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a b s t r a c t

We study the convex hull of the splittable flow arc set with capacity and minimum load constraints. This
set arises as a relaxation of problems where clients have demand for a resource that can be installed in
integer amounts and that has capacity limitations and lower bounds on utilization. We prove that the
convex hull of this set is the intersection of the convex hull of the set with a capacity constraint and the
convex hull of the set with a minimum load constraint.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Let N = {1, . . . , n} be a finite set and suppose that a positive
weight ai is associatedwith each element i ∈ N . Let u0 be a nonneg-
ative number and u be a positive number. The single-facility split-
table flow arc set is the set of solutions (x, y) ∈ Rn

+
×Z+ that satisfy

the constraints


i∈N xi ≤ u0 + uy and xi ≤ ai for all i ∈ N . This
set arises as a relaxation of problems like the capacitated facility
location problem [1] and the network loading problem [2], where
client i ∈ N has demand ai for a resource whose existing capacity
is u0 and for which additional capacity can be installed in integer
multiples of u. The mixed integer knapsack set with a single inte-
ger variable is a generalization of the single-facility splittable flow
arc set. It is the set of solutions (x, y) ∈ Rn

+
× Z+ that satisfy the

constraints


i∈N+ xi −


i∈N− xi ≤ u0 + uy and xi ≤ ai for all
i ∈ N+

∪ N− where some of ai values may not be finite. The in-
equalities describing the convex hulls of both sets are known (see
Magnanti et al. [2], Atamtürk and Rajan [3], Atamtürk and Gün-
lük [4] and Atamtürk [5]).

In some applications that involve making decisions about ca-
pacitated resources, one may also have lower bounds for the load
on the resources. This may be due to the fact that installing or
setting up a resource may be cost efficient only if a certain load
is assigned to it or the system may perform better if the loads
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on the resources are balanced. Some examples are the following.
Lim et al. [6] study a transportation problemwith minimum quan-
tity commitment imposed by regulations. Constantino [7] studies
several relaxations of the lot-sizing problem with lower bounds
and Hwang [8] studies a dynamic lot-sizing problem where re-
plenishments cannot be less than a minimum size. Çınar and Ya-
man [9] study the vendor location problem where each vendor
should serve a minimum amount of demand to be profitable. This
is an example of the lower bounded (or load balanced) facility
location problem [10,11], which generalizes the well-known un-
capacitated facility location problem by requiring each open fa-
cility to serve no less than a certain amount of demand. Güneş
and Yaman [12] study the hospital re-planning problem where a
minimum number of patients should be served by each specialty
service at an hospital. Galvão et al. [13] consider load balancing
as an objective in their hierarchical model applied to the location
of perinatal facilities in the municipality of Rio de Janeiro. Güneş
et al. [14] use minimum load constraints to improve physician sat-
isfaction in their primary care facility location problem.

Let ℓ0 be a nonnegative number and ℓ be a positive number. The
minimum load constraints can bemodeled as


i∈N xi ≥ ℓ0+ℓy. In

this paper, we first study the convex hull of the intersection of two
mixed integer sets with a single integer variable in a special case
and show that the convex hull of the intersection is the intersection
of the convex hulls. Then we apply this result to the mixed integer
knapsack set with a capacity and minimum load constraint. Using
the description of the convex hull of the mixed integer knapsack
set and properties of extreme points, we also give the description
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for the splittable flow arc set with two integer variables when one
of the capacities is a unit capacity and all parameters are integers.

The rest of the paper is organized as follows. In Section 2, we
give the theorem about the convex hull of the intersection of two
mixed integer sets with a single integer variable. In Section 3, the
result of the previous section is used to describe the convex hulls
of the mixed integer knapsack set and the splittable flow arc set
with both capacity andminimum load constraints. Conclusions are
given in Section 4.

2. Intersection of two mixed integer sets with a single integer
variable

In the sequel, we assume all data to be rational. Let g ∈ R1×n,
ḡ1, ḡ2, b1, b2 ∈ R, Ĝ ∈ Rq×n, and ĝ, b̂ ∈ Rq, and consider the sets

P1
= {(x, y) ∈ Rn+1

: gx + ḡ1y ≤ b1, Ĝx + ĝy ≤ b̂},

P2
= {(x, y) ∈ Rn+1

: −gx + ḡ2y ≤ b2, Ĝx + ĝy ≤ b̂},

X1
= P1

∩ (Rn
× Z), X2

= P2
∩ (Rn

× Z), and their intersections
P = P1

∩ P2 and X = X1
∩ X2, where the system Ĝx + ĝy ≤ b̂

includes y ≥ 0.

Theorem 1. If (ḡ1 + ḡ2)(b1 + b2) ≤ 0, then conv(X) = conv(X1) ∩

conv(X2).

Proof. We use the fact that the split cuts are sufficient to describe
the convex hull of amixed integer set with a single integer variable
(see [15,16]). Let d be a nonnegative integer and consider the dis-
junction y ≤ d and y ≥ d+1 and the associated split cutβx+αy ≤

δ for P . Following the treatment of Di Summa [16], by the Farkas
Lemma, there exist multipliers v1, v2, v̂, w1, w2, ŵ, λ, µ ≥ 0 such
that v1g−v2g+v̂Ĝ = w1g−w2g+ŵĜ = β , v1ḡ1+v2ḡ2+v̂ĝ+λ =

w1ḡ1 +w2ḡ2 + ŵĝ −µ = α, and v1b1 + v2b2 + v̂b̂+λd = w1b1 +

w2b2 + ŵb̂−µ(d+ 1) = δ. Solving the last two equations, we ob-
tainµ = (w1−v1)(b1−dḡ1)+(w2−v2)(b2−dḡ2)+(ŵ−v̂)(b̂−dĝ)
and λ = (v1 −w1)(b1 − (d+ 1)ḡ1)+ (v2 −w2)(b2 − (d+ 1)ḡ2)+

(v̂ − ŵ)(b̂ − (d + 1)ĝ).
Let C be the cone of nonnegative vectors (v1, v2, v̂, w1, w2, ŵ,

λ, µ) that satisfy

(v1 − w1)g − (v2 − w2)g + (v̂ − ŵ)Ĝ = 0,
λ = (v1 − w1)(b1 − (d + 1)ḡ1) + (v2 − w2)(b2 − (d + 1)ḡ2)

+ (v̂ − ŵ)(b̂ − (d + 1)ĝ),

µ = (w1 − v1)(b1 − dḡ1) + (w2 − v2)(b2 − dḡ2)
+ (ŵ − v̂)(b̂ − dĝ).

A nondominated split cut for P is given by a nonnegative integer
d and an extreme ray of the cone C for which µ > 0 and λ > 0
(if µ = 0 or λ = 0 then the split cut is implied by the original
system [16]).

Suppose that p = (v1, v2, v̂, w1, w2, ŵ, λ, µ) is an extreme ray
of C with v1 > 0, v2 > 0, λ > 0 and µ > 0. Let ϵ > 0 be a very
small number and consider the vectors p1 = (v1 + ϵ, v2 + ϵ, v̂,
w1, w2, ŵ, λ1, µ1) and p2 = (v1 − ϵ, v2 − ϵ, v̂, w1, w2, ŵ, λ2, µ2)
where λ1, µ1, λ2 and µ2 are computed using the last two equali-
ties and they remain nonnegative as ϵ is very small. These vectors
p1 and p2 are inC and p = 1/2p1+1/2p2. As p is an extreme ray, p1
and p2 should be multiples of p. This implies that v̂ = w1 = w2 =

ŵ = 0, and v1 = v2. Then λ = v1(b1 + b2 − (d + 1)(ḡ1 + ḡ2)) and
µ = v1(−(b1 + b2) + d(ḡ1 + ḡ2)). For λ and µ to be positive, we
need b1 + b2 > (d + 1)(ḡ1 + ḡ2) and d(ḡ1 + ḡ2) > b1 + b2. As d is
nonnegative, this implies that ḡ1 + ḡ2 < 0 and b1 + b2 < 0. Now,
since (ḡ1 + ḡ2)(b1 + b2) ≤ 0, at least one of λ and µ is not positive.
Hence any split cut derived from an extreme ray with v1 > 0 and
v2 > 0 is dominated.
Similarly, one can show that if p with w1 > 0 and w2 > 0 is an
extreme ray of C, then w1 = w2 and v1 = v2 = v̂ = ŵ = 0. In
this case, λ = w1(−b1 + (d + 1)ḡ1 − b2 + (d + 1)ḡ2) and µ =

w1(b1−dḡ1+b2−dḡ2). We need ḡ1+ ḡ2 > 0 and b1+b2 > 0 for λ
andµ to be positive. This is not possible since (ḡ1+ḡ2)(b1+b2) ≤ 0.

Let p ∈ C with v1 > 0 andw2 > 0. Both p1 = (v1+ϵ, v2, v̂, w1,
w2 −ϵ, ŵ, λ1, µ1) and p2 = (v1 −ϵ, v2, v̂, w1, w2 +ϵ, ŵ, λ2, µ2),
where λ1, µ1, λ2 and µ2 are computed using the last two equali-
ties, are in C and p = 1/2p1 + 1/2p2. Since p1 and p2 cannot be
multiples of p, p is not an extreme ray. The case with v2 > 0 and
w1 > 0 is similar.

Hence, we can conclude that nondominated split cuts are
generated by extreme rays p where either v1 = w1 = 0 or v2 =

w2 = 0. A ray pwith v2 = w2 = 0, λ > 0 and µ > 0 is an extreme
ray of C if and only if (v1, v̂, w1, ŵ, λ, µ) is an extreme ray of
C1 = {(v1, v̂, w1, ŵ, λ, µ) ≥ 0 : (v1 −w1)g + (v̂ − ŵ)Ĝ = 0, µ =

(w1 − v1)(b1 − dḡ1) + (ŵ − v̂)(b̂− dĝ), λ = (v1 − w1)(b1 − (d+

1)ḡ1)+(v̂−ŵ)(b̂−(d+1)ĝ)}. Similarly, pwith v1 = w1 = 0,λ > 0
and µ > 0 is an extreme ray of C if and only if (v2, v̂, w2, ŵ, λ, µ)
is an extreme ray of C2 = {(v2, v̂, w2, ŵ, λ, µ) ≥ 0 : −(v2 −

w2)g + (v̂ − ŵ)Ĝ = 0, µ = (w2 − v2)(b2 − dḡ2) + (ŵ − v̂)(b̂ −

dĝ), λ = (v2 − w2)(b2 − (d + 1)ḡ2) + (v̂ − ŵ)(b̂ − (d + 1)ĝ)}.
Hence, we can conclude that an inequality is a nondominated

split cut for P if and only if it is a nondominated split cut for P1 or
for P2. �

3. Applications

3.1. The mixed integer knapsack set with a single integer variable

Suppose that we are given two sets of items N+ and N− with
|N+

|+|N−
| = n, a positive parameter ai for each item i ∈ N+

∪N−

(possibly infinite) and two finite numbers u0 and u. Themixed inte-
ger knapsack setwith a single integer variable is the set of solutions
(x, y) ∈ Rn

+
×Z+ that satisfy the constraints


i∈N+ xi−


i∈N− xi ≤

u0+uy and xi ≤ ai for all i ∈ N+
∪N−. This set is a generalization of

the single-facility splittable flow arc set with a capacity constraint.
Atamtürk [5] presents facet defining inequalities for the polyhe-

dron of the mixed integer knapsack set. He first gives the descrip-
tion of the convex hull of the set with a single integer variable and
then applies sequential lifting.

Here, using the results of Atamtürk [5] and the theorem of the
previous section, we give the description of the convex hull of a
mixed integer knapsack setwith capacity and load constraints. This
is the set of solutions to
i∈N+

xi −

i∈N−

xi ≤ u0 + uy, (1)


i∈N+

xi −

i∈N−

xi ≥ ℓ0 + ℓy, (2)

0 ≤ xi ≤ ai i ∈ N+
∪ N−, (3)

y ∈ Z+. (4)

We assume that u ≥ ℓ and u0 ≥ ℓ0.
Let XC = {(x, y) ∈ Rn+1

: (1), (3), (4)}, XL = {(x, y) ∈ Rn+1
:

(2)–(4)} and XLC = {(x, y) ∈ Rn+1
: (1)–(4)} = XC ∩ XL.

Let B = {i ∈ N+
∪ N−

: ai is finite}. For S ⊆ N+
∪ N−, let

a(S) =


i∈S ai.
Atamtürk [5] gives the descriptions of conv(XC ) and conv(XL).

conv(XC ) is described by the original constraints and the inequali-
ties
i∈N+∩S

(ai − xi) +


i∈N−∩S

xi +


i∈N−\B

xi ≥ r+

S (η+

S − y) (5)
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for all S ⊆ B, where η+

S =


a(S)−u0−a(N−

∩B)
u


and r+

S = a(S)−u0 −

a(N−
∩ B) −


a(S)−u0−a(N−

∩B)
u


u > 0.

conv(XL) is described by the original constraints and the in-
equalities
i∈N+∩T

xi −


i∈N−∩T

xi +


i∈N+\B

xi ≥ r−

T (y − η−

T ) − a(N−
∩ T ) (6)

for all T ⊆ B, where η−

T =


a(N+

∩B)−ℓ0−a(T )

ℓ


and r−

T =
a(N+

∩B)−ℓ0−a(T )

ℓ


ℓ − a(N+

∩ B) + ℓ0 + a(T ) > 0.

Corollary 1. conv(XLC ) is described by constraints (1)–(3), the non-
negativity constraint for y, inequalities (5) for all S ⊆ B with r+

S > 0
and inequalities (6) for all T ⊆ B with r−

T > 0.

3.2. The two-facility splittable flow arc set

Magnanti et al. [2] study the single-facility splittable flow arc
set with a capacity constraint and derive a family of valid inequal-
ities called the ‘‘residual capacity inequalities’’. They prove that
these inequalities together with the original constraints describe
the convex hullwhen u0 = 0. Atamtürk andRajan [3] statewithout
proof that these results generalize to the case of arbitrary u0 and
present a polynomial time separation algorithm for the residual ca-
pacity inequalities. The convex hull proof for arbitrary u0 is given
by Atamtürk and Günlük [4]. Later, Magnanti et al. [17] state with-
out proof that the constraints and the residual capacity inequalities
describe the convex hull of the two-facility splittable flow arc set
with a capacity constraint where the resource can be installed in
units or in multiples of u in the special case where u0 = 0, and ai
for i ∈ N and u are integers.

Here, we study the two-facility splittable flow arc set with a
capacity andminimum load constraint. Consider themixed integer
knapsack set with |N−

| = 1, N−
∩ B = ∅ and N = N+

= B. In this
case, we obtain the set described by the system
i∈N

xi ≤ u0 + y0 + uy, (7)


i∈N

xi ≥ ℓ0 + y0 + ℓy, (8)

0 ≤ xi ≤ ai i ∈ N, (9)

y0 ≥ 0, (10)

y ∈ Z+,

where y0 is the variable whose index is in N−. We assume that all
parameters are integers.We are interested in the convex hull of the
set YLC = XLC ∩ {(x, y0, y) : y0 integer}.

First, note that, in this special case, inequality (5) becomes
i∈S

(ai − xi) + y0 ≥ r+

S (η+

S − y) (11)

for S ⊆ N , η+

S =


a(S)−u0

u


and r+

S = a(S) − u0 −


a(S)−u0

u


u. This

inequality is the residual capacity inequality given in Magnanti
et al. [17] (with u0 = 0). Similarly, inequality (6) becomes
i∈T

xi ≥ r−

T (y − η−

T ) (12)

for T ⊆ N , r−

T =


a(N\T )−ℓ0

ℓ


ℓ − a(N \ T ) + ℓ0 and η−

T =
a(N\T )−ℓ0

ℓ


. We refer to this inequality as the ‘‘residual load in-

equality’’.
Theorem 2. If ai for i ∈ N, u0, u, ℓ0, and ℓ are integers, then conv
(YLC ) is described by constraints (7)–(9), the nonnegativity constraints
for y0 and y, inequalities (11) for all S ⊆ N with r+

S > 0 and inequal-
ities (12) for all T ⊆ N with r−

T > 0.

Proof. By Corollary 1, we know that the constraints and the resid-
ual capacity and residual load inequalities are sufficient to describe
conv(XLC ). Let (x, y0, y) ∈ conv(XLC )with y ∈ Z and y0 ∉ Z and de-
fine N ′

= {i ∈ N : 0 < xi < ai}. If N ′
= ∅, then as all parameters

are integers, both (x, y0 − ϵ, y) and (x, y0 + ϵ, y) are also in XLC for
very small ϵ > 0 and (x, y0, y) is not an extreme point of conv(XLC ).
Now suppose that N ′

≠ ∅. Let j ∈ N ′ and consider the points
(x1, y10, y) and (x2, y20, y), where x1j = xj−ϵ, x2j = xj+ϵ, y10 = y0−ϵ,
y20 = y0 + ϵ, and x1i = x2i = xi for i ∈ N \ {j}. The points (x1, y10, y)
and (x2, y20, y) satisfy all the constraints and they are in XLC . This
proves that (x, y0, y) is not an extreme point of conv(XLC ). Hence
all extreme points of conv(XLC ) have integral y and y0 values. �

4. Conclusion

An interesting question that remains for further studies is how
one can describe the convex hulls of the two-facility splittable flow
arc sets when some of the parameters are fractional. Related to
this, we also would like to investigate whether the intersection
result holds true for the splittable flow arc sets withmore than two
integer variables.
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