
0 = πj for every (Fn)n≥0 stopping time τ .

The optimality equation in (6) turns out to have a unique solution, which can be
found as the pointwise limit of successive approximations; see, for example, Shiryaev
[16, pp. 168–169] for similar results for the classical Bayesian binary hypothesis testing
problem. Here we follow the general theory of stochastic dynamic programming as,
for example, described by Bertsekas and Shreve [2, Chapter 4], and show that the dy-
namic programming operator M in (7) is a contraction by Proposition 3 and that the
value function W (·) is its unique fixed point by Corollary 4. The successive approxi-
mations of the fixed point of a contraction therefore lead naturally to the successive
approximations of the value function as described by Proposition 5 and Corollary 6.
Here, the optimal stopping problem is not a discounted optimal control problem with
bounded costs and the contraction property of the dynamic programming operator
is not automatic. We establish this property by taking advantage of the exponential
decay in the excess life distribution of the random deadline.

Proposition 3. The operator M is a contraction mapping on the collection of
bounded functions w : Sm−1 × {0, 1} )→ R with w(π, 1) = h(π, 1) =

∑m
j=1 djπj for

every π ∈ Sm−1.
Proof. Let w1, w2 : Sm−1 × {0, 1} )→ R be two bounded functions such that

wi(π, 1) = h(π, 1) for every π ∈ Sm−1 and i = 1, 2. Then |(Mw1)(π, s)− (Mw2)(π, s)|
equals

|min{h(π, s), c(1− s) + (Tw1)(π, s)} −min{h(π, s), c(1 − s) + (Tw2)(π, s)}|
≤ |(c(1− s) + (Tw1)(π, s)) − (c(1− s) + (Tw2)(π, s))|

≤
∣∣∣!!!!w1(π, 1) + (1− s)

["""""pw1(π, 1) + (1− p)

∫
w1(D(π, x), 0)

m∑

j=1

πjfj(x)dx
]

−
(
!!!!w2(π, 1) + (1− s)

["""""pw2(π, 1) + (1 − p)

∫
w2(D(π, x), 0)

m∑

j=1

πjfj(x)dx
])∣∣∣

=
∣∣∣(1− s)(1− p)

∫
(w1 − w2)(D(π, x), 0)

m∑

j=1

πjfj(x)dx
∣∣∣

≤ (1− p) sup
π∈Sm−1

|w1(π, 0)− w2(π, 0)| ≤ (1− p)‖w1 − w2‖

for every (π, s) ∈ Sm−1× {0, 1}. Therefore, ‖Mw1−Mw2‖ ≤ (1− p)‖w1 −w2‖.
Corollary 4. The value function W (·, ·) of (2) is the unique fixed point of

operator M in the class of bounded functions w : Sm−1 × {0, 1} )→ R such that
w(π, 1) = h(π, 1) for every π ∈ Sm−1.

Proof. If V : Sm−1 × {0, 1} )→ R is another fixed point of M such that V (π, 1) =
h(π, 1) for every π ∈ Sm−1, then by Proposition 3 we have ‖V −W‖ = ‖MV −MW‖ ≤
(1− p)‖V −W‖, which holds if and only if ‖V −W‖ = 0.
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To numerically calculate W (·, ·), let us introduce the successive approximations

w0(π, s) = h(π, s) = sh(π, 1) + (1− s)h(π, 0), (π, s) ∈ Sm−1 × {0, 1},
wn+1(π, s) = (Mwn)(π, s), (π, s) ∈ Sm−1 × {0, 1}.

(9)

We can show by induction on n ≥ 0 that

wn(π, 1) = h(π, 1) for every π ∈ Sm−1.(10)

By definition, w0(π, 1) = h(π, 1) for every π ∈ Sm−1. Suppose that for some n ≥ 0
we have wn(π, 1) = h(π, 1) for every π ∈ Sm−1. Then (7) implies that

wn+1(π, 1) = (Mwn)(π, 1) = min{h(π, 1), (Tw)(π, 1)} = min{h(π, 1), wn(π, 1)}
= min{h(π, 1), h(π, 1)} = h(π, 1) for every π ∈ Sm−1.

Using (10) we can write

wn+1(π, s) = (Mwn)(π, s) = sh(π, 1) + (1 − s)(Mwn)(π, 0)

= sh(π, 1) + (1− s)min

{
h(π, 0), c+ ph(π, 1)(11)

+ (1− p)

∫
wn(D(π, x), 0)

m∑

j=1

πjfj(x)dx

}
.

Proposition 5. For every (π, s) ∈ Sm−1 × {0, 1}, the sequence (wn(π, s))n≥0 is
decreasing and w∞(π, s) := limn→∞ wn(π, s) exists.

Proof. From (11), we notice that 0 ≤ w1(π, s) ≤ sh(π, 1)+(1−s)h(π, 0) = w0(π, s)
for every (π, s) ∈ Sm−1 × {0, 1}. Suppose that 0 ≤ wn(π, s) ≤ wn−1(π, s) for every
(π, s) ∈ Sm−1 × {0, 1} for some n ≥ 1. Then

0 ≤ wn+1(π, s) = (Mwn)(π, s) = min{h(π, s), c(1− s) + (Twn)(π, s)}
≤ min{h(π, s), c(1− s) + (Twn−1)(π, s)} = (Mwn−1)(π, s) = wn(π, s)

for every (π, s) ∈ Sm−1×{0, 1}. Therefore, (wn(π, s))n≥0 is decreasing and w∞(π, s) :=
limn→∞ wn(π, s) exists for every (π, s) ∈ Sm−1 × {0, 1}.

Corollary 6. The value function W and the limit w∞ of successive approx-
imations coincide; namely, W (π, s) = w∞(π, s) for every (π, s) ∈ Sm−1 × {0, 1}.
Moreover, ‖W − wn‖ ≤ (1 − p)n‖h‖ for every n ≥ 0.

Proof. Because 0 ≤ wn ≤ w0, taking the limit as n → ∞ in (11) and the bounded
convergence theorem imply that

w∞(π, s) = sh(π, 1) + (1− s)min

{
h(π, 0), c+ ph(π, 1)

+ (1− p)

∫
w∞(D(π, x), 0)

m∑

j=1

πjfj(x)dx

}

= (Mw∞)(π, s)

for every (π, s) ∈ Sm−1 × {0, 1}. Therefore, w∞ is a fixed point of operator M .
Because w∞(π, 1) = limn→∞ wn(π, 1) = limn→∞ h(π, 1) = h(π, 1) for every π ∈
Sm−1, Corollary 6 implies that W (·, ·) = w∞(·, ·). Finally, ‖W − wn‖ = ‖MW −
Mwn−1‖ ≤ (1−p)‖W−wn−1‖ ≤ · · · ≤ (1−p)n‖W−w0‖ ≤ (1−p)n‖w0‖ = (1−p)n‖h‖
for every n ≥ 0.
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2.3. Structure of optimal policy. The optimal stopping region is

Γ(c, T0) := {(π, s) ∈ Sm−1 × {0, 1}; W (π, s; c, T0) = h(π, s; c, T0)}, c > 0, T0 ≥ 1,

and an optimal (stationary) decision rule is (τ(c, T0), µ(τ(c, T0))), where µ(·) is defined
by (4) and

τ(c, T0) := inf{n ≥ 0; (Πn, Sn) ∈ Γ(c, T0)} for every c > 0 and T0 ≥ 1.(12)

Because h(π, s; c, T0) = min1≤i≤m hi(π, s; c, T0) in terms of

hi(π, s; c, T0) = (1− s)

[
(1− p)T0

∑

j:j #=i

cijπj +
(
1− (1− p)T0

)( c

p
+

m∑

j=1

djπj

)]

+ s
m∑

j=1

djπj ,

(π, s) ∈ Sm−1 × {0, 1}, 1 ≤ i ≤ m,

and W (π, 1; c, T0) = h(π, 1; c, T0) for every π ∈ Sm−1, we have

Γ(c, T0) = Γ0(c, T0) ∪ Γ1(c, T0),

Γ1(c, T0) = {(π, 1); π ∈ Sm−1,W (π, 1; c, T0) = h(π, 1; c, T0)} = Sm−1 × {1},
Γ0(c, T0) = {(π, 0); π ∈ Sm−1,W (π, 0; c, T0) = h(π, 0; c, T0)}

= Γ(1)
0 (c, T0) ∪ · · · ∪ Γ(m)

0 (c, T0),

where

Γ(i)
0 (c) = {(π, 0); π ∈ Sm−1,W (π, 0; c) = hi(π, 0)}, 1 ≤ i ≤ m.

Next, we show that the stopping region, before the deadline, is the union of m
convex regions containing the m respective cases of the perfect identification cer-
tainty. This result is similar to the findings of Shiryaev [16, p. 169] in the simple
classical case of the Bayesian sequential binary hypothesis testing problem and those
of Blackwell and Girshick [3, Theorem 9.4.3] for more general Bayesian sequential pro-
cedures. Here, the new and more complex form of the transition function T in (7) of
the two-dimensional Markov sufficient statistic (Πn, Sn)∞n≥0 demands extra care. To
establish the convexity of stopping regions by Proposition 7, we first show that the
transition function is concave by means of the general convexity-preserving property
of perspective functions; see, for example, Boyd and Vandenberghe [5, section 3.2.6].

Proposition 7. Let e1, . . . , em be the unit vectors in Rm. Then ei ∈ Γ(i)
0 (c, T0)

and Γ(i)
0 (c, T0) is convex for every i = 1, . . . ,m.

We first show that π )→ W (π, 0) ≡ W (π, 0; c, T0) is concave. Let us prove that

for every bounded function w : Sm−1 × {0, 1} )→ R such
that w(π, 1) = h(π, 1) for every π ∈ Sm−1 and π )→ w(π, 0)
is concave, the mapping π )→ (Mw)(π, 0) is concave.

(13)

Recall that (Mw)(π, 0) = min{h(π, 0), c+ (Tw)(π, 0)}. Because the minimum of
two concave functions is concave and π )→ h(π, 0) is concave, it is sufficient to show
that

π )→ (Tw)(π, 0) = ph(π, 1) + (1− p)

∫
w(D(π, x), 0)

m∑

j=1

πjfj(x)dx
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is concave. Because π )→ h(π, 1) =
∑m

j=1 djπj is concave, it suffices to show for every
x ∈ R

(14) π )→ w

((
π1f1(x)∑m
k=1 πkfk(x)

, . . . ,
πmfm(x)∑m
k=1 πkfk(x)

)
, 0

) m∑

j=1

πjfj(x) is concave.

Take any a, b ∈ Sm−1, 0 < α < 1, and let β = 1 − α. The concavity of π )→ w(π, 0)
implies

w

((
(αa1 + βb1)f1(x)∑m
k=1(αak + βbk)fk(x)

, . . . ,
(αam + βbm)fm(x)∑m
k=1(αak + βbk)fk(x)

)
, 0

)( m∑

j=1

(αaj + βbj)fj(x)

)

= w

((α
∑m

k=1 akfk(x)
a1f1(x)∑m

k=1 akfk(x)
+ β

∑m
k=1 bkfk(x)

b1f1(x)∑m
k=1 bkfk(x)

α
∑m

k=1 akfk(x) + β
∑m

k=1 bkfk(x))
, . . . ,

α
∑m

k=1 akfk(x)
amf1(x)∑m
k=1 akfk(x)

+ β
∑m

k=1 bkfk(x)
bmf1(x)∑m
k=1 bkfk(x)

α
∑m

k=1 akfk(x) + β
∑m

k=1 bkfk(x))

)
, 0

)

×
(

α
m∑

k=1

akfk(x) + β
m∑

k=1

bkfk(x))

)

= w

((
α
∑m

k=1 akfk(x)

α
∑m

k=1 akfk(x) + β
∑m

k=1 bkfk(x)

[
a1f1(x)∑m
k=1 akfk(x)

, . . . ,
amfm(x)∑m
k=1 akfk(x)

]

+
β
∑m

k=1 bkfk(x)

α
∑m

k=1 akfk(x) + β
∑m

k=1 bkfk(x)

[
b1f1(x)∑m
k=1 bkfk(x)

, . . . ,
bmfm(x)∑m
k=1 bkfk(x)

])
, 0

)

×
(

α
m∑

k=1

akfk(x) + β
m∑

k=1

bkfk(x))

)

≥
{

α
∑m

k=1 akfk(x)

################
α
∑m

k=1 akfk(x) + β
∑m

k=1 bkfk(x)

w

([
a1f1(x)∑m
k=1 akfk(x)

, . . . ,
amfm(x)∑m
k=1 akfk(x)

]
, 0

)

+
β
∑m

k=1 bkfk(x)

################
α
∑m

k=1 akfk(x) + β
∑m

k=1 bkfk(x)

w

([
b1f1(x)∑m

k=1 bkfk(x)
, . . . ,

bmfm(x)∑m
k=1 bkfk(x)

]
, 0

)}

×
!!!!!!!!!!!!!!!(

α
m∑

k=1

akfk(x) + β
m∑

k=1

bkfk(x))

)

= α w

((
a1f1(x)∑m
k=1 akfk(x)

, . . . ,
amfm(x)∑m
k=1 akfk(x)

)
, 0

) m∑

k=1

akfk(x)

+ β w

((
b1f1(x)∑m

k=1 bkfk(x)
, . . . ,

bmfm(x)∑m
k=1 bkfk(x)

)
, 0

) m∑

k=1

bkfk(x),

which implies (14) and completes the proof of (13). Recall now that W (π, s) =
limn→∞ wn(π, s) is the pointwise limit of the successive approximations in (9). Be-
cause the mapping w(·, ·) = w0(·, ·) = h(·, ·) satisfies the hypothesis of (13), an induc-
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tion on n shows that every w(·, ·) = wn(·, ·) satisfies the hypothesis of (13). Therefore,
π )→ wn(π, 0) is concave for every n ≥ 0. Because the pointwise limit of a sequence
of concave functions is concave, the mapping π )→ W (π, 0) = limn→∞ wn(π, 0) is also
concave.

Proof of Proposition 7. Let us first prove that ei ∈ Γ(i)
0 (c, T0) for every i =

1, . . . ,m. We will suppress c and T0 and write Γ(i)
0 , W (π, s), h(π, s), hi(π, s) instead

of Γ(i)
0 (c, T0), W (π, s; c, T0), h(π, s; c, T0), hi(π, s; c, T0). Because for every 1 ≤ i ≤ m

hi(ei, 0) =
(
1− (1− p)T0

)( c

p
+ di

)
, h(ei, 1) = di, h(ei, s) = hi(ei, s) for s = 0, 1,

W (ei, 1) = h(ei, 1), D(ei, x) = ei, and W (D(ei, x), 0) = W (ei, 0) for x ∈ R,

we have

(TW )(ei, 0) = pW (ei, 1) + (1 − p)

∫
W (D(ei, x), 0)fi(x)dx

= ph(ei, 1) + (1 − p)

∫
W (ei, 0)fi(x)dx = p di + (1− p)W (ei, 0),

W (ei, 0) = min{h(ei, 0), c+ (TW )(ei, 0)}
= min{hi(ei, 0), c+ p di + (1− p)W (ei, 0)}.

Let us assume on the contrary that ei /∈ Γ(i)
0 . Then

(
1− (1− p)T0

)( c

p
+ di

)
= hi(ei, 0) > W (ei, 0) = c+ p di + (1− p)W (ei, 0).

Because the last equality implies that W (ei, 0) = (c/p)+di, the strict inequality gives
(1− (1−p)T0)((c/p)+di) > W (ei, 0) = (c/p)+di, which contradicts 1− (1−p)T0 < 1.

Therefore, ei ∈ Γ(i)
0 for every i = 1, . . . ,m.

To show that Γ(i)
0 is convex, let us take any two fixed points a, b ∈ Γ(i)

0 and
0 < α < 1. Because π )→ hi(π, 0) is affine and π )→ W (π, 0) is concave,

hi(αa+ (1− α)b, 0) = αhi(a, 0) + (1− α)hi(b, 0) = αW (a, 0) + (1 − α)W (b, 0)

≤ W (αa+ (1− α)b, 0) ≤ h(αa+ (1− α)b, 0)

≤ hi(αa+ (1− α)b, 0)

implies that hi(αa + (1 − α)b, 0) = W (αa + (1 − α)b, 0) and αa + (1 − α)b ∈ Γ(i)
0 .

Therefore, Γ(i)
0 is convex for every i = 1, . . . ,m.

3. Multihypothesis sequential testing: Reward rate maximization. In
this section, we study the same deadlined sequential identification problem as in
section 2, but optimize a different objective function, the average reward rate. We
show that an optimal policy, which depends on the initial belief state, exists, and we
describe a numerical procedure for solving it. We show the following in turn:

• the reward-rate maximizing policy is equivalent to the solution of a special
case of the Bayes-risk minimization problem in (2), whose value function
W (π, s; c∗, T0) we know but whose observation cost c∗ is unknown; c∗ turns
out to be the maximal reward rate (section 3.1);
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• the Bayes-risk value function is strictly increasing, concave, and continuous in
the observation cost c, before the deadline arrives, implying c∗ is the unique
solution that yields W (π, 0; c∗, T0) =

∑m
j=1 rjπj (section 3.2);

• a bisection procedure, in the c values explored, can solve the reward-rate
problem exponentially fast (section 3.3).

3.1. Reward-rate maximization versus Bayes-risk minimization. Sup-
pose we earn rj ≥ 0 on {M = j}, 0 ≤ j ≤ m for correctly identifying M , and receive
no rewards otherwise. The experiment takes a random T = T (τ,Θ) = (τ+T0)∧Θ units
of time, depending on whether it terminates with an identification decision or with the
deadline. The reward received is R = R(τ, µ,Θ,M) = 1{τ+T0<Θ}

∑m
j=1 rj1{µ=j,M=j}.

By the strong law of large numbers, the long-run average reward per unit time, when
the experiment is repeated ad infinitum, equals

ER
ET =

E
[
1{τ+T0<Θ}

∑m
j=1 rj1{µ=j,M=j}

]

E [(τ + T0) ∧Θ]
with probability one.

Our goal is to find the maximum reward rate

V (π, s) := sup
(τ,µ)

Eπ,s

[
1{τ+T0<Θ}

∑m
j=1 rj1{µ=j,M=j}

]

Eπ,s[(τ + T0) ∧Θ]
, (π, s) ∈ Sm−1 × {0, 1} .

(15)

We first note that V (π, 1) is undefined and uninteresting, because both the nu-
merator and denominator in (15) evaluate to 0. In the remainder, we will work on
how to characterize and calculate V (π, 0) and find an admissible decision rule (τ, µ)
whenever the supremum in (15) is attained for s = 0. Note also that the assumption
of T0 > 0 precludes the optimal policy from being the trivial one of choosing τ = 0
a.s., which makes the denominator in (15) evaluate to 0.

Our first key insight is that the reward-rate maximizing policy is equivalent to
the solution of a special case of the Bayes-risk minimization problem in (2).

Proposition 8. For every π ∈ Sm−1,

m∑

j=1

rjπj = inf
(τ,µ)

Eπ,0

[
V (π, 0)

(
(τ + T0) ∧Θ

)

+1{τ+T0<Θ}

m∑

j=1

∑

i:i#=j

rj1{µ=i,M=j} + 1{τ+T0≥Θ}

m∑

j=1

rj1{M=j}

]
,

which is the value function W (π, 0;V (π, 0), T0) of the Bayes-risk minimization prob-
lem in (2), whereby c = V (π, 0), cij = rj1{i#=j}, dj = rj , for every 1 ≤ i, j ≤ m, and
any reaction time T0 > 0.

Proof. We prove the equality in two steps:
(a) W (π, 0;V (π, 0), T0) ≥

∑m
j=1 rjπj ;

(b) W (π, 0;V (π, 0), T0) ≤
∑m

j=1 rjπj .
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(a) Let us fix any π ∈ Sm−1. For every admissible (τ, µ), we have

V (π, 0) ≥
Eπ,0

[
1{τ+T0<Θ}

∑m
j=1 rj1{µ=j,M=j}

]

Eπ,0[(τ + T0) ∧Θ]
,

V (π, 0)Eπ,0[(τ + T0) ∧Θ] ≥ Eπ,0

[
1{τ+T0<Θ}

m∑

j=1

rj1{µ=j,M=j}

]

= Eπ,0

[
1{τ+T0<Θ}

m∑

j=1

rj

(
1{M=j} −

∑

i:i#=j

1{µ=i,M=j}

)]

= Eπ,0

[(
1− 1{τ+T0≥Θ}

) m∑

j=1

rj1{M=j} − 1{τ+T0<Θ}

m∑

j=1

rj
∑

i:i#=j

1{µ=i,M=j}

]

=
m∑

j=1

rjπj − Eπ,0

[
1{τ+T0≥Θ}

m∑

j=1

rj1{M=j}

+ 1{τ+T0<Θ}

m∑

j=1

∑

i:i#=j

rj1{µ=i,M=j}

]
,

which leads to

W (π, 0;V (π, 0), T0) = inf
(τ,µ)

Eπ,0

[
V (π, 0)

(
(τ + T0) ∧Θ

)

+1{τ+T0<Θ}

m∑

j=1

∑

i:i#=j

rj1{µ=i,M=j}

+1{τ+T0≥Θ}

m∑

j=1

rj1{M=j}

]
≥

m∑

j=1

rjπj .

(b) Because

Eπ,0[T0 ∧Θ] = Eπ,0

[ T0−1∑

k=0

1{Θ>k}

]
=

T0−1∑

k=0

(1− p)k =
1− (1− p)T0

p
,(16)

it is clear from (15) that

0 ≤ V (π, 0) ≤ max1≤j≤m rj
E[T0 ∧Θ]

=
p max1≤j≤m rj
1− (1− p)T0

< ∞.

Therefore, for every ε > 0 there exists some (τ∗, µ∗) ≡ (τ∗(π, ε), µ∗(π, ε)) such that

V (π, 0)− ε ≤
Eπ,0

[
1{τ∗+T0<Θ}

∑m
j=1 rj1{µ∗=j,M=j}

]

Eπ,0[(τ∗ + T0) ∧Θ]
,
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which can be rearranged as

(V (π, 0)− ε)Eπ,0[(τ
∗ + T0) ∧Θ]

≤ Eπ,0

[
1{τ∗+T0<Θ}

m∑

j=1

rj1{µ∗=j,M=j}

]

= Eπ,0

[
1{τ∗+T0<Θ}

m∑

j=1

rj

(
1{M=j} −

∑

i:i#=j

1{µ∗=i,M=j}

)]

= Eπ,0

[(
1− 1{τ∗+T0≥Θ}

) m∑

j=1

rj1{M=j} − 1{τ∗+T0<Θ}

m∑

j=1

rj
∑

i:i#=j

1{µ∗=i,M=j}

]

=
m∑

j=1

rjπj − Eπ,0

[
1{τ∗+T0≥Θ}

m∑

j=1

rj1{M=j} + 1{τ∗+T0<Θ}

m∑

j=1

∑

i:i#=j

rj1{µ∗=i,M=j}

]
,

and
m∑

j=1

rjπj ≥ Eπ,0

[
(V (π, 0)− ε)

(
(τ∗ + T0) ∧Θ

)
+ 1{τ∗+T0<Θ}

m∑

j=1

∑

i:i#=j

rj1{µ∗=i,M=j}

+1{τ∗+T0≥Θ}

m∑

j=1

rj1{M=j}

]

≥ Eπ,0

[
V (π, 0)

(
(τ∗ + T0) ∧Θ

)
+ 1{τ∗+T0<Θ}

m∑

j=1

∑

i:i#=j

rj1{µ∗=i,M=j}

+1{τ∗+T0≥Θ}

m∑

j=1

rj1{M=j}

]
− εEπ,0Θ ≥ W (π, 0;V (π, 0), T0)− εEπ,0Θ,

and letting ε ↓ 0 gives
∑m

j=1 rjπj ≥ W (π, 0;V (π, 0), T0).
Proposition 8 tells us that we can compute the maximal reward rate V (π, 0) by

solving an inverse case of the Bayes-risk minimization problem, whereby we know the
minimal Bayes risk W (π, 0;V (π, 0), T0) and need to find the appropriate sampling
cost c∗ := V (π, 0) associated with that minimal risk. Intuitively, it makes sense that
the sampling cost, which determines the trade-off between speed and accuracy, should
be the maximal expected reward that can be gained per unit time.

3.2. Uniqueness of c∗. Finding the appropriate c∗ = V (π, 0) would be greatly
facilitated if we knew c∗ was the unique value of c that satisfies W (π, 0; c, T0) =∑m

j=1 rjπj , and if W (π, 0; c, T0) is continuous and monotonic in c. The following
proposition gives us the desiderata.

Proposition 9. For every π ∈ Sm−1, T0 ≥ 0, the mapping c )→ W (π, 0; c, T0) :
(0,∞) )→ R is increasing, concave, and continuous. Moreover,
(17)

c
1− (1− p)T0

p
≤ W (π, 0; c, T0) ≤ c

1− (1− p)T0

p
+

m∑

j=1

rjπj − (1 − p)T0 max
1≤i≤m

riπi,
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so that W (π, 0; c, T0) >
∑m

j=1 rjπj if c > u0, W (π, 0; c, T0) <
∑m

j=1 rjπj if 0 < c < l0,
where

l0 :=
p(1− p)T0

(1− (1 − p)T0)
max

1≤j≤m
rjπj < u0 :=

p

(1− (1− p)T0)

m∑

j=1

rjπj .

Taken together, there exists unique c∗ ≥ 0 such that W (π, 0; c∗, T0) =
∑m

j=1 rjπj .
Moreover, c∗ ∈ [l0, u0] and c∗ = V (π, 0) in light of Proposition 8.

Proof. Note that W (π, 0; c, T0) is the infimum of a family of nondecreasing affine
functions of c. Therefore, the mapping c )→ W (π, 0; c, T0) : (0,∞) )→ R is non-
decreasing and concave, and also continuous. Thus, c )→ (T (W (·, ·; c, T0)))(π, 0) is
nondecreasing, and c )→ c + (T (W (·, ·; c, T0)))(π, 0) is strictly increasing. Moreover,
for every π ∈ Sm−1, we have

(18) h(π, 0; c, T0) = (1− p)T0 min
1≤i≤m

∑

j:j #=i

rjπj +
(
1− (1− p)T0

)( c

p
+

m∑

j=1

rjπj

)
,

implying that c )→ h(π, 0; c, T0) is strictly increasing. Therefore, the minimum of
strictly increasing functions,

c )→ W (π, 0; c, T0) = min{h(π, 0; c, T0), c+ (T (W (·, ·; c, T0)))(π, 0)},

is also strictly increasing. The first inequality in (17) follows from (16) and

W (π, 0; c, T0) ≥ Eπ,0[c(T0 ∧Θ)] = c
1− (1− p)T0

p
,

and the second inequality follows from W (π, 0; c, T0) ≤ h(π, 0; c, T0) after rearranging
the right-hand side of (18).

Because W (π, 0; c, T0)−
∑m

j=1 rjπj equals

inf
(τ,µ)

Eπ,0

[
c
(
(τ + T0) ∧Θ

)
+ 1{τ+T0<Θ}

m∑

j=1

∑

i:i#=j

rj1{µ=i,M=j}(19)

−1{τ+T0<Θ}

m∑

j=1

rj1{M=j}

]

= inf
(τ,µ)

Eπ,0

[
c
(
(τ + T0) ∧Θ

)
− 1{τ+T0<Θ}

m∑

j=1

rj

(
1{M=j} −

∑

i:i#=j

1{µ=i,M=j}

)]

= inf
(τ,µ)

Eπ,0

[
c
(
(τ + T0) ∧Θ

)
− 1{τ+T0<Θ}

m∑

j=1

rj1{µ=j,M=j}

]
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Proposition 9 implies that

(20) c ! V (π, 0) if and only if

inf
(τ,µ)

Eπ,0

[
c
(
(τ + T0) ∧Θ)− 1{τ+T0<Θ}

m∑

j=1

rj1{µ=j,M=j}

]
! 0.

Corollary 10. The maximum reward rate V (π, 0) is the unique unit sampling
cost c in the Bayes-risk minimization problem

W (π, 0; c, T0) = inf
(τ,µ)

Eπ,0

[
c
(
(τ + T0) ∧Θ

)
+ 1{τ+T0<Θ}

m∑

j=1

∑

i:i#=j

rj1{µ=i,M=j}(21)

+ 1{τ+T0≥Θ}

m∑

j=1

rj1{M=j}

]
,

for which the expected total observation cost Eπ,0[c
(
(τ∗ + T0) ∧Θ)] and expected ter-

minal reward Eπ,0[1{τ∗+T0<Θ}
∑m

j=1 rj1{µ∗=j,M=j}] break even under any optimal de-
cision rule (τ∗, µ∗), which attains the infimum in (21) or, equivalently, in (20).

Finally, Proposition 11 below shows that the reward-rate maximization problem
always admits an optimal decision rule. Note that, unlike the optimal decision rules
for the Bayes-risk minimization problem, optimal decision rules for the reward-rate
maximization problem depend on the initial belief states.

Proposition 11. For every π ∈ Sm−1, an optimal decision rule for the reward-
rate maximization problem in (15) with s = 0 is given by

(τ∗, µ∗) ≡
(
τ∗(π, T0), µ

∗(π, T0)
)
:=

(
τ(V (π, 0), T0), µ(τ(V (π, 0), T0))

)
,(22)

where (τ(c, T0), µ(τ(c, T0))) is the optimal decision rule given by (12) and (4) for the
Bayes-risk minimization problem W (·, 0;V (π, 0), T0) in (2) with unit sampling cost
c = V (π, 0) and misidentification and deadline cost parameters cij = dj ≡ rj for
every 1 ≤ i (= j ≤ m.

Proof. For any fixed π ∈ Sm−1 and (τ∗, µ∗) as in (22), Proposition 8 and (19)
imply that 0 = W (π, 0;V (π, 0), T0) −

∑m
j=1 rjπj = Eπ,0[V (π, 0)

(
(τ∗ + T0) ∧ Θ

)
−

1{τ∗+T0<Θ}
∑m

j=1 rj1{µ∗=j,M=j}] which is equivalent to V (π, 0)Eπ,0[(τ∗ + T0) ∧Θ] =
Eπ,0[1{τ∗+T0<Θ}

∑m
j=1 rj1{µ∗=j,M=j}] or

V (π, 0) =
Eπ,0

[
1{τ∗+T0<Θ}

∑m
j=1 rj1{µ∗=j,M=j}

]

Eπ,0[(τ∗ + T0) ∧Θ]

and this proves the optimality of (τ∗, µ∗) for the reward-rate maximization prob-
lem.

3.3. Numerical procedure for maximizing reward rate. Thanks to Propo-
sition 9, the maximum reward rate always lies in [l0, u0] and can be found by a binary
search on [l0, u0] as described in Figure 1. The procedure is schematically illus-
trated in Figure 2. Proposition 11 implies that, unlike the optimal strategies for the
Bayes-risk minimization problem, the optimal strategy for maximizing reward rate de-
pends on the initial belief state. In other words, depending on the prior distribution
over M , the stopping regions will take on different shapes. This is because differ-
ent π results in different V (π, 0), equivalent to minimizing Bayes risk with different
c∗ = V (π, 0).
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Step 0 Fix any π ∈ Sm−1 and tolerance limit ε > 0 to check convergence. Set n = 0,

l0 :=
p(1− p)T0

1− (1− p)T0
max

1≤j≤m
rjπj , and u0 :=

p

1− (1− p)T0

m∑

j=1

rjπj .

Step 1 If
∣∣∣
∑m

j=1 rjπj −W (π, s; ln+un
2 , T0)

∣∣∣ < ε, then stop and set

V (π, 0) =
ln + un

2
.

Otherwise, set n to n+ 1. If
∑m

j=1 rjπj > W (π, s; ln+un
2 , T0) then set ln to

ln−1+un−1

2 and un to un−1; otherwise, set ln to ln−1 and un to ln−1+un−1

2 ,
and repeat to Step 1.

Fig. 1. The algorithm to find V (π, 0) for every fixed π ∈ Sm−1.

Fig. 2. Finding V (π, 0) for every fixed π ∈ Sm−1. The strictly increasing concave continuous
mapping c "→ W (π, 0; c, T0) is sandwiched between two increasing straight lines both of which inter-
sect the vertical axis below

∑m
j=1 rjπj. Therefore, c "→ W (π, 0; c, T0) crosses the level

∑m
j=1 rjπj at

some unique c > 0, which coincides with V (π, 0) by Proposition 8 and lies in the bounded interval
[l0, u0]. One can find V (π, 0) with a bisection search in [l0, u0].

4. Numerical examples. For illustration, we shall describe in detail the solu-
tion of the maximum reward-rate problem for sequential testing of m = 2 hypothe-
ses; namely, there are two alternatives to choose from after stopping. Shiryaev [16,
Chapter 4] solves the Bayes-risk minimization problem for sequential testing of two
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hypotheses. Recall that there are a few fundamental differences between the two
formulations and their solution methods. Let us summarize the fundamental differ-
ences between Shiryaev’s Bayes-risk minimization problem (BRm) and our reward-rate
maximization problem (RRM).

(i) In BRm, the unit sampling cost is a known fixed constant, and the minimum
Bayes risk is sought. In RRM, the sampling costs are not considered at all,
but to solve RRM we formulate an inverse Bayes-risk minimization problem
(invBRm), in which—contrary to BRm—the minimum Bayes risk is known,
and the unit sampling cost (= maximum reward rate in the original RRM) is
sought. Hence, to solve RRM, one has to solve an inverse BRm problem.

(ii) Shiryaev [16] shows that BRm admits an optimal decision rule independently
of the initial prior probability distribution of the hypotheses. We show that
RRM also admits an optimal decision rule, but it depends on the initial prior
probability distribution of the hypotheses.

(iii) Finally, BRm penalizes the decision time and misidentification, while invBRm
penalizes the decision time plus time to register the decision capped by the
unknown random deadline, misidentification, and late registered decisions
after deadline even if they are correct.

The one-dimensional posterior probability process Πn = P{M = 1 | Fn}, n ≥ 0
and Sn = 1{Θ≤n}, n ≥ 0 together form a Markov sufficient statistic (Πn, Sn)∞n=1 with
the dynamics

P{Xn+1 ∈ dx, Sn+1 = 0 | Fn} = (1− Sn)(1− p)[Πnf1(x) + (1−Πn)f2(x)]dx,

Πn+1 = Sn+1Πn + (1− Sn+1)
Πnf1(Xn+1)

Πnf1(Xn+1) + (1−Πn)f2(Xn+1)

for every n ≥ 0. The maximum reward-rate and minimum Bayes-risk problems be-
come

V (π, 0) = sup
(τ,µ)

Eπ,0[1{τ+T0<Θ}(r11{µ=1,M=1} + r21{µ=2,M=2})]

Eπ,0[(τ + T0) ∧Θ]
, π ∈ [0, 1],

W (π, s; c, T0) = inf
(τ,µ)

Eπ,s

[
c
(
(τ + T0) ∧Θ

)

+ 1{τ+T0<Θ}
(
r11{µ=2,M=1} + r21{µ=1,M=2}

)

+ 1{τ+T0≥Θ}
(
r11{M=1} + r21{M=2}

)]
,

(π, s) ∈ [0, 1]× {0, 1},

respectively, where supremum and infimum are taken over the pairs (τ, µ) of a stopping
time τ of observation filtration (Fn)n≥0 and an Fτ -measurable {1, 2}-valued random
variable µ. The latter problem can be rewritten as

W (π, s; c, T0) = inf
τ

Eπ,s

[ τ−1∑

k=0

c(1− Sk) + h(Πτ , Sτ ; c, T0)

]D
ow
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for every (π, s) ∈ [0, 1]× {0, 1}, where

h(π, s; c, T0)

= (1 − s)
{
(1− p)T0 min{r1π, r2(1− π)}+

(
1− (1 − p)T0

)( c
p
+ r1π + r2(1− π)

)}

+ s(r1π + r2(1− π)), (π, s) ∈ [0, 1]× {0, 1}.

The function W (π, s) ≡ W (π, s; c, T0) is the unique bounded fixed point of operator
M defined by

(Mw)(π, s) = min{h(π, s), c(1− s) + (Tw)(π, s)}, (π, s) ∈ [0, 1]× {0, 1}

for all bounded functions w : [0, 1]× {0, 1} )→ R such that w(π, 1) = h(π, 1) for every
π ∈ [0, 1], where

(Tw)(π, s)

= sw(π, 1) + (1− s)

[
pw(π, 1) + (1− p)

×
∫

w

(
πf1(x)

πf1(x) + (1 − π)f2(x)
, 0

)
(πf1(x) + (1− π)f2(x))dx

]
.

For every fixed observation cost c > 0 and reaction time T0 ≥ 1, the value function
W (·, ·; c, T0) is the pointwise limit of a decreasing sequence of successive approxima-
tions

w0(π, s) = h(π, s) and wn+1(π, s) = (Mwn)(π, s) for every (π, s) ∈ [0, 1]× {0, 1}.

Finally, for every π ∈ [0, 1], the maximum reward rate c = V (π, 0) is the unique
solution of

r1π + r2(1− π) = W (π, 0; c, T0),(23)

which can be found by running the following algorithm of a bisection search on [l0, u0]
with

l0 =
p(1− p)T0

1− (1− p)T0
max{r1π, r2(1− π)} and u0 =

p

1− (1− p)T0

(
r1π + r2(1− π)

)
:

Step 0 Fix any π ∈ [0, 1] and any ε > 0. Set n = 0.
Step 1 If

∣∣r1π + r2(1− π)−W (π, 0; ln+un
2 , T0)

∣∣ < ε, then stop and set

V (π, 0) =
ln + un

2
.

Otherwise, set n to n+1. If r1π + r2(1− π) > W (π, 0; ln+un
2 , T0) then set ln

to ln−1+un−1

2 and un to un−1; otherwise, set ln to ln−1 and un to ln−1+un−1

2 ,
and repeat Step 1.

For every c > 0 and T0 ≥ 1, the optimal stopping region before deadline

Γ0(c, T0) = {(π, 0); π ∈ [0, 1], W (π, 0; c, T0) = h(π, 0; c, T0)}
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Fig. 3. Value function V (π, 0), π ∈ [0, 1] of the reward-rate maximization problem for different
T0 ∈ [1, 20] values (p = 0.1 above and p = 0.01 below, r1 = r2 = 1).

of the Bayes-risk minimization problem is in the form of Γ0(c, T0) =
(
[0, l(c, T0)] ∪

[u(c, T0), 1]
)
× {0} for some optimal lower and upper control bounds 0 < l(c, T0) ≤

u(c, T0) < 1. Therefore, starting at (π, 0) for any π ∈ [0, 1], an optimal decision rule
for the maximum reward-rate problem is

(
τ(V (π, 0), T0), µ(τ(V (π, 0), T0))

)
, where

τ(V (π, 0), T0) = inf
{
n ≥ 0; Πn (∈

(
l(V (π, 0), T0), u(V (π, 0), T0)

)}
,

µ(n) =

{
1, πr1 > (1− π)r2,

2, πr1 ≤ (1− π)r2,

(24)

which depends on the initial value Π0 = π of the Π = (Πn)∞n=0 process.
In the first numerical example, we take

p = 0.1 and 0.01, r1 = r2 = 1, T0 ∈ [1, 20].

Before the deadline, the value function V (π, 0), π ∈ [0, 1] of the reward-rate Bayesian
maximization problem is plotted in Figure 3 as T0 changes. For every fixed π ∈ [0, 1],
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Fig. 4. Optimal lower and upper control boundaries l(V (π, 0), T0) and u(V (π, 0), T0) for the
reward-rate maximization problem for different T0 ∈ [1, 20] values (p = 0.1 above and p = 0.01
below, r1 = r2 = 1).

the value function V (π, 0) decreases as T0 increases. For every fixed T0, as π goes
farther away from either endpoint of [0, 1], the uncertainty about the true hypothesis
increases and the maximum reward rate V (π, 0) decreases. Because the cost of a
wrong terminal decision is the same under both hypotheses, V (π, 0) = V (1 − π, 0)
which is reflected by the symmetry in the figures about π = 1/2. As p decreases, the
deadline Θ gets stochastically longer, the maximum reward rate increases, and the
optimal continuation regions widen.
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Fig. 5. Value function V (π, 0), π ∈ [0, 1] of the reward-rate maximization problem for different
T0 ∈ [1, 20] values (p = 0.1 above and p = 0.01 below, r1 = 1, r2 = 2).

Figure 4 displays optimal lower and upper control bounds l(V (π, 0), T0) and
u(V (π, 0), T0) in (24) for every initial π ∈ [0, 1] as T0 changes. For every π ∈ [0, 1],
the optimal continuation region [0, 1]\Γ(V (π, 0), T0) =

(
l(V (π, 0), T0), u(V (π, 0), T0)

)

is symmetric about the center of the unit interval; namely, l(V (π, 0), T0) = 1 −
u(V (π, 0), T0)), because we have equal wrong terminal decision costs r1 = r2. The
continuation regions

(
l(V (π, 0), T0), u(V (π, 0), T0)

)
, π ∈ [0, 1] enlarge as π approaches

1/2 and/or as T0 increases. Decreasing p has the same effect on maximum reward
rate and optimal continuation regions as before.

In the second example, we only double the wrong terminal decision cost r2 = 2; see
Figure 5 for the maximum reward rates and Figure 6 for the optimal lower and upper
control bounds. The symmetries disappear as expected, but the general properties of
maximum reward rate and optimal boundaries do not change.
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Fig. 6. Optimal lower and upper control boundaries l(V (π, 0), T0) and u(V (π, 0), T0) for the
reward-rate Bayesian maximization problem for different T0 ∈ [1, 20] values (p = 0.1 above and
p = 0.01 below, r1 = 1, r2 = 2).
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