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a b s t r a c t

This paper proposes a new estimation algorithm for the parameters of an HMM as to best
account for the observed data. In this model, in addition to the observation sequence,
we have partial and noisy access to the hidden state sequence as side information. This
access can be seen as “partial labeling” of the hidden states. Furthermore, we model
possible mislabeling in the side information in a joint framework and derive the
corresponding EM updates accordingly. In our simulations, we observe that using this
side information, we considerably improve the state recognition performance, up to 70%,
with respect to the “achievable margin” defined by the baseline algorithms. Moreover, our
algorithm is shown to be robust to the training conditions.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

In a wide variety of applications in time series analysis
ranging from speech processing [1–8], bioinformatics
[9,10] to natural language processing [11–14], the observa-
tion sequence is represented as a stochastic process,
depending on another stochastic process that generates
a sequence of hidden (unobserved) states. With certain
conditional independence properties regarding the obser-
vations as well as the states, this is known as Hidden
Markov Model (HMM) [1,15]. In this paper, we particularly
concentrate on discrete-time finite-state HMM with finite
alphabet, which is described by two families of random
variables: the hidden state sequence Zt and the obser-
vation sequence Yt. The random variables in the state
sequence Zt form a stochastic, discrete-time Markov chain
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and the observation Yt, conditioned on the present hidden
state Zt, is independent with the past and future observa-
tions as well as the hidden states. The corresponding
conditional independence structure of the model is shown
as a directed acyclic graph [16] in Fig. 1a. Hence, an HMM
is completely characterized by the set of parameters
λ¼ ðπ;A;BÞ, where Aij is the state transition probabilities,
Bij is the observation emission probabilities and πi is the
initial state probabilities. A detailed description of the
model can be found in [1]. Estimation of these model
parameters λ¼ ðπ;A;BÞ is an important problem in applica-
tions using HMM [1,6,7,9–14,17,18]. Since there is no
closed form solution for the set of parameters that max-
imizes the probability of the observation sequence
given the model, instead, iterative algorithms such as the
Expectation-Maximization (EM) algorithm[19,20] (or
equivalently the Baum–Welch method [21]) is used to
obtain a local optimal solution [1]. In this paper, we derive
a new set of iterative EM equations that yield a locally
optimal solution for the model parameters, when the
ordinary model of the observation sequence, e.g., as in
[1], is different. In our model, in addition to the observa-
tion sequence yt (upper case letters are used to denote the
random variables and the lower case letters are used
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Fig. 1. (a) The conditional independence structure of an HMMwith discrete-time finite-states zt and observations yt of a finite alphabet. (b) The conditional
independence structure of an HMM with partial and noisy access xt to the state sequence.
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to denote the corresponding realizations), we observe a
part of the hidden state sequence as side information.
More precisely, at every time instant t, we observe the
hidden state zt as xt with probability τ, i.e., with 1�τ
probability the state stays hidden. This gives partial access
to the state sequence as side information which is, in our
work, incorporated in the corresponding parameter esti-
mation problem and the associated EM algorithm. We
emphasize that the state observations are not necessarily
confined to a time interval but may even be sparsely and
randomly distributed along the complete time span of the
application. In the limiting case, if τ is 0, then there would
be no state observation, and we recover the ordinary,
unsupervised HMM training. Therefore, our model pro-
vides a generalized framework by letting partial access to
the state sequence. Moreover, we also allow that a state
observation might be corrupted with noise such that if zt is
ever observed then PðXt≠zt jZt ¼ ztÞ ¼ 1�p. Then the corre-
sponding conditional independence structure in this case
of partially observable states is shown in Fig. 1b. Under
these new circumstances, we explicitly provide the math-
ematical derivations of the new set of iterative EM equa-
tions that incorporates the side information and estimate
the model parameters accordingly. In these derivations,
the probability that a state observation is incorrect, 1�p, is
assumed to be known and it is provided to our algorithm
as a parameter, p, which defines the confidence on the side
information. Simulations show that our method is robust
to the confidence parameter p, even if it does not exactly
match with the underlying true quality of the side infor-
mation, ptrue.

Since the hidden state sequence is partially observed,
our work falls into the category of Partially Hidden Markov
Model (PHMM) training (note that this term is used in [22]
in a different context). Similar to semi-supervised learning,
PHMMs use both “labeled” (in our context the state
information) and “unlabeled” data to obtain improved
model training. Such an approach is suitable, when we
have access to a limited amount of labeled data along with
a large amount of unlabeled data. This happens, as an
example, in speech processing applications [8], where
labeling, i.e., transcription, is naturally costly [8,23], hence
only limited amount is affordable, and transcriptions may
contain errors. Furthermore, by allowing noisy access to
the states, we model “mislabeling” event that may occur
during labeling stage. PHMMs, to the best of our knowl-
edge, date back to the studies [12–14] in the area of
Natural Language Processing. In these studies, tagged text,
corresponding to the known states of a PHMM, is first
analyzed through a relative frequency modeling to con-
struct an initial model, then this model is fed into the
ordinary HMM training algorithm. However, these studies
do not rigorously show how the partial state information is
incorporated within the ordinary HMMparameter estimation
framework. The Maximum Likelihood Estimator (MLE) for
the model parameters in a special case of PHMMs, where
only a certain state from the state space in the underlying
Markov chain is known, is theoretically (consistency and
asymptotic normality of the estimator) analyzed in [11].
However, the equations for computing the MLE (using the
EM algorithm or other Likelihood maximization techniques)
in this special case of PHMM are not derived. In [18], iterative
EM equations for a general case, where each observation can
only belong to a pre-defined set of acceptable states are
given, but no complete derivation is provided. On the
contrary, we explicitly derive the new set of iterative EM
equations for the PHMM parameter estimation problem,
when there is partial access to the underlying hidden state
sequence. Furthermore, the partial observation of the state
sequence might be prune to noise in our model and this case
is not considered in the existing literature.

After we provide the brief description of the basic
HMM framework and the parameter estimation equations
in Section 2, we derive the new set of iterative EM
equations that incorporates partial and noisy access to
the state sequence as side information in Section 3.
Simulations are presented in Section 4 and the paper
concludes with final remarks in Section 5.

2. Problem description

In this section, we briefly describe the basic framework for
the HMM parameter estimation problem [1]. For the sake of
notational simplicity, we study discrete-time finite-state HMM
with finite alphabet. However, our derivations for incorporat-
ing the side information in Section 3 can be readily extended
to the case, where the observations come from a continuous
distribution and outcomes are vectors. A discrete-time HMM
with finite alphabet is formally a Markov model, for which we
have a sequence of observations, yt, drawn from a finite
alphabet V ¼ fv1; v2;…; vNv g, i.e., yt∈V ;1≤t≤T . We also have
a sequence of hidden (unobserved) states zt∈S¼ fs1; s2;…;

sNs g, where S is the set of possible states, generated from a
Markov process. Namely, PðZt ¼ zt jZt�1

1 ¼ zt�1
1 Þ ¼ PðZt ¼ zt

jZt�1 ¼ zt�1Þ, where (and in this paper) the upper case (bold)
letters are used to denote (a collection of) random variables
and the lower case (bold) letters denote the correspon-
ding (collection of) realizations, i.e., zt�1

1 ¼ fz1; z2;…; zt�1g,
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similarly for Zt�1
1 . The observation sequence y1; y2;…; yt is

generated based on the state sequence z1; z2;…; zt , i.e.,
PðYt ¼ yt jZt

1 ¼ zt1;Y
t�1
1 ¼ yt�1

1 Þ ¼ PðYt ¼ yt jZt ¼ ztÞ. We con-
sider A as the transition matrix, where Aij represents the
transition probability from state si to sj, Aij ¼ PðZt ¼ sjjZt�1

¼ siÞ. Similarly, B is the observation probabilities at each state,
i.e., Bij ¼ PðYt ¼ vjjZt ¼ siÞ. In order to complete the HMM
observation model, we also define the initial state probabil-
ities as πi ¼ PðZ1 ¼ siÞ. Thus, λ¼ ðπ;A;BÞ represents the para-
meter set that completely characterizes the HMM model as
shown in Fig. 1a.

As for the HMM parameter estimation problem, the
Maximum Likelihood (ML) estimation, arg maxλPðY¼ yjλÞ,
y¼ fy1; y2;…; yT g, is locally solved iteratively using the
Expectation Maximization (EM) algorithm [1]. Then the
iterative re-estimation formulas for the HMM parameters
providing the ML estimate are as follows:

Âij ¼
∑T�1

t ¼ 1ϵtði; jÞ
∑T�1

t ¼ 1γtðiÞ
; B̂ij ¼

∑T�1
t ¼ 11fyt ¼ vjgγtðiÞ
∑T�1

t ¼ 1γtðiÞ
; π̂ i ¼ γ1 ið Þ:

ð1Þ
Here, ϵtði; jÞ is defined as the probability of transition at
time t from state si to sj, given the observations y and the
current parameters of the model, i.e.,

ϵtði; jÞ ¼ PðZt ¼ si; Ztþ1 ¼ sjjY¼ y; λÞ;
and γtðiÞ is defined as the probability of being at state zt¼si,
given the observations and the model, i.e.,

γtðiÞ ¼ ∑
Ns

j ¼ 1
ϵtði; jÞ:

These iterative re-estimation formulas can be computed
efficiently through the well-known forward–backward
procedure [24,25], which is based on the forward and
backward variables and the corresponding recursions. The
forward variable, αtðiÞ, along with the recursion in [1] is
given by the following:

αtðiÞ ¼ PðYt
1 ¼ yt1; Zt ¼ sijλÞ ¼ Biyt ∑

Ns

j ¼ 1
αt�1ðjÞAji;

α1ðiÞ ¼ πiBiy1 ; 2≤t≤T ;

which is the probability of observing yt1 and being at state
zt¼si, given the model λ. Similarly, the backward variable
is given by the following:

βtðiÞ ¼ PðYT
tþ1 ¼ yTtþ1jZt ¼ si; λÞ

¼ ∑
Ns

j ¼ 1
βtþ1ðjÞAijBjytþ1

; βT ðiÞ ¼ 1; 1≤t≤T�1;

which is the probability of observing yTtþ1, given the state
zt¼si and the model. By noting that PðZt ¼ si; Ztþ1 ¼ sj;
Y¼ yjλÞ ¼ αtðiÞAijBjytþ1

βtþ1ðjÞ and PðY¼ yjλÞ ¼∑Ns
k ¼ 1 ∑Ns

l ¼ 1αt
ðkÞAklBlytþ1

βtþ1ðlÞ, we obtain

ϵt i; jð Þ ¼ αtðiÞAijBjytþ1
βtþ1ðjÞ

∑Ns
k ¼ 1∑

Ns
l ¼ 1αtðkÞAklBlytþ1

βtþ1ðlÞ
:

Then the iterative re-estimation formulas for the HMM
parameters given in (1) can be computed efficiently using
the forward–backward recursions. As a result, given the
training data, we estimate the HMM parameters λ by the
iterative re-estimation procedure defined by the EM
algorithm. Namely, given the HMM parameters λq�1 at an
iteration q, we re-estimate the model parameters as
λq using the re-estimation formulas in (1). This procedure
is guaranteed to improve the likelihood of the observa-
tions at every iteration and converge to a set of HMM
parameters λ̂, which is at least locally optimal (cf. [1] and
the references therein).

In the following section, we incorporate the noisy side
information into the HMM framework. To this end,
we introduce the “incomplete-data problem” [19], derive
the conditional expectation of the complete-data log like-
lihood to obtain the iterative re-estimation formulas and
finally adapt the forward–backward procedure for the case
of partially observable states.

3. HMM training with noisy and partial access to the state
sequence

In this section, we derive the new set of iterative EM
equations for the HMM parameter estimation, when we
have noisy and side information on the hidden states.
Here, we have an observation sequence yt∈y¼ fy1; y2;…;

yT g, with partial and noisy access to the hidden states,
zt∈z¼ fz1; z2;…; zT g, as this side information. Each hidden
state z∈z might be observed as x with probability τ, i.e.,
we do not necessarily have a state observation at a given
time instant. Hence, we have partial access to the hidden
state sequence. In addition to this partial access, a state
observation x might also be noisy such that PðX≠sjZ ¼
sÞ ¼ ð1�pÞ. We assume that if a state observation is
erroneous, then PðX ¼ s2jZ ¼ s1Þ ¼ 1=ðNs�1Þ, ∀s1; s2∈S and
s1≠s2. We here note that if the probability distribution of
the erroneous state observations concentrated at a parti-
cular state (for each observed hidden state), then we
would have more information about the underlying hid-
den states. For an instance, suppose we observed x¼s and
it is erroneous, i.e., z≠s. Then, z would be more likely to be
the state sn for which the corresponding erroneous state
observations concentrated at s≠sn. This clearly would be a
favorable case in terms of the HMM parameter estimation
as well as the recognition of the underlying hidden states.
In this paper, we targeted the worst case, i.e., the case of
most ambiguous state observations, when there is an
error. Hence, we assumed that the probability distribution
of erroneous state observations is not concentrated and so
uniform. For ease of notation, we define the state observa-
tions at every time t as xt∈x¼ fx1; x2;…; xT g, such that if zt
is ever observed as s∈S, then xt ¼ s. Otherwise, xt ¼ s0,
where s0 is a pseudo-state. This expands our state space to
S′¼ S∪fs0g. Thus, we model mislabeling and partial label-
ing jointly in one complete framework as shown in Fig. 1b.

After having described our model, in the following, we
first deduce the iterative re-estimation formulas of the
HMM parameters under partial and noisy access to the
hidden states. In the following, we consider the HMM as
an instance of the “incomplete data problem” and derive
the conditional expectation of the complete data log-
likelihood to apply the EM algorithm to the Maximum
Likelihood estimation. Then we present the forward and
backward recursions for an efficient computation of the
deduced re-estimation formulas.
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3.1. The re-estimation formulas for the HMM parameters
through likelihood maximization under partial and noisy
access to the states

The ML estimation of the HMM parameters in this case
of partial and noisy access to the hidden states is given by
the maximization of the log-likelihood of all observations
with respect to the model parameters

arg max
λ

logðPðY¼ y;X¼ xjλÞÞ:

Clearly, this maximization would have been computation-
ally more tractable if the hidden states z were completely
known, i.e., if we had xt¼zt at each time t, in addition to
the observation sequence y, since then the corresponding
conditional probability distribution could be factorized
into a simpler form (due to Markov property). Hence,
considering the unobserved hidden states as the missing
data, it is more plausible to formulate this parameter
estimation problem as an instance of the “incomplete data
problem” [19] and consider the corresponding augmenta-
tion of the observations with the states as w¼ ðy;x; zÞ as
the “complete data”. Then one can construct the following
relationship between the incomplete-data log-likelihood
logðPðY¼ y;X¼ xjλÞÞ and the complete-data log-likelihood
logðPðW¼wjλÞÞ:

logðPðY¼ y;X¼ xjλÞÞ≥∑
z
Q ðz; λÞ logðPðW¼wjλÞÞ

�∑
z
Q ðz; λÞ logðQ ðz; λÞÞ

¼ EZjY;X;λfðlogðPðW¼wjλÞÞÞ þ CðλÞg;

where Q ðz; λÞ ¼ PðZ¼ zjY¼ y;X¼ x; λÞ, CðλÞ ¼ �∑zQ ðz; λÞ
logðQ ðz; λÞÞ and the expectation is with respect to the
random variables Z conditioned on ðY;X; λÞ. Based on this
construction, we can readily maximize the conditional
expectation of the complete data log-likelihood through
the EM algorithm (cf. [19] and the references therein) in
order to maximize the incomplete data likelihood as
originally intended. The EM algorithm works iteratively
between two separate steps, known as E-steps and M-
steps, such that at iteration q, the E-step calculates
Q ðz; λq�1Þ and the M-step maximizes the conditional
expectation EZjY;X;λq�1 ð logðPðW¼wjλqÞÞÞ with respect to
the λq and note that Cðλq�1Þ does not affect the maximiza-
tion in the M-step of iteration q. We emphasize that since
the complete data log-likelihood here is factorizable, the
ML estimation of the HMM parameters becomes compu-
tationally more tractable when it is posed as an incom-
plete data problem. Indeed, we show that the forward–
backward procedure stays applicable in this case of partial
and noisy access to the states. We now deduce the re-
estimation formulas for the HMM parameters.

Let Q ðz; λq�1Þ ¼ PðZ¼ zjY¼ y;X¼ x; λq�1Þ be the output
of E-step, then M-step carries out the following maximiza-
tion:

arg max
λq

EZjY;X;λq�1 ðlogðPðW¼wjλqÞÞÞ

¼ arg max
λq

∑
z
Q ðz; λq�1Þ logðPðY¼ y;X¼ x;Z¼ zjλqÞÞ;
which, using the product of conditional probabilities, yields

arg max
λq

EZjY;X;λq�1 ðlogðPðW¼wjλqÞÞÞ

¼ arg max
λq

∑
z
Q ðz; λq�1Þ logðPðY¼ yjX¼ x;Z¼ z; λqÞ

PðX¼ xjZ¼ z; λqÞPðZ¼ zjλqÞÞ:

Since X is independent with λq conditioned on Z and Y is
independent with X conditioned on ðZ; λqÞ, we obtain

arg max
λq

EZjY;X;λq�1 ðlogðPðW¼wjλqÞÞÞ

¼ arg max
λq

∑
z
Q ðz; λq�1Þ logðPðY¼ yjZ¼ z; λqÞ

PðX¼ xjZ¼ zÞPðZ¼ zjλqÞÞ;

where we can drop the factor PðX¼ xjZ¼ zÞ since it does not
depend on λq and reach

arg max
λq

EZjY;X;λq�1 ðlogðPðW¼wjλqÞÞÞ

¼ arg max
λq

∑
z
Q ðz; λq�1Þ logðPðY¼ yjZ¼ z; λqÞPðZ¼ zjλqÞÞ:

ð2Þ
We point out that the maximization in (2) does not involve
the side information x, except that Q ðz; λq�1Þ is related to x.
However, since Q ðz; λq�1Þ is calculated in E-step before
M-step starts in the course of our algorithm, it only brings
constant factors to the maximization in (2) and, hence, it does
not affect the M-step derivations. Therefore, rest of the
derivations follows the regular M-step derivations of the EM
algorithm for the ordinary HMM parameter training and we
estimate the transition probabilities as

Âij ¼
∑zQ ðz; λq�1Þ∑T�1

t ¼ 11fzt ¼ si∧ztþ1 ¼ sjg
∑zQ ðz; λq�1Þ∑T�1

t ¼ 11fzt ¼ sig

¼ ∑z∑T�1
t ¼ 11fzt ¼ si∧ztþ1 ¼ sjgPðZ¼ zjY¼ y;X¼ x; λq�1Þ

∑z∑T�1
t ¼ 11fzt ¼ sigPðZ¼ zjY¼ y;X¼ x; λq�1Þ

;

where 1fhg is the indicator function such that it outputs 1 if h,
as a statement, is satisfied; and 0 otherwise. Here, the
indicator function in the numerator and the denominator
marginalizes the probability PðZ¼ zjY¼ y;X¼ x; λq�1Þ, since
the outer summation is over all possible hidden state
sequences. Hence, we obtain

Âij ¼
∑T�1

t ¼ 1PðZt ¼ si; Ztþ1 ¼ sjjY¼ y;X¼ x; λq�1Þ
∑T�1

t ¼ 1PðZt ¼ sijY¼ y;X¼ x; λq�1Þ

¼ ∑T�1
t ¼ 1ϵtði; jÞ

∑T�1
t ¼ 1γ tðiÞ

:

Here, ϵtði; jÞ is the probability of transition at time t from state
si to sj, given the observations y, the side information x, and
the model λq�1, i.e.,

ϵtði; jÞ ¼ PðZt ¼ si; Ztþ1 ¼ sjjY¼ y;X¼ x; λÞ; ð3Þ
and γ tðiÞ is the probability of being at state zt ¼ si, given the
observations, the side information and the model λq�1, i.e.,

γ tðiÞ ¼ PðZt ¼ sijY¼ y;X¼ x; λÞ ¼ ∑
Ns

j ¼ 1
ϵtði; jÞ:

Note that the state transition probabilities are estimated,
given the side information, as the expected number of transi-
tions from state si to sj divided by the expected number of
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times in the state si. Similarly, B̂ij is given by

B̂ij ¼
∑T�1

t ¼ 11fyt ¼ vjgγ tðiÞ
∑T�1

t ¼ 1γ tðiÞ
;

which is, given the side information, the expected number of
times in the state si and observing vj, divided by the expected
number of times in the state si. Also, the set of initial
probabilities for the hidden state z1 is estimated as π̂ i ¼
γ1ðiÞ. We next derive the forward and backward recursions in
order to efficiently compute the EM estimate of the HMM
parameters.

3.2. Forward and backward recursions

To derive the forward and backward recursions in this
case of partially observable hidden states, we first update
the variables of the forward–backward procedure, which
incorporates the side information x. The updated forward
variable is defined as

αtðiÞ ¼ PðYt
1 ¼ yt1;X

t
1 ¼ xt

1; Zt ¼ sijλÞ; ð4Þ
the probability of observing ðyt1;xt

1Þ and being at state
zt¼si, given the model λ. Note that zt is the correct and the
underlying hidden state, whereas xt

1 are the state observa-
tions, for which we might have (1) xt ¼ s0 corresponding to
the case that zt is not actually observed and (2) noisy, if zt
is actually observed. Similarly, the backward variable

β tðiÞ ¼ PðYT
tþ1 ¼ yTtþ1;X

T
tþ1 ¼ xT

tþ1jZt ¼ si; λÞ; ð5Þ

is the probability of observing ðyTtþ1; x
T
tþ1Þ, given the model

and the state zt¼si. The updated forward and backward
variables are the key variables of incorporating the side
information. The following proposition explicitly relates
these variables to the side information and provides the
corresponding recursions.

Proposition 1. For the updated forward and backward
variables defined in (4) and (5), we have

αtðiÞ ¼ νðxt ; siÞBiyt ∑
Ns

j ¼ 1
Ajiαt�1ðjÞ; 2≤t≤T ;

β tðiÞ ¼ ∑
Ns

j ¼ 1
νðxtþ1; sjÞβ tþ1ðjÞAijBjytþ1

; 1≤t≤T�1;

where νðxt ; siÞ ¼ 1fxt ¼ s0gð1�τÞ þ 1fxt ¼ sigτpþ 1fxt≠si∧xt ≠s0g
τð1�pÞ=ðNs�1Þ, si≠s0, sj≠s0.

Proof. Using the marginalization over the random vari-
able Zt�1, we can obtain αtðiÞ as

αtðiÞ ¼ ∑
Ns

j ¼ 1
PðYt

1 ¼ yt1;X
t
1 ¼ xt

1; Zt ¼ si; Zt�1 ¼ sjjλÞ;

which can be expressed, using the product of conditional
probabilities, as

αtðiÞ ¼ ∑
Ns

j ¼ 1
½PðYt ¼ yt ;Xt ¼ xt ; Zt ¼ sijYt�1

1 ¼ yt�1
1 ;Xt�1

1

¼ xt�1
1 ; Zt�1 ¼ sj; λÞ

PðYt�1
1 ¼ yt�1

1 ;Xt�1
1 ¼ xt�1

1 ; Zt�1 ¼ sjjλÞ�:
By definition of the updated forward variable, we get

αtðiÞ ¼ ∑
Ns

j ¼ 1
PðYt ¼ yt ;Xt ¼ xt ; Zt ¼ sijYt�1

1 ¼ yt�1
1 ;Xt�1

1

¼ xt�1
1 ; Zt�1 ¼ sj; λÞαt�1ðjÞ;

where Markov Property is applied to reach

αtðiÞ ¼ ∑
Ns

j ¼ 1
PðYt ¼ yt ;Xt ¼ xt ; Zt ¼ sijZt�1 ¼ sj; λÞαt�1ðjÞ

¼ ∑
Ns

j ¼ 1
PðYt ¼ yt ;Xt ¼ xt jZt ¼ si; Zt�1 ¼ sj; λÞPðZt

¼ sijZt�1 ¼ sj; λÞαt�1ðjÞ ¼ ∑
Ns

j ¼ 1
PðYt ¼ yt ;Xt

¼ xt jZt ¼ si; λÞPðZt ¼ sijZt�1 ¼ sj; λÞαt�1ðjÞ:

Since Xt and Yt are independent conditioned on (Zt ; λ), we
obtain

αtðiÞ ¼ ∑
Ns

j ¼ 1
PðYt ¼ yt ;Xt ¼ xt jZt ¼ si; λÞAjiαt�1ðjÞ

¼ ∑
Ns

j ¼ 1
PðXt ¼ xt jZt ¼ si; λÞPðYt ¼ yt jZt ¼ si; λÞAjiαt�1ðjÞ:

Then, by definition of the probability of error events in the
side information, we get the proposition for the updated
forward variable as

αtðiÞ ¼ νðxt ; siÞBiyt ∑
Ns

j ¼ 1
Ajiαt�1ðjÞ; 2≤t≤T :

As for the initialization, we set α1ðiÞ ¼ νðx1; siÞπiBiy1 . Simi-
larly, the corresponding recursion for the updated back-
ward variable can be found as

β tðiÞ ¼ ∑
Ns

j ¼ 1
νðxtþ1; sjÞβ tþ1ðjÞAijBjytþ1

; 1≤t≤T�1;

for which we have the initialization βT ðiÞ ¼ 1. □

Here, p reflects the confidence that we have on the side
information and it is a parameter in our training algorithm.
Ideally, when given a set of data, p (named as ptrain in Section
4) should be set according to the underlying true noise level,
1�ptrue, which is unknown. This brings an immediate trade-
off between setting the confidence too low or too high, when
an accurate guess about 1�ptrue is not present. If we have too
high confidence, then our algorithm basically overfits to the
noise in the side information, which degrades the state
recognition performance as discussed in Section 4. On the
other hand, if we have too low confidence, then our algo-
rithm does not fully exploit the side information to its limit.
We discuss this later in Section 4, when investigating the
robustness of our algorithm to the confidence parameter
p (ptrain in Section 4).

We next present the following proposition that relates
ϵtði; jÞ to the updated forward and backward variables in
order to exploit the recursions given in Proposition 1 in
the estimation of the HMM parameters in our new
framework.

Proposition 2. With the definitions in (4) and (5), we have

ϵt i; jð Þ ¼ P Zt ¼ si; Ztþ1 ¼ sj Y¼ y;X¼ x; λ
�� Þ�
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¼ Bjytþ1
νðxtþ1; sjÞAijαtðiÞβ tþ1ðjÞ
PðY¼ y;X¼ xjλÞ ;

where νðxtþ1; sjÞ ¼ 1fxtþ1 ¼ s0gð1�τÞ þ 1fxtþ1 ¼ sjgτpþ 1fxtþ1≠sj∧xtþ1≠s0g
τð1�pÞ=ðNs�1Þ, sj≠s0.

Proof. Splitting the observations as y¼ ðyt1; ytþ1; yTtþ2Þ, and
the side information as x¼ ðxt

1; xtþ1; xT
tþ2Þ, (3) yields

ϵt i; jð Þ ¼ PðZtþ1 ¼ sj;X
T
tþ2 ¼ xT

tþ2;Y
T
tþ2 ¼ yTtþ2jλÞ

PðY¼ y;X¼ xjλÞ
�PðZt ¼ si;X

tþ1
1 ¼ xtþ1

1 ;Ytþ1
1 ¼ ytþ1

1 jZtþ1

¼ sj;X
T
tþ2 ¼ xT

tþ2;Y
T
tþ2 ¼ yTtþ2; λÞ:

Since ðZt ;Xtþ1
1 ;Ytþ1

1 Þ is independent with ðXT
tþ2;Y

T
tþ2Þ con-

ditioned on ðZtþ1; λÞ, we obtain

ϵt i; jð Þ ¼ PðZtþ1 ¼ sj;X
T
tþ2 ¼ xT

tþ2;Y
T
tþ2 ¼ yTtþ2jλÞ

PðY¼ y;X¼ xjλÞ
�PðZt ¼ si;X

tþ1
1 ¼ xtþ1

1 ;Ytþ1
1 ¼ ytþ1

1 jZtþ1 ¼ sj; λÞ;
which, re-arranging the conditional probabilities, yields

ϵt i; jð Þ ¼ PðZt ¼ si; Ztþ1 ¼ sj;X
tþ1
1 ¼ xtþ1

1 ;Ytþ1
1 ¼ ytþ1

1 jλÞ
PðY¼ y;X¼ xjλÞ

�P XT
tþ2 ¼ xT

tþ2;Y
T
tþ2 ¼ yTtþ2 Ztþ1 ¼ sj; λ

�� ��

¼ PðZtþ1 ¼ sj;Xtþ1 ¼ xtþ1;Ytþ1 ¼ ytþ1jZt ¼ si;X
t
1 ¼ xt

1;Y
t
1 ¼ yt1; λÞ

PðY¼ y;X¼ xjλÞ
ϵt i; jð Þ ¼ PðZtþ1 ¼ sj;Xtþ1 ¼ xtþ1;Ytþ1 ¼ ytþ1jZt ¼ si; λÞαtðiÞβ tþ1ðjÞ
PðY¼ y;X¼ xjλÞ

¼ PðXtþ1 ¼ xtþ1;Ytþ1 ¼ ytþ1jZtþ1 ¼ sj; Zt ¼ si; λÞPðZtþ1 ¼ sjjZt ¼ si; λÞαtðiÞβ tþ1ðjÞ
PðY¼ y;X¼ xjλÞ ;

wherein, Markov Property is used to reach

ϵt i; jð Þ ¼ PðXtþ1 ¼ xtþ1;Ytþ1 ¼ ytþ1jZtþ1 ¼ sj; λÞPðZtþ1 ¼ sjjZt ¼ si; λÞαtðiÞβ tþ1ðjÞ
PðY¼ y;X¼ xjλÞ :

Since Xtþ1 is independent with Ytþ1 conditioned on ðZtþ1; λÞ, we obtain

ϵt i; jð Þ ¼ PðYtþ1 ¼ ytþ1jZtþ1 ¼ sj; λÞPðXtþ1 ¼ xtþ1jZtþ1 ¼ sj; λÞPðZtþ1 ¼ sjjZt ¼ si; λÞαtðiÞβ tþ1ðjÞ
PðY¼ y;X¼ xjλÞ :
�PðZt ¼ si;X
t
1 ¼ xt

1;Y
t
1 ¼ yt1jλÞ

�PðXT
tþ2 ¼ xT

tþ2;Y
T
tþ2 ¼ yTtþ2jZtþ1 ¼ sj; λÞ:

Since ðZtþ1;Xtþ1;Ytþ1Þ and ðXt
1;Y

t
1Þ are independent condi-

tioned on ðZt ; λÞ, and recognizing the terms αtðiÞ and β tþ1ðjÞ,
we obtain
Then, due to the definition of the probability of error event
in the side information, we get the proposition as

ϵt i; jð Þ ¼ Bjytþ1
νðxtþ1; sjÞAijαtðiÞβ tþ1ðjÞ
PðY¼ y;X¼ xjλÞ : □

Based on the new set of equations as well as the recursions
defined in Proposition 1, we incorporated possibly corrupted
side information into the HMM training framework. We
finally point out that the forward and backward variables
tend to 0 exponentially [15,26] as we are provided longer
sequences, i.e., αT ðiÞ-0, and β1ðiÞ-0; ∀i, as T-1. This
would create in practice stability issues, i.e., numeric under-
flow, on any computer if the recursions in Proposition 1 were
directly evaluated. Hence, we propose to use the following
scaling scheme of [26] in order to avoid such issues. Let us
define the normalization factor ct

ct ¼
1

∑Ns
i ¼ 1αtðiÞ

and ∑
Ns

i ¼ 1
ctαt ið Þ ¼ 1;

thenwe normalize the forward variable αtðiÞ as ctαtðiÞ at each
time t after it is calculated with respect to the recursions given
in Proposition 1. Similarly, we also normalize the backward
variable β tðiÞ with ct as ctβ tðiÞ at each time t. Then it is easy to
see that the re-estimation formulas, i.e., whether they are
computed with the normalized or unnormalized forward and
backward variables, remain intact. Namely, consider the
re-estimation formulas for the state transition probabilities
calculated with the normalized forward and backward vari-
ables as

Âij ¼
∑T�1

t ¼ 1ϵtði; jÞ
∑T�1

t ¼ 1γ tðiÞ

¼ ∑T�1
t ¼ 1Bjytþ1

νðxtþ1; sjÞAijCtαtðiÞDtþ1β tþ1ðjÞ
∑T�1

t ¼ 1∑
Ns
j ¼ 1Bjytþ1

νðxtþ1; sjÞAijCtαtðiÞDtþ1β tþ1ðjÞ
;

where Ct ¼∏t
i ¼ 1ci and Dtþ1 ¼∏T

i ¼ tþ1ci. Hence, noting that
CtDtþ1 ¼∏T

i ¼ 1ci; ∀t,

Âij ¼
∑T�1

t ¼ 1ϵtði; jÞ
∑T�1

t ¼ 1γ tðiÞ
¼ ∏T
i ¼ 1ci∑

T�1
t ¼ 1Bjytþ1

νðxtþ1; sjÞAijαtðiÞβ tþ1ðjÞ
∏T

i ¼ 1ci∑
T�1
t ¼ 1∑

Ns
j ¼ 1Bjytþ1

νðxtþ1; sjÞAijαtðiÞβ tþ1ðjÞ

¼ ∑T�1
t ¼ 1Bjytþ1

νðxtþ1; sjÞAijαtðiÞβ tþ1ðjÞ
∑T�1

t ¼ 1∑
Ns
j ¼ 1Bjytþ1

νðxtþ1; sjÞAijαtðiÞβ tþ1ðjÞ
:

Similarly, the estimates for the conditional observation prob-
abilities B̂ij as well as the initial state probabilities π̂ i also
remain exact with this normalization scheme. Therefore, this
normalization provides the numerical stabilization of the
proposed estimation method. In the next section, we provide
examples that demonstrate the performance of the new set of
training updates under different scenarios.
4. Simulations

In this section, we demonstrate the performance of our
method through simulations using data generated with
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the following HMM parameters:

Ns ¼ 3; Nv ¼ 3; π ¼ ½0:3 0:3 0:4�; and

A¼
0:8 0:19 0:01
0:01 0:8 0:19
0:19 0:01 0:8

2
64

3
75; B¼

0:6 0:3 0:1
0:1 0:6 0:3
0:3 0:1 0:6

2
64

3
75:

For these simulations, we generate a test sequence of
length 500 and a training sequence of length 250 along
with the side information of a relatively high noise level,
1�ptrue ¼ 0:4, and a relatively low noise level, 1�ptrue ¼
0:2, with τ ranging from 0 to 0.6. We emphasize that the
exact noise level may not be known by the algorithm.
Hence, we provide ptrain to the algorithm which may not
be equal to the ptrue. Here, the parameter ptrain reflects the
confidence (equivalently the expected noise level) that we
have on the side information. Since this confidence on the
side information might not be accurate, i.e., ptrain does not
necessarily match with ptrue, for analyzing the sensitivity
of our method to the confidence parameter, we train our
algorithm with different choices for ptrain: (1) we set
confidence that is in the proximity of ptrue (ptrain∼ptrue),
i.e., ptrain∈f0:55;0:6;0:65g, if ptrue ¼ 0:6 and ptrain∈f0:75;0:8;
0:85g, if ptrue ¼ 0:8, (2) we set too high confidence on the
side information (ptrainbptrue), i.e., ptrain ¼ 1, when ptrue∈
f0:6;0:8g and, (3) we set too low confidence (ptrain5ptrue),
i.e., ptrain ¼ 0:5, when ptrue ¼ 1. Using the training sequence,
we first estimate the unknown model parameters, Aij, Bij,
and πij. Then, on the test sequence, the hidden state
sequence is estimated by the Viterbi algorithm [27,28] using
the estimated model parameters. We apply our method on
500 different pairs of test and training sequences and we
present the resulting average state recognition error rates
for all the cases aforementioned. In order to show the
efficacy of incorporating the side information by our
method, we compare the state recognition error rates of
our algorithm with (1) Baseline Performance, the state
recognition error rate if the model parameters are estimated
by the ordinary HMM parameter estimation. This is the
performance, which is readily achievable with no side
information. (2) The Oracle, the state recognition error rate
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Fig. 2. Simulation results for different scenarios. Our algorithm is trained with p
ptrue ¼ 0:80. The State Recognition Error Rates are estimated by the Viterbi algorit
limits: (1) Baseline Performance, error rate by ordinary HMM using no side Inform
recognition, and (3) Limit of Algorithm, ptrain ¼ ptrue ¼ 1. See the text for details
if the true model parameters are directly used in the state
estimation on the test sequence. This is the performance
limit if the HMM training algorithm is run on infinite
amount of training data, which is only asymptotically
achievable. (3) Limit of Algorithm, the state recognition
error rate if the side information is completely accurate
and the algorithm is trained with complete confidence on
the side information, i.e., ptrue ¼ 1, ptrain ¼ 1. Finally, this is
the performance limit that our algorithm can gain at most
by exploiting the side information. Here, we name the
difference between the Baseline Performance and the Oracle
as the “achievable margin” since no algorithm can obtain
state recognition improvements more than the achievable
margin, provided that, as in this work, first the model
parameters are estimated and then used in the Viterbi
algorithm for state recognition.

Our simulations show that the performance of our
method, provided that ptrain∼ptrue, improves with the
amount of side information that is indicated by τ. In
particular, when we have accurate access to the hidden
states, i.e., ptrue ¼ ptrain ¼ 1, the state recognition rate in the
test sequence, labeled as Limit of Algorithm in Fig. 2,
consistently approaches to the Oracle as τ increases and
reaches ∼90% gain (the performance improvement over
the baseline corresponds to ∼90% of the achievable mar-
gin) with 30% additional information on states, i.e., τ¼ 0:3,
as shown in Fig. 2. This proves the efficacy of our method
with incorporating the side information. On the other
hand, in the case of noisy access to the hidden states such
that 20% of the state observations are mislabeled, i.e., ptrue
¼ 0:8, our method (when ptrain∼ptrue) is able to provide
substantial gain, 70%, at τ¼ 0:3. In this case, as τ increases,
the recognition approaches to Limit of Algorithm showing
that our algorithm optimally incorporates the side infor-
mation under noise asymptotically. Even if the noise level
is further increased up to a level as high as 40% mislabeling,
we still obtain a gain that consistently increases with τ,
when ptrain∼ptrue. Thus, our method is robust to noise.
Nevertheless, the algorithm must not rely on the side
information with too high confidence. Specifically, when
we have the confidence ptrain ¼ 1 in case of high noise level,
0.5 0.6

ation, τ

Oracle
Baseline Performance
ptrue=0.6 ~ ptrain=0.55

Limit of Algorithm

ptrue=0.6 ~ ptrain=0.6

ptrue=0.6 ~ ptrain=0.65

ptrue=0.6 ~ ptrain=0.1

ptrue=0.8 ~ ptrain=0.75

ptrue=0.8 ~ ptrain=0.8

ptrue=0.8 ~ ptrain=0.85

ptrue=0.8 << ptrain=0.1

ptrue=1 >> ptrain=0.5

train∈f0:55;0:60;0:65g when ptrue ¼ 0:60 and ptrain∈f0:75;0:80;0:85g when
hm. Performance of our algorithm is compared against three performance
ation, (2) Oracle, error rate if the true model parameters are used in state

.
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i.e., ptrue ¼ 0:6, we do not obtain any improvement com-
pared to the baseline. On the contrary, the algorithm does
not fully exploit the side information to its limit, if the
confidence is too low. For instance, in case of ptrain ¼ 0:5
and ptrue ¼ 1, the rate of performance improvement with
τ is significantly slower than that of Limit of Algorithm, i.e.,
ptrue ¼ 1, ptrain ¼ 1. According to our simulations, setting the
confidence in the proximity of the true noise level is
sufficient to obtain the maximum gain, i.e., our algorithm
does not require an exact match between ptrue and ptrain.
This demonstrates that our algorithm is also robust to the
mismatches in the confidence parameter.

5. Conclusion

In this paper, we introduced a new parameter estima-
tion algorithm for HMM, when we have partial and noisy
access to the hidden state sequence as side information.
This side information can be seen as partial labeling,
“possibly wrong”, of the hidden states. In this work,
we model mislabeling and partial labeling of the hidden
states jointly in one complete framework. This framework
naturally recovers the unsupervised HMM training if the
partial access to the hidden states is turned off. In our
simulations, we observed that, using this side information,
we considerably improved the state recognition perfor-
mance, up to 70%, with respect to the “achievable margin”.
Moreover, our method is shown to be robust to the
training conditions. Finally, since this framework includes
possible mislabeling events, our algorithm models realistic
training conditions more accurately than the ordinary
HMM training. Hence, we expect the same performance
improvement in other examples.
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