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a b s t r a c t

We consider the problem of selling a fixed stock of items over a finite horizon when the buyers arrive
following a Poisson process. We obtain a general lower bound on the performance of using a fixed price
rather than dynamically adjusting the price. The bound is 63.21% for one unit of inventory, and it improves
as the inventory increases. For the one-unit case, we also obtain tight bounds: 89.85% for the constant-
elasticity and 96.93% for the linear price-response functions.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

We consider the problem of selling a fixed stock of items over
a finite horizon. Potential customers arrive following a Poisson
process and decide whether to buy the product or not based on
the posted price and theirmaximumwillingness-to-pay. The seller
knows the probability distribution of the customers’ maximum
willingness-to-pay and adjusts the price as a function of remaining
time in the horizon so as to maximize his/her expected revenue. It
is assumed that each customer has a chance to buy the product only
at his/her (first) arrival, i.e., the seller cannot recall a customerwho
already decided not to buy the product (no recalls) or a customer
cannot return later to buy the product at a lower price (no strategic
consumer behavior).

Kincaid and Darling [7] were the first to study this problem,
which they call ‘‘inventory pricing problem’’, and to characterize
the function that the seller should use to update the price over the
horizon. Elfving [3] notices that the special case of a single unit of
inventory is similar to what is known as the ‘‘secretary problem’’
or the ‘‘best choice problem’’ (see [5]), except that the arrivals (of
candidates, i.e., potential buyers in our problem) follow a point
process and the decision maker has distributional information
about the desirability of candidates. Elfving [3] investigates the
use of a ‘‘critical curve’’ to govern the decision maker’s decision to
accept or reject an arriving candidate. This curve essentially plays
the role of price (as a function of time) in our problem; if an arriving
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candidate’s desirability (or offer) is larger than or equal to the value
of the function at the candidate’s arrival time, the candidate is
accepted and the process stops. Elfving [3] characterizes the unique
curve in the presence of discounting. Stadje [10] derives conditions
that are equivalent to those obtained in [7] for pricing a single or
multiple units of inventory.

The generalized version of this problem for multiple units has
been studied in a seminal work by Gallego and van Ryzin [6] and
subsequently by Bitran and Mondschein [2]. Since then, dynamic
pricing in the presence of inventory considerations has been the
subject of an extensive literature inOperations Research (see [11,4]
for reviews). An important question is whether dynamic pricing
offers substantial revenue improvements over keeping the price
constant over the horizon. The main finding in [6] is that using a
constant price at a level that is determined by the solution of the
deterministic version problem has a bounded worst performance
and is asymptotically optimal as the expected demand and starting
inventory go to infinity. Note that solving the deterministic version
of the problem to obtain the fixed price is a heuristic even for
static pricing; one can also optimize among all possible prices. The
numerical results in [6] show that, even for smaller-size problems,
optimal fixed prices lead to a very good performance. In fact, under
an exponential price-response function, the worst performance
reported in that article is 94.5%. The authors state that they have
never observed a suboptimality gap more than 7% (p. 1009). Zhao
and Zheng [12] find that the constant-demand elasticity price-
response function leads to larger gaps than the exponential price-
response function. The worst performance that they report is
92.74% (the price is selected from a set of 11 alternatives in this
case). The worst performance reported in an extensive numerical
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study in [9] that involves linear, logit, and exponential price-
response functions is 93.43%. For a discrete-time version of the
problem, Bearden et al. [1] report that the worst performance in
their numerical experiments is 94%.

In this paper, we develop theoretical lower bounds for the
worst performance of fixed pricing heuristics. For multiple units
of starting inventory, we obtain a lower bound for the fixed pricing
heuristic that is independent of the price-response function and
the length of the selling season. For a single unit of inventory,
we obtain tight bounds for constant-elasticity and linear price-
response functions. These price-response functions are widely
used in theory and practice, and they represent the two extreme
forms for the potential benefits of dynamic pricing. Under the
constant-elasticity price-response function, potential buyers have
the same sensitivity to price changes at all price levels. This
allows the seller to test higher prices in the beginning of the
horizon since price reductions remain effective later in the
horizon if needed. In contrast, under a linear price-response
function, the elasticity decreases as the price is lowered over the
course of the horizon. Confirming these intuitions, we show that
dynamic pricing is most useful under a constant-elasticity price-
response function and that the theoretical worst performance of
optimal fixed pricing is 89.85%. On the other hand, the worst
performance of optimal fixed pricing under a linear price-response
function is significantly higher, at 96.93%. Our numerical results
show that other parametric price-response functions have worst
performances that are between these two bounds.

2. Model and a general bound

We consider a seller that needs to sell n units of inventory
of a product over a horizon of length t . Buyers arrive following
a Poisson process whose rate depends only on the current
price p through a function λ(p). Alternatively, one may assume
that potential customers, whose reservation prices (maximum
willingness-to-pay) are independently and identically distributed
with a cumulative distribution function F , arrive with a constant
rate γ , leading to a purchase rate λ(p) = γ (1−F(p)). The function
λ(p) is assumed to be continuous, differentiable, and decreasing in
p (we use the words increasing and decreasing in a non-strict sense
throughout the paper). The inverse of λ(p) is denoted by p (λ). The
unconstrained revenue rate is denoted by r(λ) = λp (λ), and is
assumed to be concave in λ.

In the dynamic pricing problem, the firm controls the intensity
at every instant by adjusting the price. The problem is to determine
the pricing policy that maximizes the total expected revenue over
the season, denoted by J∗(n, t). Gallego and van Ryzin [6] show
that the optimal expected revenue-to-go (and the corresponding
optimal price/intensity at that instant) can be determined by
solving the differential equation

∂ J∗(n, t)
∂t

= max
λ


r(λ) − λ


J∗(n, t) − J∗(n − 1, t)


, (1)

with boundary conditions J∗(n, 0) = 0, ∀n and J∗(0, t) = 0, ∀t .
Equivalent characterizations are provided in [7,3,10]. Gallego and
van Ryzin [6] also prove the existence of a unique solution to (1)
along with monotonicity of the optimal expected revenue (and
corresponding demand rates and prices) with respect to remaining
time in the horizon and inventory.

Gallego and van Ryzin [6] also show that the optimal revenue
for the deterministic problem in which the demand rate is a
deterministic function of a given price constitutes an upper
bound for the optimal revenue that can be obtained through
dynamic pricing. Using the concavity of the revenue rate function,
Gallego and van Ryzin [6] show that the optimal solution for the
deterministic problem is to have a constant rate λD

= min

λ∗, n

t


,

where λ∗ is the maximizer of the revenue rate function r . The
optimal revenue of the deterministic problem is then given by

JD(n, t) = t p

min


λ∗,

n
t


min


λ∗,

n
t


. (2)

On the other hand, the expected revenue of keeping the demand
rate fixed at λ (or the price fixed at p(λ)) is given by

J f (n, t, λ) = p(λ) E[min{n,Nλ t}],

where Nµ is a Poisson random variable with mean µ. Gallego
and van Ryzin [6] suggest two heuristics for the dynamic pricing
problem. In the fixed price (FP) heuristic, the demand rate is fixed
at λD

= min

λ∗, n

t


, leading to an expected cost of JFP(n, t) =

J f (n, t, λD). In the optimal fixed price (OFP) heuristic, the optimal
demand rate (or the price) is used, i.e., JOFP(n, t) = maxλ J f (n, t, λ).
Using the deterministic solution and a lower bound on JFP(n, t),
Gallego and van Ryzin [6] obtain the following result:

JOFP(n, t)
J∗(n, t)

≥
JFP(n, t)
J∗(n, t)

≥ 1 −
1

2
√
min{n, λ∗t}

. (3)

The bound in (3) approaches 1 as n and λ∗t approach infinity,
showing the asymptotical optimality of the fixed price and optimal
fixed price heuristics.

Using a different approach, we obtain the following bound,
which is independent of the length of the selling season and the
price-response function.

Proposition 1.

JOFP(n, t)
J∗(n, t)

≥
JFP(n, t)
J∗(n, t)

≥ 1 −
nn

n!
e−n. (4)

Proof. The expected revenue of using the optimal rate of the
deterministic problem is given by

JFP(n, t) = p

min


λ∗,

n
t


E


min


n,Nmin{λ∗, nt } t


. (5)

Using (2) and (5), we get

JFP(n, t)
JD(n, t)

=
E[min{n,Nmin{λ∗t,n}}]

min {λ∗t, n}
.

First note that E[min{s,Nµ}] =
s

i=0 i q(i, µ) + s(1 −
s

i=0

q(i, µ)), where q(i, µ) =
µie−µ

i! . Denoting Q (i, µ) =
i

k=0 q(k, µ),
one can easily show that E[min{s,Nµ}] = µQ (s − 1, µ) + s (1 −

Q (s, µ)).
If λ∗t > n, we get

JFP(n, t)
JD(n, t)

=
E[min{n,Nn}]

n

=
n Q (n − 1, n) + n (1 − Q (n, n))

n

= 1 − q(n, n) = 1 −
nn

n!
e−n.

In order to analyze the case when λ∗t ≤ n, we note that
E[min{s,Nµ}]/µ measures the expected fill-rate of a newsvendor
who orders s units and faces a Poisson demand with mean µ. We
can write the partial derivative of E[min{s,Nµ}]/µ with respect
to µ as the expression given in Box I where Qµ(i, µ) is the
partial derivative of Q (i, µ) with respect to µ. One can show that
Qµ(i, µ) = −q(i, µ) and i q(i, µ) = µ q(i − 1, µ), leading to
µQµ(s − 1, µ) = s Qµ(s, µ). Using this and simplifying further,
we obtain the partial derivative of E[min{s,Nµ}]/µ with respect
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µ

Q (s − 1, µ) + µQµ(s − 1, µ) − s Qµ(s, µ)


− µQ (s − 1, µ) − s (1 − Q (s, µ))

µ2
,

Box I.
toµ as− s(1−Q (s, µ))/µ2, which shows that E[min{s,Nµ}]/µ is
decreasing in µ. This leads to

JFP(n, t)
JD(n, t)

=
E[min{n,Nλ∗t}]

λ∗t
≥

E[min{n,Nn}]

n
= 1 −

nn

n!
e−n

for λ∗t ≤ n. Using JD(n, t) ≥ J∗(n, t) and JOFP(n, t) ≥ JFP(n, t), we
obtain the desired result. �

We note that the bound in (4) is also reported in [6] for the case
when λ∗t > n. We show in Proposition 1 that this bound prevails
when λ∗t ≤ n. Note also that, while the bound in (3) is useful in
showing the asymptotical optimality of FP and OFP heuristics, it
can be arbitrarily small and cannot be used in our analysis.

The bound in Proposition 1 provides a performance guarantee
of 1 − e−1

≈ 0.6321 for n = 1, and this guarantee increases
as n increases. Therefore, the performance of the optimal fixed
price heuristic (and the fixed price heuristic) is at least 0.6321 of
what could be obtained through optimal dynamic pricing for any
inventory pricing problem.

In the remainder of the paper, we focus on the case where the
initial inventory is 1.While the performance guarantee of 0.6321 is
general, it is a loose bound. By characterizing the expected revenue
of the optimal fixed price heuristic and the optimal dynamic
pricing, we will obtain tight bounds for the optimal fixed price
heuristic.

When the starting inventory is equal to 1, the expected revenue
of using a fixed demand rate λ can be written as

J f (1, t, λ) = p (λ)(1 − e−λt). (6)

The next proposition states that J f (1, t, λ) given in (6) is unimodal
in λ for a given t if the elasticity ε(λ) = −p(λ)/(λp′(λ)) is
decreasing in λ.

Proposition 2. J f (1, t, λ) is unimodal in λ if ε(λ) is decreasing in λ.

Proof. The derivative of the expected revenue with respect to λ
can be written as

∂ J f (1, t, λ)

∂λ
= p′(λ)(1 − e−λt) + t e−λtp(λ)

= p′(λ) e−λt eλt
− 1 − ε(λ) λt


.

Then, we get

∂ J f (1, t, λ)

∂λ
= p′(λ) e−λtλt


eλt

− 1
λt

− ε(λ)


. (7)

The first function in the parentheses in (7) is strictly increasing inλ.
If the second function, ε(λ), is a decreasing function, they intersect
at only one point, say at λo. Therefore, J f (1, t; λ) is increasing in λ
when λ < λo and decreasing in λ when λ > λo. �

The condition in Proposition 2 is equivalent to price elasticity
being increasing in price since the demand is decreasing in price.
Note also that this is a sufficient condition, and it is one of the three
most commonly used assumptions in revenuemanagement litera-
ture (see [13]). Many commonly used price-response functions, in-
cluding constant-elasticity, linear, exponential, and logit functions,
satisfy this condition.

If ε(λ) is decreasing in λ, the optimal fixed intensity λo can
be found by using the first-order condition which sets (7) to zero,
leading to

1 + ε(λo)λo t = eλot . (8)
3. Specific price-response functions

3.1. Constant-elasticity price-response function

We first consider the constant-elasticity price-response func-
tion λ(p) = ap−ε , which is widely used in economics and mar-
keting literature. The inverse of this function is p(λ) =

 a
λ

1/ε ,
and the revenue rate as a function of demand rate is given by
r(λ) = λ( a

λ
)1/ε . Solving the differential equation in (1) for n = 1

(see also [8]), one gets

J∗(1, t) = (at)1/ε


ε − 1
ε

 ε−1
ε

.

Since the elasticity is constant (not increasing in λ), one can use the
first-order condition

1 + ελo t = eλot (9)
to obtain the optimal fixed intensity λo. Then the expected revenue
of the optimal fixed price heuristic is

JOFP(1, t) = p(λo)(1 − e−λot) =

 a
λo

1/ε
(1 − e−λot),

where λo satisfies (9).
The next proposition states that the smallest value of JOFP(1, t)/

J∗(1, t) is approximately 0.8985.

Proposition 3. Under a constant-price elasticity price-response
function, the performance of the optimal fixed price heuristic is
independent of a and t. The minimum value of JOFP(1, t)/J∗(1, t) is
approximately 0.8985 when ε ≈ 2.5603.
Proof. Denoting z = λot , we have

JOFP(1, t) =
(1 − e−z)(at)1/ε

z1/ε
,

where z is the solution to 1+ zε = ez . Then, we obtain the ratio as

JOFP(1, t)
J∗(1, t)

=
1 − e−z

ε−1
ε

 ε−1
ε z1/ε

.

Substituting ε =
ez−1
z , we can rewrite the ratio as JOFP(1, t)/J∗(1, t)

= g(z), where

g(z) =
1 − e−z

z
z

ez−1
 ez−z−1

ez−1

 ez−z−1
ez−1

.

Then we can show that

g ′(z) =
(ln(m(z)) − ln(z) + 1)(e−z

− zez + z + ez − 2) z−z/(ez−1)m(z)−m(z)

(ez − 1)2
,

where m(z) =
ez−z−1
ez−1 .

One can also show that g ′(z) = 0 has a unique solution for
z > 0, leading to unimodality of g in z. Solving g ′(z) = 0 is
equivalent to solving

ln

ez − z − 1
ez − 1


− ln(z) + 1 = 0,

or

−ez+1
+ ezz + z(e − 1) + e = 0,

leading to a unique minimizer zo ≈ 1.6566 or εo
≈ 2.5603 with

objective function value g(zo) ≈ 0.8985. �
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Fig. 1. Performance of optimal fixed pricing with a constant-elasticity price
response function.

We note here that the suboptimality gap of 10.15% is larger
than the largest gap reported so far in numerous computational
studies in the literature for the optimal fixed pricing heuristic.
Proposition 3 also states that the revenue impact of dynamic
pricing depends only on the price elasticity of customers and is
independent of the market size under a constant-elasticity price-
response function. Fig. 1 shows the performance of the optimal
fixed price heuristic as a function of price elasticity ε.

3.2. Linear price-response function

Now consider the linear price-response function, λ(p) = a−bp.
The inverse of this function is p(λ) = (a − λ)/b. The elasticity for
this function is given by ε(λ) = (a − λ)/λ, and the instantaneous
revenue rate is given by r(λ) = (a − λ)λ/b. The linear price-
response function is alsowidely used in the literature. This function
is studied in detail in [7] as well. Solving the differential equation
in (1), one gets

J∗(1, t) =
a2t

b (at + 4)
.

Since the elasticity is increasing in λ, the first-order condition in
(8) can be used to obtain the optimal fixed intensity. This leads to
the equation

(1 + at − λot) = eλot . (10)
Then the expected revenue of the optimal fixed price heuristic

is

JOFP(1, t) = p(λo)(1 − e−λot) =
(a − λo)(1 − e−λot)

b
,

where λo satisfies (10).
The next proposition states that the smallest value of JOFP(t)/

J∗(t) is approximately 0.9693 for the linear price-response func-
tion.

Proposition 4. Under a linear price-response function, the perfor-
mance of the optimal fixed price heuristic depends only on the
product at. The minimum value of JOFP(1, t)/J∗(1, t) is approxi-
mately 0.9693 when at ≈ 16.39.

Proof. The solution to (10) is λo
=

at+1−W (eat+1)
t , where W is the

principal branch of the LambertW function. Using this we get

JOFP(1, t) =
(W (eat+1) − 1)2

W (eat+1) b t
.

Fig. 2. Performance of optimal fixed pricing with a linear price response function.

Then we have

JOFP(1, t)
J∗(1, t)

=
(W (eat+1) − 1)2(at + 4)

W (eat+1)a2t2
.

We can denote this fraction as

g(y) =
(W (ey+1) − 1)2(y + 4)

W (ey+1)y2
,

where y = at . Then we can find that

g ′(y) = −


8W (ey+1) + yW (ey+1) − y2 − 5y − 8


(W (ey+1) − 1)

W (ey+1)y3
.

One can show that g ′(y) = 0 has a unique solution for y > 0,which
leads to the unimodality of g for y > 0. Solving g ′(y) = 0 for y > 0,
one gets the minimum of g(y) as

y o
=

8v
4 − v

,

where v satisfies

−4ev
+ vev

+ v2
+ 3v + 4 = 0.

This leads to the numerical values yo ≈ 16.39 and g(y o) ≈

0.9693. �

Note that at can be considered as a measure of the total market
for the product since a = λ(0) is the maximum demand rate and
t is the length of the horizon. Fig. 2 shows the performance of the
optimal fixed price heuristic as a function of at .

We finally note again that constant-elasticity and linear price-
response functions can be considered as the most favorable and
least favorable scenarios for dynamic pricing. We numerically in-
vestigate the worst performance of optimal fixed pricing for other
price-response functions. Our results show that the worst perfor-
mance of the optimal fixed pricing heuristic under the exponential
(log-lin) price-response function (λ(p) = ae−p) is 93.27% (confirm-
ing the observations in [6]). Under the logit price-response func-
tion (λ(p) = ae−bp/(1 + e−bp)), the worst performance is 93.38%.
Under the lin-log price-response function (λ(p) = a−b ln(p)), the
worst performance is 96.39%. All of these bounds are within the
bounds for constant-elasticity and linear price-response functions.

The theoretical bounds reported here have important impli-
cations for the use of dynamic pricing in the presence of inven-
tory considerations. An opportunity to increase revenues by 10.15%
through dynamic pricing is significant, particularly in industries
that are appropriate for revenue management. On the other hand,
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if the price affects the demand in a linear fashion, the potential ben-
efits of dynamic pricing are limited to only 3.07%. The bounds that
are developed here may also be useful for ‘‘full information’’ secre-
tary problems where candidates’ values are drawn from a known
distribution.
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