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The total cost problem for discrete-time controlled transient Markov models is considered. The objective functional is a
Markov dynamic risk measure of the total cost. Two solution methods, value and policy iteration, are proposed, and their
convergence is analyzed. In the policy iteration method, we propose two algorithms for policy evaluation: the nonsmooth
Newton method and convex programming, and we prove their convergence. The results are illustrated on a credit limit
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1. Introduction
Rich literature exists on the optimal control problem
for transient Markov processes (see Veinott 1969, Pliska
1979, Hernández-Lerma and Lasserre 1999, and references
therein). Specific examples of such models are stochas-
tic shortest path problems (see, e.g., Bertsekas and Tsit-
siklis 1991) and optimal stopping problems (cf. Çinlar
1975; Dynkin and Yushkevich 1969, 1979; Puterman 1994).
Most of this research has focused on the expected total
cost model.

A smaller volume of work has addressed risk aversion
in such problems. Four main ideas have been explored.
The first one is specific for shortest path problems and
uses the arrival probability as the objective function (see,
e.g., Nie and Wu 2009; Ohtsubo 2003, 2004; Wu and Lin
1999). The second one is based on the use of a utility
function at each stage (see Denardo and Rothblum 1979;
Jaquette 1973, 1976; Patek 2001). The third idea is to
use mean–variance models, at each stage (see Filar and
Lee 1985, Filar et al. 1989; for review, see White 1988).
The fourth one, initiated by Howard and Matheson (1972),
employs a multiplicative entropic cost function, where the
expected value of an exponential of the sum of costs is min-
imized, rather than the expected sum itself. Finite-horizon
and infinite-horizon discounted problems as well as aver-
age cost problems have been considered (see Bielecki et al.
1999; Cavazos-Cadena and Fernández-Gaucherand 1999;
Coraluppi and Marcus 1999, 2000; Di Masi and Stettner
1999; Fernàndez-Gaucherand and Marcus 1997; Fleming
and Hernández-Hernández 1997; Hernández-Hernández and

Marcus 1996, 1999; Levitt and Ben-Israel 2001; Mannor
and Tsitsiklis 2011).

Our research continues earlier efforts to adapt the recent
theory of dynamic risk measures (see Scandolo 2003;
Ruszczyński and Shapiro 2005, 2006b; Cheridito et al.
2006; Artzner et al. 2007; Pflug and Römisch 2007; and
references therein) to the Markov setting. Boda and Filar
(2006) proved time consistency of the finite-horizon thresh-
old probability criterion, when decision rules are assumed.
In the paper by Ruszczyński (2010), a broad class of Markov
risk measures was defined, and an infinite-horizon dis-
counted cost problem with such risk measures was solved.
Decision rules and dynamic programming equations were
derived in this approach. An extension of this approach to
undiscounted total risk problems for risk-transient models
was provided by Çavuş and Ruszczyński (2012).

The main objective of the present work is to propose and
analyze numerical methods for solving total risk problems
with Markov risk measures. Although their appearance
resembles the value iteration and policy iteration methods
known from expected value models, their analysis requires
specific techniques, exploiting properties of Markov risk
measures. Some of our ideas are extensions of the tech-
niques employed by Ruszczyński (2010), but the absence
of contraction properties precludes their direct application.

In §2, we briefly introduce the relevant terminology and
notation of the theory of discrete-time controlled Markov
processes. Section 3 is devoted to the definition of the
risk-averse control problem for Markov models with ran-
domized policies. In §4, we introduce the class of risk-
transient models, and we analyze it in the case of finite
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state spaces. In §5, we summarize the main findings of
Çavuş and Ruszczyński (2012). In §6, we describe and ana-
lyze the value iteration method for risk-averse total cost
problems. In §7, we present the policy iteration method and
we analyze its convergence. Finally, in §8.2, we illustrate
the operation of the methods on an example of controlling
credit limits.

2. Controlled Markov Processes
We quickly review the main concepts of controlled Markov
models and we introduce relevant notation (for details,
see Feinberg and Shwartz 2002; Hernández-Lerma and
Lasserre 1996, 1999). Let X be a state space, and let U
a control space. We assume that X and U are finite, but a
more general setting with Polish spaces equipped with their
Borel �-algebras is possible as well.

A control set is a multifunction U2 X ⇒ U; for each
state x ∈ X, the set U4x5 ⊆ U is a nonempty set of pos-
sible controls at x. A controlled transition kernel Q is a
mapping from the graph of U to the set P4X5 of proba-
bility measures on X. We shall write Qxy4u5 to denote the
transition probability from state x to state y, when control
u is applied.

The cost of transition from x to y, when control u is
applied, is represented by c4x1u1 y5, where c2 X × U ×

X→�. Only u ∈U4x5 and those y ∈X to which transition
is possible matter here, but it is convenient to consider the
function c4 · 1 · 1 · 5 as defined on the product space.

A stationary controlled Markov process is defined by
a state space X, a control space U, a control set U , a
controlled transition kernel Q, and a cost function c.

For t = 1121 0 0 0 1 we define the space of state and con-
trol histories up to time t as Ht = graph4U5t−1 ×X. Each
history is a sequence ht = 4x11 u11 0 0 0 1 xt−11 ut−11 xt5 ∈Ht .

We denote by P4U5 the set of probability measures on
the set U. Likewise, P4U4x55 is the set of probability mea-
sures on U4x5. A randomized policy is a sequence of mea-
surable functions �t2 Ht → P4U5, t = 1121 0 0 0 1 such that
�t4ht5 ∈ P4U4xt55 for all ht ∈ Ht . In words, the distribu-
tion of the control ut is supported on a subset of the set
of feasible controls U4xt5. A Markov policy is a sequence
of measurable functions �t2 X→P4U5, t = 1121 0 0 0 1 such
that �t4x5 ∈P4U4x55 for all x ∈X. The function �t4 · 5 is
called the decision rule at time t. A Markov policy is sta-
tionary if there exists a function �2 X → P4U5 such that
�t4x5 = �4x5, for all t = 1121 0 0 0, and all x ∈ X. Such a
policy and the corresponding decision rule are called deter-
ministic, if for every x ∈ X there exists u4x5 ∈ U4x5 such
that the measure �4x5 is supported on 8u4x59. For a sta-
tionary decision rule �, we write Q� to denote the corre-
sponding transition kernel.

We focus on transient Markov models. We assume
that there exists some absorbing state xA ∈ X such that
QxAxA

4u5= 1 and c4xA1 u1 xA5= 0 for all u ∈U4xA5. Thus,
after the absorbing state is reached, no further costs are

incurred. To analyze such Markov models, it is convenient
to consider the effective state space ˜X = X\8xA9 and the
effective controlled substochastic kernel Q̃, whose argu-
ments are restricted to ˜X and whose values are nonnegative
measures on ˜X, so that Q̃xy4u5 = Qxy4u5, for all x1 y ∈ ˜X
and all u ∈U4x5. In other words, Q̃4u5 is the matrix Q4u5
with the row and column corresponding to xA deleted.

3. Risk-Averse Control Problems
To formally introduce the total risk problem, we start
from the case of a finite horizon T . Each policy ç=

8�110001�T 9 results in a cost sequence Zt =c4xt−11ut−11xt5,
t=210001T +1. We define the spaces Zt of Ft-measurable
random variables on ì, t=210001T . For t=1, we set
Z1 =�.

For a policy ç=8�t9
T
t=1, a dynamic measure of risk is

defined as follows:

JT 4ç1x15

=�1

(

c4x11u11x25+�2

(

c4x21u21x35+···

+�T−1

(

c4xT−11uT−11xT 5+�T 4c4xT 1uT 1xT+155
)

···
))

0 (1)

In the formula above, �t2 Zt+1 →Zt , t=110001T , are one-
step conditional risk measures satisfying the following
axioms:

(A1) �t4�Z+41−�5W5¶��t4Z5+41−�5�t4W5,
∀�∈40115, Z1W ∈Zt+1;

(A2) if Z¶W , then �t4Z5¶�t4W5, ∀Z1W ∈Zt+1;
(A3) �t4Z+W5=Z+�t4W5, ∀Z∈Zt , W ∈Zt+1;
(A4) �t4�Z5=��t4Z5, ∀Z∈Zt+1, �¾0.
In Ruszczyński (2010, §3), the nested formulation (1)

was derived from general properties of monotonicity and
time consistency of dynamic measures of risk. Condi-
tions (A1)–(A4) are analogous to the axioms of coherent
measures of risk, introduced by Artzner et al. (1999); they
are extended to the conditional setting, as in Riedel (2004),
Ruszczyński and Shapiro (2006b), Scandolo (2003).

The infinite-horizon total risk problem is to find a pol-
icy ç=8�t9

�
t=1 that minimizes the infinite-horizon dynamic

measure of risk:

J�4ç1x15= lim
T→�

JT 4ç1x150 (2)

At this moment, we do not know whether the limit (2)
is well defined and finite; in §5 we provide sufficient
conditions.

As indicated in Ruszczyński (2010), the fundamental dif-
ficulty of formulation (1) is that at time t the value of �t4·5
is Ft-measurable and is allowed to depend on the entire
history ht of the process. Moreover, in Markov decision
processes the probability measure depends on the policy ç,
whereas the setting with dynamic measures of risk is for-
mulated for a fixed measure P . To overcome these diffi-
culties, in Ruszczyński (2010, §4), a new construction of a
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one-step conditional measure of risk was introduced, which
was later extended to the case of randomized policies in
Çavuş and Ruszczyński (2012). We outline this construc-
tion for the case of finite state and control spaces, which is
most relevant for applications.

Given a state x and randomized control �, a probability
measure ��Q4x5 on the product space U×X is defined as
follows:

6��Q4x574u1y5=�4u5Qxy4u50 (3)

The cost incurred at the current stage is given by the func-
tion cx on the product space U×X defined as follows:

cx4u1y5=c4x1u1y51 u∈U1y∈X0 (4)

Let V be the space of all real functions on U×X; it
is finite-dimensional. It is convenient to think of the dual
space V′ as the space of signed measures m on U×X. We
consider the set of probability measures in V′:

M=8m∈V′2 m4U×X5=11m¾090

We use the usual symbol �·1·� to denote the scalar product:

��1m�=
∑

u∈U1y∈X

�4u1y5m4u1y51 �∈V1m∈V′0 (5)

Definition 1. A measurable function �2 V×X×M→�
is a risk transition mapping if for every x∈X and every
m∈M, the function � 7→�4�1x1m5 is a coherent measure
of risk on V.

Risk transition mappings allow for convenient formula-
tion of risk-averse preferences for controlled Markov pro-
cesses, where the cost is evaluated by formula (1). Con-
sider a controlled Markov process 8xt9 with some Markov
policy ç=8�11�210009. For a fixed time t and a function
g2 X×U×X→�, the value of Zt+1 =g4xt1ut1xt+15 is a
random variable, an element of Zt+1. Let �t2 Zt+1 →Zt be
a conditional risk measure satisfying (A1)–(A4). By defini-
tion, �t4g4xt1ut1xt+155 is an element of Zt , that is, it is an
Ft-measurable function on 4ì1F5. In the definition below,
we restrict it to depend on the past only via the current
state xt . We write gx2 U×X→� for the function gx4u1y5=
g4x1u1y5. The composition �4x5�Q4x5 is defined as in (3).

Definition 2. A one-step conditional risk measure
�t2 Zt+1 →Zt is a Markov risk measure with respect to
the controlled Markov process 8xt9, if there exists a risk
transition mapping �t2 V×X×M→� such that for all w-
bounded measurable functions g2 X×U×X→� and for
all feasible decision rules �2 X→P4U5 we have

�t4g4xt1ut1xt+155=�t4gxt 1xt1�4xt5�Q4xt551 a.s. (6)

The right-hand side of formula (6) is parametrized by
xt , and thus it defines an Ft-measurable random vari-
able, whose dependence on the past is carried only via the
state xt .

4. Risk-Transient Models
In this section, we specify to the case of finite state and
control spaces the results of Çavuş and Ruszczyński (2012)
concerning the existence of the limit in (2) and the opti-
mality conditions.

Since we require the risk transition mapping, as a func-
tion of the first argument, to be coherent and finite valued,
it follows that it is continuous with respect to this argument.
Therefore, it admits the following dual representation:

�4�1x1m5= max
�∈A4x1m5

��1��1 (7)

where A4x1m5=¡��401x1m5⊂M is convex and closed
(see Ruszczyński and Shapiro 2006a and references
therein).

Example 1. Based on the first-order mean–semideviation
risk measure analyzed by Ogryczak and Ruszczyński
(1999, 2001) and Ruszczyński and Shapiro (2006a, Exam-
ple 4.2; 2006b, Example 6.1), we can define the corre-
sponding risk transition mapping

�4�1x1m5=��1m�+��4�−��1m�5+1m�1 (8)

with �∈ 60117. Following the derivations of Ruszczyński
and Shapiro (2006a, Example 4.2), we have

A4x1m5=
{

�∈M2 ∃4h∈V5�4u1y5=m4u1y561+h4u1y5

−�h1m�7 ∀4u1y5∈U×X1�h��¶�1h¾0
}

0 (9)

Example 2. Another important example is the average
value at risk (see, inter alia, Ogryczak and Ruszczyński
2002, §4; Pflug and Römisch 2007, §§2.2.3, 3.3.4; Rock-
afellar and Uryasev 2002; Ruszczyński and Shapiro 2006a,
Example 4.3; 2006b, Example 6.2), which has the follow-
ing risk transition counterpart:

�4�1x1m5= inf
�∈�

{

�+
1
�

�4�−�5+1m�

}

1 �∈401150

Following the derivations of Ruszczyński and Shapiro
(2006a, Example 4.3), we obtain

A4x1m5=

{

�∈M2 �4u1y5¶ 1
�
m4u1y5

∀4u1y5∈U×X

}

0 (10)

In the formula (7), the bilinear form is sum over U×X.
If the function � depends only on the state, it is sufficient
to consider the marginal measure

�̄4y5=�4U×8y951 y∈X0 (11)

Denote by L the linear operator mapping each �∈V′ to
the corresponding marginal measure �̄ on X, as defined
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in (11). For every x we can define the set of probability
measures

-�
x =

{

L�2 �∈A4x1�4x5�Q4x55
}

1 x∈X0 (12)

We call the multifunction -� 2 X⇒P4X5, assigning to
each x∈X the set -�

x , the risk multikernel, associated with
the risk transition mapping �4·1 ·1 ·5, the controlled kernel
Q, and the decision rule �. Its measurable selectors M�l
-� are transition kernels.

The concept of a risk multikernel is crucial for the anal-
ysis of the total risk problems.

Definition 3. We call the Markov model with a risk tran-
sition mapping �4·1 ·1 ·5 and with a stationary Markov pol-
icy 8�1�10009 risk transient if a constant K exists such that

�M��¶K for all Ml
T
∑

j=1

4-̃�5j and all T ¾00 (13)

If the estimate (13) is uniform for all Markov policies, the
model is called uniformly risk transient.

The above property is essential for the finite risk evalua-
tion in an infinite-horizon problem. The following theorem
is a special case of Çavuş and Ruszczyński (2012, Theo-
rem 7.1).

Theorem 1. Suppose a stationary policy ç=8�1�10009 is
applied to a controlled Markov model with a Markov risk
transition mapping �4·1 ·1 ·5. If the model is risk transient for
the policy ç, then the limit (2) is finite, and �J�4ç1·5��<
�. If the model is uniformly risk transient, then �J�4ç1·5��

is uniformly bounded. Moreover, for all x1 ∈˜X and any func-
tion f 2 X→�, we have

J�4ç1x15= lim
T→�

�1

(

c4x11u11x25+�2

(

c4x21u21x35+···

+�T−1

(

c4xT−11uT−11xT 5+�T 4c4xT 1uT 1xT+15

+f 4xT+155
)

···
))

0

The condition that the model is risk transient is essential,
as the following example demonstrates.

Example 3. Consider a transient Markov chain with two
states and with the following transition probabilities: Q11 =

1−p, Q12 =p, and Q22 =1, with p∈40115. Only one con-
trol is possible in each state, the cost of each transition from
state 1 is equal to 1, and the cost of the transition from 2
to 2 is 0. Clearly, the time until absorption is a geometric
random variable with parameter p. Let x1 =1. If the limit
(2) is finite, then (skipping the dependence on ç) we have

J�415= lim
T→�

JT 415= lim
T→�

�141+JT−14x255=�141+J�4x2550

In the last equation we used the continuity of �14·5. Clearly,
J�425=0.

Suppose that we are using the average value at risk
from Example 2, with 0<�¶1−p, to define �14·5. From
standard identities for the average value at risk (see, e.g.,
Shapiro et al. 2009, Theorem 6.2), we deduce that

J�415=1+ inf
�∈�

{

�+
1
�
Ɛ64J�4x25−�5+7

}

=1+
1
�

∫ 1

1−�
F −14�5d�1 (14)

where F 4·5 is the distribution function of J�4x25. If �¾p,
all �-quantiles of J�4x25 are equal to J�415. Then a contra-
diction results from the last equation: J�415=1+J�415. It
follows that a composition of average values at risk has no
finite limit, if 0<�¶1−p. On the other hand, if 1−p<
�<1, then

F −14�5=

{

J�425=0 if 1−�¶�<p1

J�415 if p¶�¶10

Let us verify condition (13). From (14) we obtain J�415=
1+441−p5/�5J�415, and thus J�415=�/4�−41−p55.

From (10) we obtain

A4i1m5=

{

4�11�252 0¶�j ¶
mj

�
1 j=1123 �1 +�2 =1

}

0

As only one control is possible, formula (12) simplifies to

-4i5=

{

4�11�252 0¶�j ¶
Qij

�
1j=1123�1 +�2 =1

}

1

i=1120

The effective state space is just ˜X=819, and we conclude
that the effective multikernel is the interval

-̃=

[

01min
(

11
1−p

�

)]

0

For 0<�¶1−p we can select M̃=1∈-̃ to show that
1∈4-̃5j for all j , and thus condition (13) is not satisfied.
On the other hand, if 1−p<�¶1, then for every M̃ ∈-̃
we have 0¶M̃ <1, and condition (13) is satisfied.

The next example verifies Definition 3 for the mean–
semideviation model of Example 1.

Example 4. For the risk transition mapping of Example 1,
we obtain

J�415=Ɛ61+J�4x257+�Ɛ641+J�4x25−Ɛ61+J�4x2575+7

=1+41−p5J�415+�41−p54J�415−41−p5J�4155

=1+41−p+�p41−p55J�4150

We conclude that J�415=1/4p−�p41−p55 for all �∈

60117.
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Let us verify condition (13). From (9) we obtain

A4i1m5=
{

4�11�252 �j =mj41+hj −4h1m1 +h2m2551

0¶hj ¶�1j=112
}

1

-4i5=
{

4�11�252 �j =Qij41+hj −4h1Qi1 +h2Qi2551

0¶hj ¶�1j=112
}

1 i=1120

Calculating the lowest and the largest possible values of �1

we conclude that

-̃= 641−p541−�p5141−p541+�p570

Definition 3 is satisfied for every �∈ 60117.

A question arises as to whether we can easily verify Defi-
nition 3 for a specific transition kernel Q and risk transition
mapping �4·1 ·1 ·5. It is reasonable to assume that in the
dual representation (7) we have m∈A4x1m5 for all m∈M
and all x∈X, which is equivalent to

�4�1x1m5¾��1m� ∀�∈V1x∈X1m∈M0

Although this property is not implied by the axioms of a
coherent measure of risk, it is true for all practically rele-
vant measures of risk, including those of Examples 1 and 2.
Then it follows from (12) that Ql-, and thus Q̃l-̃ (for
simplicity, we skip the superscript � representing the deci-
sion rule). Choosing M=

∑T
j=14Q̃5j in condition (13), we

see that a necessary condition for a model to be risk tran-
sient is that the series

∑�

j=14Q̃5j is convergent. This holds
true if and only if for some finite n we have

�4Q̃5n��<11 (15)

that is, if for every state x∈˜X a path to xA exists in the
graph of Q (clearly, the path length n is then smaller than
the number of states). The reader may consult, for example,
Çinlar (1975, Chapters 5 and 6) for these basic properties
of Markov chains. The condition (15), however, is not suf-
ficient, as shown in Example 3. We need to have it satisfied
for every selection of -̃.

The theorem below provides an easily verifiable suffi-
cient condition for Definition 3. The notation m�� means
that a measure m is absolutely continuous with respect to
a measure �.

Theorem 2. Suppose the set of states ˜X is transient for a
policy 8�1�10009. If m�� for all �∈A4x1m5, all m∈M,
and all x∈˜X, then the model is risk transient.

Proof. Let n be such that condition (15) is satisfied. Con-
sider a selector Sl4-�5n. By the definition of the compo-
sition of multifunctions, S=S1S210001Sn, with Sjl-� , j=

110001n. Then Sj =LMj , with Mj4x5∈A4x1�4x5�Q4x55 for
all x∈X. By assumption, �4x5�Q4x5�Mj4x5 for all j .
Therefore,

Q�4x5=L4�4x5�Q4x55�L4Mj4x55=Sj4x51 j=110001n0

It follows that the graph of Sj contains all edges of the
graph of Q� , for all j=110001n. Consequently, the graph
representing S contains all edges of the graph of 4Q�5n.
In particular, for every state x, we have Sx1xA >0.

If x=xA, then �4xA5�Q4xA5 is a Dirac measure sup-
ported at 4xA1uA5. As �4x1·5 is a coherent measure of risk,
A4xA1�4xA55 is also a Dirac measure supported at 4xA1uA5.
Thus,

-�4xA5=LA4xA1�4xA5�Q4xA55=8�xA
90

It follows that every selector Sj has value 1 at the posi-
tion corresponding to 4xA1xA5. By deleting from Sj the row
and column corresponding to xA, we obtain a selector S̃jl
-̃� . Conversely, every selector S̃jl-̃� can be extended
to a selector Sjl-� by completing every row to 1 and
adding a unit row corresponding to xA. Similar correspon-
dence exists between the products S̃= S̃1S̃210001S̃n and S=

S1S210001Sn.
Since Sx1xA >0 for all x, we have �S̃��<1. The mul-

tikernel -̃� is closed, and thus �∈ 60115 exists such that
�S̃��<� for all S̃l4-̃�5n. We can now apply the last
estimate to (13). Every selector

Ml
T
∑

j=1

4-̃�5j

can be written as a sum of selectors:

M=

T
∑

j=1

Mj1 with Mjl4-̃�5j 0

Because �Mj��¶��j/n�, we obtain the following uniform
bound:

�M��¶
�
∑

j=1

��j/n�
=

n

1−�
0

In the formulas above, �c� denotes the integer round down
of a real number c. �

The examples below illustrate application of Theorem 2.

Example 5. Let us consider the average value at risk from
Example 2, but this time combined with the expected value
with a coefficient �∈ 60115 as follows:

�4�1x1m5=41−�5��1m�+� inf
�∈�

{

�+
1
�

�4�−�5+1m�

}

1

�∈401150 (16)

Using (10), we can write the subdifferential:

A4x1m5=¡��401x1m5

=41−�5m+�

{

�∈M2 �4u1y5¶ 1
�
m4u1y5

∀4u1y5∈U×X

}

0 (17)
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Çavuş and Ruszczyński: Methods for Risk-Averse Undiscounted Markov Models
406 Operations Research 62(2), pp. 401–417, © 2014 INFORMS

We immediately see that every �∈A4x1m5 satisfies the
inequality �¾41−�5m and thus m��. The sufficient
condition of Theorem 2 is satisfied. In particular, for the
model discussed in Example 3 with 0<�¶1−p, proceed-
ing similarly to (14), we obtain

J�415=1+41−�541−p5J�415+�J�415

=1+61−41−�5p7J�4150

If �∈ 60115, this equation has a solution for all p∈40117.

Example 6. For the mean–semideviation model of Exam-
ple 1, we see that every �∈A4x1m5 satisfies the relation

�4u1y5=m4u1y561+h4u1y5−�h1m�7 ∀4u1y5∈U×X1

with 0¶h4·1 ·5¶�. For any �∈ 60117, the expression in
brackets is strictly positive for all 4u1y5, and thus m��.
The model is risk transient for every transient Markov
chain.

5. Dynamic Programming Equations
The main findings of Çavuş and Ruszczyński (2012) sub-
stantially simplify in the case of finite state and control
spaces. The following theorem is a special case of Çavuş
and Ruszczyński (2012, Thorem 7.2).

Theorem 3. Suppose a controlled Markov model with a
Markov risk transition mapping �4·1 ·1 ·5 is risk transient
for the stationary Markov policy ç=8�1�10009. Then a
function v2 X→� satisfies the equations

v4x5=�4cx+v1x1�4x5�Q4x551 x∈˜X1 (18)

v4xA5=01 (19)

if and only if v4x5=J�4ç1x5 for all x∈X.

Let ç be the set of all policies. Define the optimal value
function

J ∗4x5= inf
ç∈ç

J�4ç1x50 (20)

The following theorem follows from Çavuş and Rusz-
czyński (2012, Theorems 8.1, 8.2].

Theorem 4. Assume that the conditional risk measures �t ,
t=110001T , are Markov and the model is uniformly risk
transient. Then a function v2 X→� satisfies the equations

v4x5= inf
�∈P4U4x55

�4cx+v1x1��Q4x551 x∈˜X1 (21)

v4xA5=01 (22)

if and only if v4x5=J ∗4x5 for all x∈X. Moreover, the
minimizer �∗4x5, x∈˜X, on the right-hand side of (21)
exists and defines an optimal stationary Markov policy
ç∗ =8�∗1�∗10009 in problem (20).

In the risk-averse case, randomized policies may be
strictly superior to deterministic policies. In some cases,
however, it is possible to prove that deterministic policies
are among the optimal policies. It turns out that we can
prove this for the combination of the average value at risk
and the expected value from Example 5. Interchanging the
calculation of the expected value and the infimum in (16),
we obtain the following lower bound:

�4�1x1��Q4x55

=41−�5
∑

u∈U4x5

∑

y∈X

�4u5Qxy4u5�4u1y5

+� inf
�∈�

∑

u∈U4x5

∑

y∈X

�4u5Qxy4u5

{

�+
1
�
4�4u1y5−�5+

}

¾41−�5
∑

u∈U4x5

�4u5
∑

y∈X

Qxy4u5�4u1y5

+�
∑

u∈U4x5

�4u5 inf
�∈�

∑

y∈X

Qxy4u5

{

�+
1
�
4�4u1y5−�5+

}

0

The above inequality becomes an equation for every Dirac
measure �. Substituting this expression into the right-hand
side of (21) we obtain the following inequality:

inf
�∈P4U4x55

�4cx+v1x1��Q4x55

¾ inf
�∈P4U4x55

∑

u∈U4x5

�4u5 inf
�∈�

∑

y∈X

Qxy4u5

[

41−�54c4x1u1y5

+v4y55+�

{

�+
1
�
4c4x1u1y5+v4y5−�5+

}]

0

Because the right-hand side achieves its minimum over �∈

P4U4x55 at a Dirac measure concentrated at one point of
U4x5, and both sides coincide in this case, the minimum of
the left-hand side is also achieved at such measure. Con-
sequently, for risk transition mappings of form (16), deter-
ministic Markov policies are optimal.

6. Risk-Averse Value Iteration Method
To find the unique solution J ∗ of the dynamic program-
ming equations (21) and (22), we adopt and extend the
classical value iteration method of Bellman (1957). A sim-
ilar method has been suggested in Ruszczyński (2010) for
risk-averse infinite-horizon discounted models with deter-
ministic policies. We extend it to undiscounted models with
randomized policies. This requires different techniques,
because the dynamic programming operators do not have
the contraction property.

The value iteration method uses Equations (21) and (22)
to construct as sequence 8vk9 of approximations of J ∗ in
the following iterative way:

vk+14x5= min
�∈P4U4x55

�4cx+vk1x1��Q4x551

x∈˜X1k=0111210001

vk+14xA5=01 k=011121000 0

(23)
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Çavuş and Ruszczyński: Methods for Risk-Averse Undiscounted Markov Models
Operations Research 62(2), pp. 401–417, © 2014 INFORMS 407

We provide the steps of this method in Algorithm 1. The
algorithm stops when the successive value functions do not
change. However, in practice, an approximate satisfaction
of this stopping condition is required.

Algorithm 1 (Risk-averse value iteration)
1: procedure ValueIteration(v0)
2: k←0
3: repeat
4: k←k+1
5: vk4x5← min

�∈P4U4x55
�4cx+vk−11x1��Q4x551 x∈˜X

6: vk4xA5←0
7: until vk =vk−1

8: �∗4x5← argmin
�∈P4U4x55

�4cx+vk1x1��Q4x551 x∈˜X

9: return vk, �∗

10: end procedure

We now focus on the convergence of the method. Let
us define the operators $2 V→V and $� 2 V→V as
follows:

6$v74x5= min
�∈P4U4x55

�4cx+v1x1��Q4x551 x∈˜X1 (24)

6$�v74x5=�4cx+v1x1�4x5�Q4x551 x∈˜X1 (25)

where �4x5∈P4U4x55. To prove the convergence, we first
provide the following two lemmas similar to Lemmas 1
and 3 in Ruszczyński (2010).

Lemma 1. For any � and � in V such that �¾�, we have
the relations $��¾$�� and $�¾$�.

Proof. The proof is similar to the proof of Lemma 1 in
Ruszczyński (2010), which we will provide here for com-
pleteness. From the dual representation (7), we have

6$�v74x5= max
�∈A4x1�4x5�Q4x55

�cx+v1��0 (26)

Since the elements of sets A4x1�4x5�Q4x55 are just prob-
ability measures, $��¾$�� for �¾�. Taking the min-
imum of both sides with respect to �, we also obtain
$�¾$�. �

Lemma 2. Suppose the controlled Markov model is uni-
formly risk transient. Then, for any function �2 X→�,
with �4xA5=0, the following implications are true:

(i) if �¶$�, then �¶J ∗;
(ii) if �¾$�, then �¾J ∗.

Proof. (i) If �¶$�, then for any �∈P4U5, we have

�¶$�¶$��0 (27)

If we apply the operator $� to relation (27), then from the
monotonicity property stated in Lemma 1, we obtain the
following chain of inequalities:

�¶$�¶$��¶$�$�¶ 6$�7
2�0

Proceeding in this way, we get

�¶ 6$�7
T�1 T =1121000 0 (28)

Let the Markov policy ç=8�1�10009 result in the cost
sequence Zt =c4xt−11ut−11xt51 t=2131000 0 It is clear from
Equation (25) that the right-hand side of (28) is equal to
the total risk in a finite-horizon problem with the final state
cost vT+1 ≡� and with policy 8�10001�9. Thus, for every
x1 ∈˜X, the following inequality is satisfied:

�4x15¶ 66$�7
T�74x15

=�1

(

c4x11u11x25+�24c4x21u21x35+···

+�T−14c4xT−11uT−11xT 5+�T 4c4xT 1uT 1xT+15

+�4xT+155
)

···
))

0

Passing to the limit with T →� and using Theorem 1, we
conclude that

�4x5¶J�4ç1x51 x∈X0

Since the above inequality holds true for any stationary
Markov policy ç=8�1�10009, then �¶J ∗.

(ii) If �¾$�, then �∈P4U5 exists such that

�¾$��=$�0 (29)

If we apply the operator $� to both sides of the above rela-
tion, then from the monotonicity property of the operator
$� we get

�¾ 6$�7
T�1 T =1121000 0

Similar to the proof of part (i),

�4x15¾ 66$�7
T�74x15

=�1

(

c4x11u11x25+�2

(

c4x21u21x35+···

+�T−1

(

c4xT−11uT−11xT 5+�T 4c4xT 1uT 1xT+15

+�4xT+155
)

···
))

0 (30)

If we pass to the limit with T →� in (30), again from
Theorem 1 we obtain

�4x5¾J�4ç1x5¾J ∗4x51 x∈X1

as postulated. �
We are now ready to prove the main convergence theo-

rem of this section.

Theorem 5. Suppose the assumptions of Theorem 4 are
satisfied, and let v0 ≡0.

(i) If c4x1u1y5¶0 for all x1y∈X and u∈U4x5, then the
sequence 8vk9 obtained by the value iteration method is
nonincreasing and convergent to the unique solution J ∗ of
(21) and (22).
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(ii) If c4x1u1y5¾0 for all x1y∈X and u∈U4x5, and the
multifunction A4x1·5 is continuous for all x∈X, then the
sequence 8vk9 is nondecreasing and convergent to J ∗.

Proof. (i) Owing to the monotonicity axiom (A2) and the
fact that c4x1u1y5¶0, we obtain v0¾$v0. By virtue of
Lemmas 1 and 2,

0¾vk¾vk+1¾J ∗1 k=011121000 0 (31)

We have a nonincreasing and bounded sequence that is thus
pointwise convergent to some limit v�¾J ∗. For all x∈

X and all �∈P4U4x55, the function �4·1x1��Q4x55, as
a finite-valued convex function, is continuous. Let us fix
an arbitrary x∈X. Since the function �4·1x1��Q4x55 is
nondecreasing, we conclude that

�4cx+vk1x1��Q4x55↓�4cx+v�1x1��Q4x551

as k→�1∀�∈P4U4x550 (32)

By the value iteration (23),

vk+14x5¶�4cx+vk1x1��Q4x551 ∀�∈P4U4x550 (33)

Passing to the limit with k→� on the left- and right-hand
sides of (33) and using (32), we conclude that

v�4x5¶�4cx+v�1x1��Q4x551 ∀�∈P4U4x550

Because this is true for all x∈˜X and all �∈P4U4x55, it
follows that

v�¶$v�0

By Lemma 2, v�¶J ∗, and thus v� =J ∗, which completes
the proof in this case.

(ii) Owing to the monotonicity axiom (A2) and the fact
that c4x1u1y5¾0, proceeding similarly to case (i), we con-
clude that

vk ↑v�¶J ∗1 as k→�0 (34)

Since the multifunction A4x1·5 is continuous, the map-
ping 4v1�5 7→�4cx+v1x1��Q4x55 is also continuous (see,
e.g., Aubin and Frankowska 1990, Theorem 1.4.16). By the
same token, the mapping

v 7→ min
�∈P4U4x55

�4cx+v1x1��Q4x55

is continuous as well. It follows that for all x∈X,

v�4x5= lim
k→�

vk+14x5= lim
k→�

min
�∈P4U4x55

�4cx+vk1x1��Q4x55

= min
�∈P4U4x55

�4cx+v�1x1��Q4x550

Thus v� =$v�, as postulated. �
The assumption of all nonnegative or all nonpositive

costs corresponds to similar conditions in risk-neutral mod-
els (see, e.g., Puterman 1994, Chapter 7). In our case, how-
ever, due to the nonlinearity of the risk mappings, stronger
assumptions are required in case (ii).

7. Risk-Averse Policy Iteration Method

7.1. The Method

As an alternative way to solve the dynamic programming
equations (21) and (22), we suggest a risk-averse policy
iteration method that is analogous to the classical policy
iteration method of Howard (1960). A similar approach
was proposed in Ruszczyński (2010) for risk-averse dis-
counted infinite-horizon problems with the feasible set
being restricted to deterministic policies.

At iteration k of the method, for a stationary policy çk =

8�k1�k10009, the policy evaluation step solves the following
system of equations to find J�4ç

k1x5=vk4x5, x∈X:

v4x5=�4cx+v1x1�k4x5�Q4x551 x∈˜X1 (35)

v4xA5=00 (36)

Then the policy improvement step finds a new decision rule
�k+1 if it gives an improved value function:

�k+14x5← argmin
�∈P4U4x55

�4cx+vk1x1��Q4x551 x∈˜X0 (37)

These steps are repeated until the value function does
not change. The operation of the method is presented in
Algorithm 2.

Algorithm 2 (Risk-averse policy iteration)
1: procedure PolicyIteration(�0)
2: k←0
3: repeat
4: Policy Evaluation Step:
5: v4xA5←0
6: Solve the equation v4x5=�4cx+v1x1�k4x5�Q4x55,

x∈˜X
7: vk ←v
8: Policy Improvement Step:
9: v̄4xA5←0

10: v̄4x5← min
�∈P4U4x55

�4cx+vk1x1��Q4x551 x∈˜X

11: for x∈˜X do
12: if v̄4x5<vk4x5 then
13: �k+14x5← argmin

�∈P4U4x55

�4cx+vk1x1��Q4x55

14: else
15: �k+14x5←�k4x5
16: end if
17: end for
18: k←k+1
19: until v̄=vk−1

20: return v̄, �k

21: end procedure

7.2. Convergence

Let the operators $ and $� be defined as (24) and
(25), respectively. Then (35) can be equivalently written as
follows:

vk =$�kvk0 (38)

Similarly, (37) is equivalent to the equation

$�k+1vk =$vk0 (39)
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Theorem 6. Suppose the assumptions of Theorem 4 are
satisfied. Then for any �0 such that �04x5∈P4U4x55,
x∈X, the sequence 8vk9 obtained by the policy iteration
method is nonincreasing and pointwise convergent to the
unique solution J ∗ of (21) and (22).

Proof. Using Equations (38) and (39), we obtain

$�k+1vk =$vk¶$�kvk =vk0

Applying the operator $�k+1 to above relation, from the
monotonicity property given in Lemma 1 we deduce that

6$�k+1 7T vk¶$�k+1vk =$vk¶vk1 T =1121000 0 (40)

Relation (40) can be equivalently written as

�1

(

c4x11u11x25+�24c4x21u21x35+···+

�T 4c4xT 1uT 1xT+15+vk4xT+155···5
)

¶ 6$vk74x15¶vk4x151

where c4xt−11ut−11xt51 t=21310001T +1, is the cost
sequence resulting from the policy çk+1 =8�k+11�k+11
0001�k+19. Passing to the limit with T →�, from The-
orems 1 and 3 we conclude that the sequence 8vk9 is
nonincreasing:

vk+14x5=J�4ç
k+11x5¶ 6$vk74x5¶vk4x51

x∈˜X1k=011121000 0 (41)

Since vk¾J ∗, the sequence 8vk9 is monotonically conver-
gent to some limit v�¾J ∗. The function �4·1x1��Q4x55
is nondecreasing, and thus

�4cx+vk1x1��Q4x55↓�4cx+v�1x1��Q4x551

as k→�1∀�∈P4U4x550 (42)

The left inequality in (41) also implies that

vk+14x5¶�4cx+vk1x1��Q4x551 ∀�∈P4U4x550 (43)

Passing to the limit with k→� on both sides of (43) and
using (42), we conclude that

v�4x5¶�4cx+v�1x1��Q4x551 ∀�∈P4U4x550

Because this is true for all x∈˜X and all �∈P4U4x55, it
follows that

v�¶$v�0

By Lemma 2, v�¶J ∗, and thus v� =J ∗. �

Observe that the convergence of the policy iteration
method is not dependent on the cost function being non-
negative or nonpositive.

7.3. Specialized Nonsmooth Newton Method

In the evaluation step of the policy iteration method, we
have to solve a system of nonlinear equations (35), which
is nonsmooth for all risk mappings, except for the expected
value mapping. To solve this system of equations, we adopt
the specialized nonsmooth Newton method of Ruszczyński
(2010), which uses the idea of the nonsmooth Newton
method with linear auxiliary problems (for details, see
Klatte and Kummer 2002, §10.1; Kummer 1988).

To find the unique solution of (35) with v4xA5=0, we
will solve iteratively an appropriate linear approximation
of this system. Using the dual representation (7), the equa-
tion (35) can be equivalently written as follows:

v4x5= max
�∈A4x1�k4x5�Q4x55

∑

y∈X

∑

u∈U4x5

6c4x1u1y5+v4y57�4u1y51

x∈˜X0 (44)

Let vkl be an approximation of the solution of (44) at itera-
tion l of the nonsmooth Newton method. In the description
of the method, for simplicity of notation, we omit the index
k, which remains fixed throughout the iterations. We find

Ml4· �x5∈ argmax
�∈A4x1�k4x5�Q4x55

∑

y∈X

∑

u∈U4x5

6c4x1u1y5+vl4y57�4u1y51

x∈˜X0 (45)

The maximum in Equation (45) is attained because the set
A is bounded, convex, and closed, and the function being
maximized is linear. Substituting Ml into (44), we obtain
the following linear equation:

v4x5=
∑

y∈X

∑

u∈U4x5

6c4x1u1y5+v4y57Ml4u1y �x51 x∈˜X0 (46)

The solution of this equation is our next approximation
vl+1, and the iteration continues.

We will show that the sequence 8vl9 obtained by this
method converges to the unique solution of (35). At first,
we need to provide some technical results.

Let us define the operator 2l as follows:

62lv74x5=
∑

y∈X

∑

u∈U4x5

6c4x1u1y5+v4y57Ml4u1y �x51 x∈˜X0

It is clear that the equation (46) can be equivalently written
as v=2lv.

Lemma 3. For any function �0 on X, with �04xA5=0, the
sequence

�k+1
=2l�

k1 k=0111210001 (47)

is convergent to the unique solution of Equation (46).
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Proof. Define �k =�k+1 −�k. It follows from (47) that

�k+1
=Ml�

k1 k=011121000 0

Because each �k is a function of x only, we may consider
the marginal measures

M̃l4B �x5=Ml4U×B �x51 B∈B4˜X50

Moreover, �k4xA5=0, and we may restrict our considera-
tions to functions on the effective state space ˜X. We obtain

�k+1
=M̃l�

k1 k=011121000 0

Consequently,

�k+1
=�0

+

k
∑

j=0

�j
=�0

+

k
∑

j=0

4M̃l5
j�00 (48)

By assumption, the model is risk transient, and M̃l is a
measurable selector of the risk multikernel -̃�k

. It follows
from (13) that
∥

∥

∥

∥

�
∑

j=0

4M̃l5
j�0

∥

∥

∥

∥

¶
�
∑

j=0

�4M̃l5
j
���0

�<�0

Consequently, the series (48) is convergent to some
limit ��. The affine operator 2l is continuous, and thus
passing to the limit in (47) we conclude that �� satisfies
Equation (46). If another solution � to this equation existed,
then their difference �=��−� would satisfy the equation

�=M̃l�0

Iterating, we conclude that

�=4M̃l5
k�1 k=1121000 0

By (13), the right-hand side converges to 0, as k→�, and
thus �=0. �

We are now ready to prove convergence of the Newton
method.

Theorem 7. For any initial v0, the sequence 8vl9 obtained
by the Newton method is nondecreasing and convergent to
the unique solution v∗ of (35).

Proof. By definition, for all v we have

2lv¶$�kv0 (49)

The operator 2l is monotone owing to the fact that Ml4· �x5,
x∈X, are probability measures. Therefore, if we apply
the operator 2l to inequality (49), and use (49) again, we
obtain

62l7
2v¶2l$�kv¶ 6$�k 72v0

Iterating in this way, we get

62l7
T v¶ 6$�k 7T v1 T =1121000 0 (50)

Passing to the limit with T →�, from Lemma 3 we deduce
that the left-hand side of (50) converges to vl+1. Moreover,
the right-hand side converges to the unique solution v̂ of
(44). Therefore, we get that vl+1¶ v̂, and thus the sequence
8vl+19 is bounded from above. We will show that it is also
nondecreasing.

For every x∈X, we have

vl4x5=
∑

y∈X

∑

u∈U4x5

6c4x1u1y5+vl4y57Ml−14u1y �x5

¶ max
�∈A4x1�k4x5�Q4x55

∑

y∈X

∑

u∈U4x5

6c4x1u1y5+vl4y57�4u1y5

=
∑

y∈X

∑

u∈U4x5

6c4x1u1y5+vl4y57Ml4u1y �x5

= 6$�kvl74x5= 62lvl74x50

If we apply 2l to above relation, owing to its monotonicity
property, we obtain

vl¶$�kvl¶ 62l7
T vl1 T =1121000 0 (51)

The right-hand side converges to vl+1, as T →�.
Therefore,

vl¶$�kvl¶vl+11 (52)

and the sequence 8vl9 is nondecreasing. Since it is also
bounded from above, it has some limit v�. Passing to the
limit with l→� in (52), we obtain v� =$�kv�, and thus
v� is the unique solution of (35). �

7.4. Policy Evaluation by Convex Optimization

An alternative way to solve the policy evaluation equa-
tions (35) and (36) is to formulate and solve the following
equivalent convex optimization problem:

min
∑

x∈X

v4x5 (53)

s.t. v4x5¾�4cx+v1x1�k4x5�Q4x551 x∈˜X1 (54)

v4xA5=00 (55)

Since the risk transition mapping �4·1x1�k4x5�Q4x55 is
convex with respect to the first argument for all x∈˜X, the
constraint (54) is convex.

Theorem 8. Suppose the assumptions of Theorem 3 are
satisfied. Then the solution of problem (53)–(55) is equal
to J�4ç

k1·5.
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Proof. By Theorem 3, the value function J�4ç
k1·5, which

is the unique solution of the system (18)–(19), satisfies
(54)–(55). Suppose the decision rule �k is the only feasible
decision rule in the problem. Then every feasible solution v
of problem (53)–(55) satisfies (54), which can be written as
v¾$v. By virtue of Lemma 2(ii), v4·5¾J�4ç

k1·5. There-
fore, J�4ç

k1·5 is an optimal solution of problem (53)–(55).
Any other optimal solution v̄ satisfies the inequality v̄4·5¾
J�4ç

k1·5 and the equation
∑

x∈X

v̄4x5=
∑

x∈X

J�4ç
k1x50

It must, therefore, coincide with J�4ç
k1·5. �

The specialized Newton method discussed in §7.3 can be
interpreted as a constraint linearization method for problem
(53)–(55). We can also employ other methods of convex
programming to this problem, in particular, exploiting the
dual representation (7).

8. Numerical Illustration

8.1. Credit Card Problem

In this section, we illustrate our results on a simplified and
modified version of the credit card example discussed by

Figure 1. The credit card model.

q(1, l), (1, m)(m)

q(3, m), (3, h)(h)

q(1, l), (2, l)(l)

r ((1, l), l)

q(1, l), (1, l)(l)

r((1, l), l)
r ((1, l), m)

q(3, h), (3, h)(h)

r ((3, h), h)r ((3, m), h)

q(1, l), D(l)

d ((1, l), D)

r ((1, l), l)

qD, D(·) = 1
r (D,.) = 0

d (D, D) = 0

q(3, h), (2, h)(h)

r ((3, h), h)

qC, C(·) = 1

r (C,.) = 0
d (C, C) = 0

q(3, h), C(h)

d ((3, h), C)
r ((3, h), h)

1, m 1, h

2, m 2, h

3, h

D

C

2, l

3, l 3, m

1, l

So and Thomas (2011). We use a discrete-time, absorbing
Markov decision chain illustrated in Figure 1.

The states of the system are denoted by 4i1j5, i=11213,
j=“l”1“m”1“h”, where i represents the type of the cus-
tomer, and j is the credit limit given. We consider three
customer types with i=1 representing a customer who does
not pay the debt in a timely manner, type i=3 repre-
senting a responsible customer, and type i=2 an interme-
diate level customer. There are three credit limits: “low”
(denoted by “l”), “medium” (denoted by “m”), and “high”
(denoted by “h”). The state space includes two additional
states “account closure” (denoted by “C’’) and “default”
(denoted by “D’’), both of which are absorbing states.

Following So and Thomas (2011), we do not consider
decreasing the credit limit at any of the states. Two con-
trols are possible for states 4i1l5, i=11213, either to keep
the credit limit unchanged (represented by “l”) or increase
it to the medium limit (represented by “m”). Similarly, for
states 4i1m5, i=11213, the admissible controls are “m” and
“h.” The states 4i1h5, i=11213 have one possible control:
keep the credit limit at the high level (represented by “h”).
There is only one formal control “Continue” at the absorb-
ing states C and D.

The decision to keep the credit limit unchanged results in
a transition to the same state, or to a state with a different
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customer type but the same credit limit, or to one of the
absorbing states C and D. For example, under the control
“m,” the possible transitions from the state 421m5 are to the
states 411m5, 421m5, 431m5, C, and D. If it is decided to
increase the credit limit, then with probability one a transi-
tion is made to a new state with the same customer type as
the current state, but with the higher credit limit. For exam-
ple, if the credit limit is increased to “h” at state 421m5,
then a transition to state 421h5 will occur with probabil-
ity one.

The rewards are the profits obtained at each time step.
We consider two different profit values: the first one,
denoted by r4x1u5, x∈X, u∈U4x5, is the profit obtained
at state x under the control u, and the second one, d4x1y5,
x∈X, y∈X, is the profit collected from the transition from
state x to state y. We assume that r4x1u5=0, x∈8C1D9,
u∈U4x5, and d4C1C5=0, d4D1D5=0.

The objective is to maximize the one-time profit one
would be willing to collect at time zero instead of a random
sequence of future profits. To apply our theory, we will
work with the negatives of profit values and their present
time equivalents represented by measures of risk. The cor-
responding minimization problem of a dynamic measure of
risk will be solved. We assume that feasible policies are
limited to deterministic ones, and we use the first-order
mean–semideviation (see Equation (8)) as the risk measure.
Then, the dynamic programming Equation (21) takes on
the following form:

v4x5= min
u∈U4x5

{

∑

y∈X

4v4y5−r4x1u5−d4x1y55qx1y4u5

︸ ︷︷ ︸

expected value �

+�
∑

z∈X

4v4z5−r4x1u5−d4x1z5−�5+qx1z4u5

︸ ︷︷ ︸

semideviation

}

1

x∈˜X1 (56)

where qx1y4u5 is the probability of making a transition to
state y∈X from x∈X under the control u∈U4x5. Using
the fact that

∑

y∈Xr4x1u5qx1y4u5=r4x1u5, we can rewrite
(56) as follows:

v4x5= min
u∈U4x5

{

−r4x1u5+
∑

y∈X

4v4y5−d4x1y55qx1y4u5

︸ ︷︷ ︸

�̄

+�
∑

z∈X

4v4z5−d4x1z5−�̄5+qx1z4u5

}

1 x∈˜X0 (57)

We use both value and policy iteration methods to solve
the dynamic programming Equation (57) with v4C5=0 and
v4D5=0. As explained in §6, value iteration is just the
iteration of Equation (57).

To find the unique solution of the nonsmooth equation
system appearing in the policy evaluation step of the pol-
icy iteration algorithm (see Algorithm 2), we apply New-
ton’s method of §7.3 and the convex optimization method
of §7.4.

To calculate Ml+1 at iteration l+1 of Newton’s method,
we solve the following optimization problem for all x∈X:

max
�1h

∑

y∈X

4vl4y5−r4x1�k4x55−d4x1y55�4y5

s.t. �4y5=qx1y4�
k4x55

(

1+h4y5−
∑

z∈X

h4z5qx1z4�
k4x55

)

1

y∈X1
∑

y∈X

�4y5=11

h4y5¶�1 y∈X1

�4y51h4y5¾01 y∈X1

where �k4x5∈U4x51x∈X is the decision rule at iteration
k of the policy iteration algorithm. Then, vl+1 is calculated
by solving the following system of linear equations:

v4x5=
∑

y∈X

4v4y5−r4x1�k4x55−d4x1y55�4y51 x∈˜X1

v4D5=01 v4C5=00

The convex optimization problem (53)–(55) with first-
order mean–semideviation risk measure has the following
form:

min
v1�1�

∑

x∈X

v4x5

s.t. �4x5=
∑

y∈X

4v4y5−r4x1�k4x55−d4x1y55qx1y4�
k4x551

x∈˜X1

v4x5¾�4x5+�
∑

y∈X

�4x1y5qx1y4�
k4x551 x∈˜X1

�4x1y5¾v4y5−r4x1�k4x55−d4x1y5−�4x51

x∈˜X1 y∈X1

�4x1y5¾01 x∈˜X1y∈X1

v4xA5=00

In this problem, �4x5 represents the expected value of
one-step risk accumulation at state x, and �4x1y5 is the
upper semideviation in the case where transition is made
to state y. Because we are using the first-order mean–
semideviation, the problem is in fact linear.

8.2. Numerical Results

For numerical illustration, we used the transition probabil-
ities given in Table 1 with “—” signs indicating transition
probabilities equal to zero.
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Table 1. Transition probabilities.

Limit State (1, l) (1, m) (1, h) (2, l) (2, m) (2, h) (3, l) (3, m) (3, h) C D

l (1, l) 0084 — — 0.120 — — 0.01 — — 0.001 0.029
(1, m) — — — — — — — — — — —
(1, h) — — — — — — — — — — —
(2, l) 00040 — — 0.739 — — 0.200 — — 0.011 0.010

(2, m) — — — — — — — — — — —
(2, h) — — — — — — — — — — —
(3, l) 00004 — — 0.010 — — 0.963 — — 0.020 0.003

(3, m) — — — — — — — — — — —
(3, h) — — — — — — — — — — —

m (1, l) — 1 — — — — — — — — —
(1, m) — 0.835 — — 0.100 — — 0.005 — 0.005 0.055
(1, h) — — — — — — — — — — —
(2, l) — — — — 1 — — — — — —

(2, m) — 0.049 — — 0.860 — — 0.073 — 0.002 0.016
(2, h) — — — — — — — — — — —
(3, l) — — — — — — — 1 — — —

(3, m) — 0.006 — — 0.070 — — 0.914 — 0.004 0.006
(3, h) — — — — — — — — — — —

h (1, l) — — — — — — — — — — —
(1, m) — — 1 — — — — — — — —
(1, h) — — 0.829 — — 0.060 — — 0.001 0.010 0.100
(2, l) — — — — — — — — — — —

(2, m) — — — — — 1 — — — — —
(2, h) — — 0.055 — — 0.858 — — 0.060 0.001 0.026
(3, l) — — — — — — — — — — —

(3, m) — — — — — — — — 1 — —
(3, h) — — 0.009 — — 0.079 — — 0.900 0.002 0.010

State and control dependent profit values r4x1u5, x∈X,
u∈U4x5, are provided in Table 2, and the transition profits
d4x1y5, x∈X, y∈X, are given in Table 3. The empty cells
in Table 2 mean that the corresponding state–control pairs
are inadmissible. The “—” signs in Table 3 mean that cor-
responding transition profits are zero. All data used in this
example are not real and do not correspond to a real case,

Table 2. Profit values for state and control pairs.

State

Limit (1, l) (1, m) (1, h) (2, l) (2, m) (2, h) (3, l) (3, m) (3, h)

l 270 18 −10
m 344 300 47 30 5 4
h 21240 1,920 650 560 90 80

Table 3. Transition profits.

State (1, l) (1, m) (1, h) (2, l) (2, m) (2, h) (3, l) (3, m) (3, h) C D

(1, l) — — — — — — — — — 40 −550
(1, m) — — — — — — — — — 100 −31700
(1, h) — — — — — — — — — 11000 −151000
(2, l) — — — — — — — — — 18 −400
(2, m) — — — — — — — — — 30 −21500
(2, h) — — — — — — — — — 500 −101000
(3, l) — — — — — — — — — 5 −250
(3, m) — — — — — — — — — 15 −11250
(3, h) — — — — — — — — — 300 −41500

but they are determined on the basis of partial information
provided by So and Thomas (2011).

We solved two different problems for this example. In
the first problem, we assumed that the decision makers,
namely, creditors, are risk neutral. In the second problem,
we considered risk-averse decision makers. Since, in gen-
eral, the operator $2 V→V (see (24)) will be nonlinear,
we did not allow randomized policies for the risk-averse
case of this example, and we limited feasible policies to
deterministic ones.

The optimal policies and values of the expected value
(risk-neutral) problem are given in Table 4. Here, the opti-
mal value function is the negative of the expected total
profit function earned under the optimal policy.

We modeled the risk-averse problem using the first-order
mean–semideviation as the risk measure and solved it with
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Table 4. Optimal values and policy for the expected value problem.

State (1, l) (1, m) (1, h) (2, l) (2, m) (2, h) (3, l) (3, m) (3, h)

Values v4·5 −71407060 −71063060 −41823060 −71179009 −71132009 −61482009 −61262099 −61257099 −51910098
Policy m h h m h h m m h

different values of the parameter �. Optimal policies and
values have been calculated using the two iterative meth-
ods presented in this paper. The algorithms have been
coded in MATLAB R2011b and the MOSEK optimization
toolbox for MATLAB (see MOSEK 2012) has been inte-
grated. All numerical experiments have been carried out on
a PC with an Intel Core i7-2620M 2.70 GHz processor and
6 GB of RAM.

The convergence of the value iteration method is proved
in Theorem 5 for problems with all nonpositive or nonneg-
ative cost values. In this example, the profit values are not
restricted to being all nonnegative or nonpositive; therefore,
Theorem 5 does not apply here. However, using Lemma 2,
we can state that if at any iteration k of the value itera-
tion method the value function vk satisfies the relation vk¶
$vk =vk+1, then (using an argument similar to the proof
of Theorem 5) the remaining sequence obtained by the
value iteration method will be nondecreasing and conver-
gent to the optimal value function J ∗. Similarly, if vk¾
$vk =vk+1, a nonincreasing remaining sequence converg-
ing to J ∗ is generated. For this example, the initial value
function was set to zero, v0 ≡0, for the value iteration
method. We observed that even when the sequence was not
monotonic at initial iterations of the value iteration algo-
rithm, it became monotonic very soon, which guaranteed
convergence. The initial value function was also set to zero
for Newton method, and the initial policy used for the pol-
icy iteration method was to keep the credit limit unchanged.

The optimal values and policies for the risk-averse prob-
lem are summarized in Tables 5 and 6.

Since the optimal solutions of both problems for the
absorbing states C and D are trivial, they are not provided
in the tables. The optimal value is always zero for the

Table 5. Optimal values, J ∗4·5, of the risk-averse problem for different �’s.

State

� (1, l) (1, m) (1, h) (2, l) (2, m) (2, h) (3, l) (3, m) (3, h)

0.025 −71006047 −61662047 −41422047 −61779078 −61732078 −61082078 −51890073 −51885073 −51529064
0.1 −61022033 −51557060 −31317060 −51680078 −51633078 −41983078 −41871023 −41866023 −41484051
0.2 −41879094 −41271036 −21031036 −41404095 −41357095 −31707095 −31694024 −31689024 −31280065
0.3 −31890029 −31150033 −910033 −31298083 −31251083 −21601083 −21684025 −21679025 −21246070
0.4 −31025084 −21166080 73020 −21331068 −21284068 −11634068 −11814065 −11809065 −11351035
0.5 −21263092 −11296049 943051 −11477088 −11430088 −780088 −11065010 −11060010 −568084
0.6 −11583041 −519029 11720071 −712082 −665082 −15082 −419064 −414064 129033
0.7 −973084 178030 21418030 −25064 21036 671036 137076 142076 753034
0.8 −500031 600094 31047074 493020 641034 11291034 633092 638092 11311099
0.9 −139064 879055 31618058 878060 11053013 11853064 11004058 11009058 11814067
1 −2070 989073 41140069 994050 11145021 21375002 11095070 11100070 21299066

absorbing states, and the formal control “Continue” is the
optimal control.

When we work with the negatives of profits, the param-
eter � of the first-order mean–semideviation can be inter-
preted as a penalty parameter that penalizes the upper devi-
ations from the mean. This means that the decision maker
is less (more) risk averse if � values are lower (higher).
The risk-averse model is equivalent to the expected value
model for �=0.

From Table 6, it can be seen that for very small values
of �, the optimal policy is the same for both risk-averse
and risk-neutral problems, which is a trivial result of the
previous assertion. Similarly, when � gets smaller, optimal
values get closer to the optimal values of expected value
problem (see Table 5).

The numbers of iterations needed by both value and pol-
icy iteration methods for different values of � can be found
in Table 7. For �=1, the value iteration method required
1,231 iterations, whereas the policy iteration method found
the optimal solution in just 3 iterations. When New-
ton’s method was used, the first iteration of the policy
iteration method required 6 Newton iterations, the sec-
ond and third iterations required 2 and 3 Newton itera-
tions, respectively. It can be seen that the policy itera-
tion found the optimal solution in at most 4 iterations,
and each iteration required at most 6 Newton iterations
when Newton’s method was used. However, the value iter-
ation method required much more steps, changing between
525 and 1,354. Policy evaluation by convex optimization
method was compared to policy evaluation by Newton’s
method by comparing the execution times of the entire
run of the policy iteration method; the results can be seen
in Table 7.
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Çavuş and Ruszczyński: Methods for Risk-Averse Undiscounted Markov Models
Operations Research 62(2), pp. 401–417, © 2014 INFORMS 415

Table 6. Optimal policy of the risk-averse problem for
different �’s.

State

� (1, l) (1, m) (1, h) (2, l) (2, m) (2, h) (3, l) (3, m) (3, h)

0.025 m h h m h h m m h
0.1 l h h m h h m m h
0.2 l h h m h h m m h
0.3 l h h m h h m m h
0.4 l h h m h h m m h
0.5 l h h m h h m m h
0.6 l h h m h h m m h
0.7 l h h m h h m m h
0.8 l m h l h h m m h
0.9 l m h l m h m m h
1 l m h l m h m m h

8.3. Total Profit Distribution for the
Risk-Averse Model

We calculated the expected total profits of each state under
the optimal policies of the risk-averse problem with differ-
ent �’s. This is equivalent to calculating

�4x15=Ɛ

[

�
∑

t=1

c4xt1�4xt51xt+15

]

1 x1 ∈˜X1

Table 7. Number of iterations for the risk-averse problem.

Policy iteration with convex
Value iteration Policy iteration with Newton’s method optimization method

# of value # of policy # of Newton Time # of policy Time
� iterations iterations iterations (seconds) iterations (seconds)

0.025 869 3 4, 3, 3 0.470592 3 0.085575
0.1 797 4 3, 3, 2, 3 0.443240 4 0.108498
0.2 746 4 3, 3, 2, 2 0.384024 4 0.108682
0.3 689 4 4, 2, 2, 2 0.465086 4 0.126204
0.4 658 4 4, 2, 2, 2 0.388726 4 0.096055
0.5 661 4 4, 2, 2, 2 0.422561 4 0.119027
0.6 761 3 4, 3, 3 0.421394 3 0.111233
0.7 893 3 4, 2, 3 0.347835 3 0.108685
0.8 525 3 4, 3, 2 0.353331 3 0.090320
0.9 11354 3 5, 2, 3 0.398920 3 0.087521
1 11231 3 6, 2, 3 0.413536 3 0.092212

Table 8. Expected total profits for the risk-averse problem for different �’s.

State

� (1, l) (1, m) (1, h) (2, l) (2, m) (2, h) (3, l) (3, m) (3, h)

0.025 71407060 71063060 41823060 71179009 71132009 61482009 61262099 61257099 51910098
0.1 71363082 71063060 41823060 71179009 71132009 61482009 61262099 61257099 51910098
0.2 71363082 71063060 41823060 71179009 71132009 61482009 61262099 61257099 51910098
0.3 71363082 71063060 41823060 71179009 71132009 61482009 61262099 61257099 51910098
0.4 71363082 71063060 41823060 71179009 71132009 61482009 61262099 61257099 51910098
0.5 71363082 71063060 41823060 71179009 71132009 61482009 61262099 61257099 51910098
0.6 71363082 71063060 41823060 71179009 71132009 61482009 61262099 61257099 51910098
0.7 71363082 71063060 41823060 71179009 71132009 61482009 61262099 61257099 51910098
0.8 61250072 51095083 41823060 51706040 71132009 61482009 61125071 61120071 51910098
0.9 21096097 845098 41823060 648085 408031 61482009 356036 351036 51910098
1 21096097 845098 41823060 648085 408031 61482009 356036 351036 51910098

for a given stationary policy ç=8�1�10009. The expected
total profit function �4x5, x∈X can be found by solving
the following equation with �4C5=0 and �4D5=0 (cf.
Hernández-Lerma and Lasserre 1999, Lemma 9.4.8):

�4x5=r4x1�∗4x55+
∑

y∈X

4d4x1y5+�4y55·qx1y4�
∗4x551

x∈˜X1

where ç=8�∗1�∗10009 is the optimal policy of the risk-
averse problem. The expected total profits calculated using
the above equation can be found in Table 8. For �=00025,
the optimal policy of the risk-averse problem is same as
the optimal policy of the expected value model; therefore
both models give the same expected total profits. When �

gets larger, the decision maker becomes more risk averse
and forgoes some profit for more secure policies.

To estimate the distribution of the total profit, we simu-
lated the Markov process under the optimal policies of the
expected value model and the risk-averse model with two
values of �: 0.8 and 1. We used the Microsoft Excel-based
simulation tool YASAI 2.3 of Eckstein and Riedmueller
(2011) of Eckstein and Riedmueller (2002). The sample
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Figure 2. Empirical cumulative probability distribution
functions of the total profit at state 411l5.
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size was 32,760, and the random number seed used was
10,000. The graphs of the resulting empirical cumulative
distribution functions of the total profit, when the initial
state is 411l5, are provided in Figure 2. The corresponding
histograms are shown in Figure 3.

The first-order mean–semideviation of Example 1 is
consistent with stochastic orders. For coherent measures
of risk, consistency with the first-order stochastic dom-
inance follows from axiom (A2), under the condition
that the probability space ì is nonatomic (see Shapiro
et al. 2009, §6.3.3). However, for the first-order mean–
semideviation, consistency with the second-order stochastic

Figure 3. Histograms of the total profit at state 411l5.
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dominance is guaranteed without any additional conditions
(see Ogryczak and Ruszczyński 1999, 2001, 2002; Shapiro
et al. 2009, §6.3.3).

Because of consistency with stochastic orders, the first-
order mean–semideviation should never prefer stochasti-
cally dominated outcomes, which can be observed from
Figure 2. Total profits under the optimal policies of the
risk-averse model with �=008 and �=1 are not stochas-
tically dominated by the total profit of the expected value
(risk-neutral) model.

For states with high credit limit, 4·1h5, the cumulative
probability distributions of the total profit are the same for
both risk-averse and risk-neutral models. This is because
only one control is possible for these states, which is to
keep the credit limit unchanged, and the possible transi-
tions are to states with high credit limit, or to C and D.
At all other states, the distributions are similar to those for
state 411l5.
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Ruszczyński A (2010) Risk-averse dynamic programming for Markov
decision processes. Math. Programming, Ser. B 125:235–261.
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