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Scattering From an Impedance Object at the Edge of
a Perfectly Conducting Wedge

Behnam Ghassemiparvin, Student Member, IEEE, and Ayhan Altintas, Senior Member, IEEE

Abstract—In this study, scattering from impedance bodies po-
sitioned at the edge of a perfectly electrically conducting wedge
is investigated. In the treatment of the problem, eigenfunction ex-
pansion in terms of spherical vector wave functions is employed. A
complete dyadic Green’s function for the spherical impedance boss
at the edge is developed. It is observed that the scattering is highly
enhanced by the edge guided waves. Additionally, using T-matrix
method, the solution is extended to the general case of irregularly
shaped scatterers. The T-matrix solution is verified by applying it
to the case of a spherical scatterer and results are compared with
the dyadic Green’s function solution.

Index Terms—Dyadic Green’s function, electromagnetic
scattering, spherical vector wave functions, T-matrix, wedge
scattering.

I. INTRODUCTION

HIS paper is mainly concerned with the development of

an analytical solution for scattering from an impedance
object at the edge of a perfectly conducting wedge. Scattering
from several configurations of spherical and irregularly shaped
objects are considered which will serve to provide a basis to
extend the scope of current high-frequency techniques for scat-
terers at the edge. In addition, this work is a first step toward
an analytical solution for scattering from a rough or corrugated
edge.

In the literature, the problem of cylinder-tipped half plane
is first considered by Keller in which the Geometrical Theory
of Diffraction (GTD) solution is presented [1]. Shortcomings
of the Keller’s theory in the transition regions were overcome
by incorporating higher order terms in the solution, hence, con-
tinuous fields at the boundaries are obtained [2]. For the gen-
eral case of cylinder-tipped wedge, using GTD approach, an
asymptotic expression of Green’s function is obtained in [3].
Scattering from slotted and corrugated wedges which are of im-
portance in analyzing aperture antennas and radar targets are
investigated in [4]-[9]. For canonical problems, series solutions
in terms of eigenfunctions are presented [7]-[9]. For irregularly
shaped slot configurations, based on application of equivalence
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principle, the problem is divided into distinct exterior and inte-
rior domains. Exterior problem is concerned with wedge scat-
tering which is formulated using UTD or Green’s function ex-
pansion. Interior problem of cavity is treated by employing fi-
nite element method [4]-[6]. Published works mostly refer to
configurations which conform to cylindrical coordinates and do
not consider the scattering from structures at the edge. How-
ever, scattering from perfectly conducting wedge is considered
in [10] where dyadic Green’s function (DGF) in terms of spher-
ical vector wave functions are obtained. This dyadic Green’s
function is essential for analyzing the scattering from objects
near the edge, since it gives accurate results in the paraxial re-
gion. In addition it can be used with the T-matrix method to an-
alyze the scattering from irregularly shaped objects on the edge.

For the problem of rough edge diffraction, solutions using
asymptotic physical optics approach are presented in [11], [12].
These solutions are limited to the knife edge case and away from
shadow boundaries.

In this work, we present an analytical solution in terms of the
T-matrix for an irregularly shaped impedance object positioned
at the edge of a perfectly electrically conducting (PEC) wedge.
This solution is valid almost everywhere for various wedge an-
gles. Also, the T-matrix solution is independent of the source.
This analytical solution will provide an physical insight to the
scattering mechanism and it can be extended for multiple scat-
terers in order to simulate a rough edge.

In Section I the scattering problem is stated. Analysis is
carried out in three steps. First, dyadic Green’s function for
the spherical impedance boss at the edge is formulated in
terms of spherical vector wave functions in Section II. This
exact solution is then used to verify the T-matrix method for
irregularly shaped scatterers which is developed in Section III.
In Section IV, numerical results are presented for T-matrix
where the solution is verified by comparing it with the dyadic
Green’s function solution. Concluding remarks are presented
in Section V. Throughout this paper an e/“! time convention is
used and suppressed.

II. STATEMENT OF THE PROBLEM

Geometry of the problem is shown in Fig. 1. A perfectly elec-
trically conducting (PEC) wedge with exterior angle -y is consid-
ered which extends infinitely in the z direction. One side of the
wedge lies on the xz plane. An irregularly shaped impedance
scatterer is positioned at the edge of the PEC wedge. Position
vectors, R = r# and R’ = r'#', denote the observation and the
source locations, respectively. In the treatment of this problem,
interaction of the scatterer and the wedge should be included.
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Fig. 1. An irregularly shaped scatterer at the edge of a wedge.

First step is to analyze the scattering from a single spherical scat-
terer at the edge which is considered in the following section.

III. DYADIC GREEN’S FUNCTION OF A SPHERICAL
IMPEDANCE BOSS AT THE EDGE

A. Statement of the Problem

The geometry of the problem is shown in Fig. 2. A spher-
ical impedance boss with radius a is centered at the edge of the
PEC wedge. Sy and Sp denotes the surface of the wedge and
the boss, respectively, and X is an imaginary spherical surface
which extends to infinity. These surfaces enclose the volume V
and 7 is the unit normal vector directed into the volume.

Electric field dyadic Green’s function of the wedge and
boss, I'wp (R, R’), satisfies the dyadic differential equation in
volume V

V xVx f‘VVB(Ra P/) — k‘gf‘\vB(R? El) = —T(S(E — R/) (1)

where [ is the unit dyad, §(1? — I?’) is the Dirac delta function
and kg is the wave number in the free space. The dyadic Green’s
function must satisfy the following boundary condition on the
surface of the wedge, Sy

A x Cwa(R, ') =0on Sy . )
where 7t is the unit normal vector. Standard impedance
boundary condition is also imposed on the surface of the boss
Sp [13]

XN X fv\rB(R, R’) =rn X V X f\n’B(R, Rl) on SB (3)

where

" JkoZo @

853

S
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Fig. 2. (a) Geometry of a spherical boss at the edge (b) The cross sectional
view.

and 7 is the surface impedance of the boss and 7 is the
characteristic impedance of the free space. Furthermore, dyadic
Green’s function must satisfy the edge condition [14] at edge
(# = 0) and the radiation condition on X.

The following relation can be established between dyadic
Green’s function and the electric field, F(R), due to a volu-
metric current density J,, (&)

E(R) = jkoZo / Pws(R,R) - J(R)dv.  (5)
7

where V; is the volume of the source.
B. Construction of the Dyadic Green's Function

Derivation of the dyadic Green’s function can be simplified
by defining the vector Green’s function

G11(R7 R/) = FVVB(R7 R/) - (6)
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where @ is a unit vector in an arbitrary direction. Vector Green’s
function satisfies the vector wave equation, and the following
boundary conditions:

VXVxG (R R)-kiG.(R, R
— _as(R - R"). %)
Ax Gu(R, R =0, 8
"X ( ’ ) R on Sw ’ ( )
X X Gy (R, R |
Ron Sp
=kh X VX G (R, _ . 9)
Ron Sg

G.(R, R') may be considered as the field due to a vector point
source @u6( R — I¥') located at I?'. After determining G (IR, I?'),
dyadic Green’s function can be found by using (6).

Singularity introduced by the impulse function serves to di-
vide the Volume V into two source free regions of I and II.
Volume V is divided by the spherical surface Sp at + = +/
where the source point is located. At the dividing surface the
Green’s function is continuous but its derivatives are discontin-
uous in order to satisfy the singularity introduced by the impulse
function.

In the source free regions, Green’s function can be expanded
in terms of solenoidal spherical vector wave functions presented
in [10]. Solenoidal vector wave functions M ,,, and N« ,,,, are
defined in Appendix A.

Vector Green’s function is expanded using unknown coeffi-
cients as follows:

=2 ol

Z Cq(ff, )LM%IQ(]{I()R) + dq(Rl)]V?q(koR)

q

J\ZE 01?) + bq(]?l)]vé q(]n()]?) (10)

Gy = (11

where G, and G! are the valid Green’s functions in the region
I and region II, respectively. g is the compact summation index
representing ;4 and n.

To satisfy the boundary conditions on the surface of the
wedge M functions are chosen as even and N functions are
chosen as odd represented as M., and N,,, respectively.
Moreover, eigenvalues for i are defined as

ma

nw=— m=0,1,2,... (12)
i

Imposing the boundary condition of (9) on G, its radial func-
tions are found as

2 (k) = Ggn(hor) + apn(koa) 2], (ko) (13)
ziiVn)(kor) = Jutn(For) + Bun (ko )},l(i)rﬂ(k r)  (14)
where
korg;, o (koa) + (£ — 1) furnl(koa)
aunlkoa) = ”+ ) ( ) Fg) (15)
l“ "{'“h’;t—&-n AO(L) + (% 1) th—" ]1()(1,
 hojjgn(Koa) + (5 + koK) Juin(koa)
i) = - 004 (K3 lla)
k()th_n(P‘()a) ( + I‘uoh) h#_m(k()a)

and 7,y and hfﬂ)n denote the spherical Bessel and spherical

Hankel functions of the second kind, respectively. Primes de-
note the derivative of the function with respect to its argument.

In region II, radiation condition must be satisfied. Hence, ra-
dial functions are chosen as Hankel functions of the second kind
which are denoted with superscript (4). The resulting Green’s
function in region I and region II can be written as

Za

Z JdROYMED (ko R) + dy (RN (ko R)

q

ROYMUIM (ko R) + by(RONIN (ko) (17)

Gl = (18)

where M, F(é M) and N(g ) can be written using (13) and (14) as

MWL

en

IV(I) (l"() ) + /3lm(k0a)N(J‘) (P‘()R)

opn oun

MM (10 RY =

e/un

NUN) (koR) =

oun

(koR) + cun(koa) M), (koR)  (19)
(20)

To solve for unknown coefficients, Green’s second identity
is applied over the region I and region II. By imposing the
boundary conditions and employing the orthogonality of the
spherical vector wave functions given in [10], a,, b,, ¢, and d,
can be determined as follows:

nj MR-

(R = — 21
a4(F) 2k Qunlpp+n)(pp+n+1) @
. o (4) 51 ~
’ NO (k‘oR ) U
by(R') = —L ‘ 22
ol7) 2ko Qun(p +n)(p+n+1) 22
. —(IM) /) By -
Me k -
o (1) = 2L M (o) (23)

2k0 Q/,ln(,“l + 7’7/)(/1, +n 4+ 1)
N(g(fw)(kgﬁl) -

B mj
(R = — ) 24
o) 2ko Qunlpt+n)(e+n+1) (24)
In (22)-(24),
En YN
n — . 25
@ 22+ 2n + DI'2u +n + 1) (25)
where
2 ifm =0,
om = { 1 ifm #0. (26)

Substituting the unknowns coefficients in (17) and (18),
vector Green’s function can be written as

'u,(R7 ) 2k() Z le(u—l—n)(u—l—n-l-l)

x [Mggf‘f)(koR)Mg‘*)(koR)

NIV R RING (o B -0 (27)
o 1
GYR,R) =
o )= ZkOZQM(/t—l—n)( +n+1)
X [MFF;)(A:OR)]V[gM)(kOR)
NP RN (o B -3 (28)
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wB LT, =73 - + o oo oo (1] - Ny, s _
R %o | RS L R GoR) S GRS 00R) |
Qun{ptn)(pt+n+1) =
m=0n=0
($°$° M RN, (o ROENG) (o NG (hoB) o g
YT S ) =t Qo pFm Gt k1) 2 »
ik, B = /ﬂg (- F) 2kq o § M (ko RYMIL), (kg RN (ko R)NEY (kR < (30)
Qo () (utn+1) =t
\ m=0n=0
oo 00 —r (1) S (4 5 (4 By (4 5
f\ (R R/) _ Z Z aun(kO(L)Me(y,n(kOR/)iwéu,)n(kOR) + /3Hn(k()a>N(gp,)n(kOR,)N(Sp,)n(kOR) (31)
B s -
m=0n=0 (2‘“'"('“/ + n) (,LL +nt 1)

Now, by comparing (27) and (28) with (6) complete dyadic
Green’s function for the impedance boss and the wedge is ob-
tained in (29), shown at the top of the page.Note that since we
have used solenoidal vector wave functions, in order to achieve
valid results in source region, general source correction term in-
troduced by Pathak [15] is added.

The dyadic Green’s function given in (29) can be decomposed
using (19) and (20) as follows:

Pwe(R,R) =Tw(R,R')+Ts(R,R) (32)
where 'y and T'p are given in (30) and (31), respectively,
shown at the top of the page. ['yy is the dyadic Green’s function
of the PEC wedge which is identical to the expression given in
[10]. [z is defined as the dyadic Green’s function of the boss
which includes the added terms due to the presence of the spher-
ical boss.

Convergence of the dyadic Green’s function of the wedge
is investigated in [10] where a computation criterion is devel-
oped for the far-field of an infinitesimal dipole positioned at a
finite distance, 7/, from the wedge. The terms for which the or-
ders of the Bessel function do not exceed twice their argument,
i+ n < 2kgr’, are retained in the summation. The same crite-
rion is observed to be valid for the dyadic Green’s function of
the wedge and boss, ['wg, since summations are over the same
spherical Bessel functions.

IV. T-MATRIX FOR IRREGULARLY-SHAPED SCATTERER
AT THE EDGE

In this section general case of an irregularly-shaped scatterer
is considered in which the geometry is given in Fig. 1. For the
treatment of the problem T-matrix method is utilized [16], [17].
This method is a well suited numerical method to calculate the
scattered field from non-spherical and non-circular objects.

Starting point for the T-matrix method is applying the Green’s
second identity alongside with the appropriate Green’s function
over a portion of space and assume a null field inside the volume.
Scattered fields and the incident field will be expanded in terms
of proper vector wave functions and then their coefficients will
be related through T-matrix. In the classical formulation, inci-
dent field is expanded using free space Green’s function but for
our problem dyadic Green’s function of the wedge will be used.
Therefore, incident field is defined as the field in the presence
of the wedge with scatterer removed. As a result, incident field
is given as

Ay

Fig. 3. x-y cross section of an irregularly shaped object placed at the edge of a
wedge.

E(R) = jkoZo / Py (R, B} - Jo(R) dv

Vi

(33)

where ['yy is the dyadic Green’s function of the wedge given in
(30) and .J,,(R’) is the volumetric current distribution confined
to V;. The total field can be represented as

E=FE4+FE° (34)
where £* is the scattered field due to presence of the impedance
scatterer.

Cross section of the geometry on the x-y plane is given in
Fig. 3 where the origin is defined inside the scatterer. Surface
of the scatterer is denoted as S, and two imaginary surfaces
of inscribing and circumscribing segment spheres are depicted
which are denoted as 5; and S, respectively.

Applying the Green’s second identity for I'yy- and F (), one

could obtain

R outside S,

R inside S,
+/{Wxﬁmaﬁm¢vxﬁmm

S

— [ X B(R))- [V x Tw (R, R} ds' (39)

where S consists of Sg, Sy, and X. It can be seen that, in the
exterior region, (35) gives the scattered field in terms of the sur-
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face integrals, and in the interior region fields expressed by the
surface integrals are canceled out by the incident field. Due to
the boundary condition on the surface of the wedge, integration
on Sy, will vanish. Integration on > will also result in zero be-
cause of the plane wave behavior of the fields in the far-field.
Hence the integration will be evaluated just on the surface of
the scatterer.

For the field points inside the inscribed sphere S;, incident
field can be written as

Ei(R) = R, [a,qzng;)(koﬁ) + quvgy(koﬁ)}

q

(36)

where

JT
R, = . 37
" gl = )i+ 1+ D G

and q is the compact index representing 4+ and n. Since the field
should be regular at the origin, spherical Bessel functions de-
noted by superscript (1) are used. Scattered field outside the cir-
cumscribing sphere, S.., is defined as

ZR [epMW kR )+pr<4>} (38)

in which Hankel functions, denoted by superscript (4), are
chosen to satisfy the radiation condition.

If we consider R on S; which is a segment sphere centered at
the origin totally inside the scatterer, and R’ on S, coefficients
of the incident field and the surface field on S, can be related.
We can expand the electric field on the surface of the scatterer
as follows:

ER)=Y [(:VMS)(I:OR’) + d,Nﬁ)(kOR’)]

v

(39)

where the regular functions are chosen due to the continuity of
the fields. On the surface of the scatterer, impedance boundary
condition is applied

A x A x E(R)= ki x V x E(R). (40)
Using (35) and the orthogonality of the vector wave functions
over the inscribing sphere, one could obtain the following ma-

trix relation:

ag| _ | _ Jo g C,
=l =l e lE] e
where
Juw [M(U(kOR’) AD (kg )} i ds' (42)
s
I /[N(l)(koﬁ’)xA(”‘)(kOR’)} i ds’ (43)

Lgy = / [Mg)(kozé’) X B§4>(k0R’)] -i'ds' (44)
Sg
K, = / [NS)(I{:OI?’) X Béﬁ‘)(ko]?’)} -/ ds’. (45)
Ss
and
AR = J’”;’YZ“ [V % 319 (ko B)] ~ KN (o) (46)
o GkoZo T i o
BO(R) = j/ 0 [n’ x N(Sfl')(koR’)} — ko MS) (koR'). (47)

To establish the relation between the surface fields on Ss and
the scattered field, we consider R is on S, which is a segment
sphere centered at the origin totally outside of the scatterer, and
R’ on Ss. Again using (35) and (40) and orthogonality of vector
wave functions over circumscribing sphere, we can obtain the
following matrix relation between the unknown coefficients of
the scattered field and the surface fields

HERCSFIES [Z: B

s 48
pE] e

where

I, = / (MY (o R') x AD (ko)) - ds’ (49)
Ss

I;V:/[ VD (koR') x ASH (ko R’)] ~alds’ (50)
Ss

L, = / (Mo B x BO(koR)] - #ds’ (51)
Ss

K, = / [N ko) x B (o)) - s (52)

Using (41) and (48), we can relate the scattered field coefficients
to the incident field coefficients in matrix form as

€p | _ Qq
7] =5 )
where the T-matrix is defined as
[T]=-[Q.]Q]" (54)

Equation (53) shows the relation between the scattered field
coefficients and the incident field coefficients which can be cal-
culated using (33) and (36) as

ag = jkoZo /M<4> koR') - J,(R') dv' (55)

v,
= jkoZo /N<4> (koR') - J,(R')dv'.

v

4

(56)

In addition to the size of the scatterer, convergence of the
T-matrix depends on the choice of the origin of coordinates and
the ratio of the radii of circumscribing and inscribing spheres
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which is discussed in [18]. For elongated bodies, as ratio of the
radii of circumscribing and inscribing spheres increase, trunca-
tion size increases.

V. NUMERICAL RESULTS

We analytically verify T-matrix method by employing it for a
spherical impedance boss centered at the edge. Then, results are
compared with the one obtained from the dyadic Green’s func-
tion solution. To this aim, a spherical scatterer centered at the
origin with radius a is considered. Since the surface is spherical,
orthogonality of auxiliary vector wave functions can be utilized.
For this geometry, Q-matrix elements are calculated as

. 1
J‘IV = ko]ﬂ"’”(kor) {Ekoh’;(?-l)—n(k()r)

]ﬁo d
T [h;(tzln(/fo"‘)”

2Qun(p+ n)(+ 1+ 1)

r=a

6;1,[1,’ 5nn’ (57)
T
I,=0 (58)
Lqu =0 (59)
1d 11d1 =,
Ky = e lrisnar)] {1120 2, o)

+ kU h;(J,Z—'?-n (kOT) }

2Qun{pn+n)(p+n+1)
7

and for [@).] is found to be

6##’ 6nn’ (60)

. 1,
J(;l/ = kU]/l.-‘rn(kOT) {Eko.],u,-l—n(kOT)

ko d
- 2 L enhor )

2Qun (i + n)(+ 1 + 1)

r=a

- Sy Brom (61)
I,=0 (62)
L, =0 (63)

1 d 11d. .
Ky = ol Gor )l { £ 2L o)

+ kgjwn(kor)}

2Qun (it + 1) (1 +n + 1)
s

Opp Onm - (64)

It is seen that both [()] and [().] are diagonal matrices, conse-
quently, according to (54), T-matrix is diagonal too. Substituting
these elements in (53) and performing the matrix operations we
obtain

_ kotifyin(koa) + (g — 1) Jutn(koa)
T hosh (L (koa) + (5 — 1) AL, (koo)
fo=- kodp4n(koa) + (5 + k§r) Jusn(koa) )
koh,(,%)r/n(koa) + (L + k2r) ’1,(124)-n(k00') !

a, (65

(66)

Coefficients relating e, to a, in (65) are identical to ¢, (koa)
which is given in (15). Similarly, coefficients in (66) are same

857

Fig. 4. Geometry of the spherical boss on the edge where the origin of coordi-
nates is shifted by d away from the center of the spherical boss.

as fun(koa) defined in (16). Scattered field coefficients can be
found by substituting (55) and (56) in (65) and (66). The re-
sulting scattered field is

o . jﬂ'

E(R) = jkoZ
(1) = ko2 zq: 2ho (11 + )i+ 1+ D) Q

J

 Bun(koa) N (ko R) / N (kR - Ty (R’

Vi

which is identical to

E*(R) = jkoZo / Tp(R,R)-J,(RYdv'.  (68)
Vi

This result indicates that the T-matrix method and the dyadic
Green’s function solution are in perfect agreement for a spher-
ical scatterer.

To verify the T-matrix, once more the spherical scatterer can
be used but this time its center is placed at a distance d from the
origin. In this case there is no spherical symmetry with respect
to the origin, consequently, off-diagonal components of the [()]
and [)..] are non zero. Also, the summation is truncated as m =
0,1,...M and » = 0,1.... N. We compare the monostatic
scattered field obtained from T-matrix solution with the DGF
solution. Since the observation and source points are in the far-
field of the scatterer and also the wedge is infinitely long in the
z-direction, moving the origin on the z-axis will just introduce
a constant phase shift. As a result, two approaches must give
the same result if the origin is moved away from the center of
the spherical scatterer. This procedure has been proposed by
Waterman to illustrate the validity of the T-matrix solution [16].
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TABLE 1
CONVERGENCE OF T-MATRIX FOR SPHERICAL Boss WiTHa = A/4, d = 0.1\

M N [EﬁGFli‘Ez;’fmatriml ‘E(ﬁDd)GF|*|E3;;7natrim‘
[ [BDCF]

8 8 0.0089 0.0093

8 7 0.0114 0.0097

7 8 0.0783 0.0370

7 7 0.0808 0.0321

Geometry of the problem is depicted in Fig. 4 where a spher-
ical boss of radius ¢ = 0.25A with surface impedance n =
1.5Z, positioned on the edge of on an half-plane (v = 2x)
is considered. The origin of coordinates is shifted by d = 0.1
away from the center of the sphere. Source is a infinitesimal
dipole positioned in the far-field of the scatterer at a fixed ele-
vation angle 6.

Monostatic scattered field is plotted for fixed elevation angle
By, and ¢ is varied from 0°—360°. Note that scattered field only
includes the contribution of the spherical boss only. Therefore,
in the dyadic Green’s function solution only T'5 is considered.
In the calculation of the ) and (), matrix elements, integrals are
non zero only for . = /', due the azimuthal symmetry of the
geometry. Truncation size for () and (). matrices are M = 8
and N = 8. Using this truncation size, maximum relative error
of the T-matrix for the monostatic scattered field with respect to
DGF solution is under 1%. Maximum relative error for mono-
static scattering pattern is tabulated for various truncation sizes
in Table I. Total computation time, using a desktop computer
with Intel Core i5-2500 @ 3.3 GHz processor, is 1.88 hours and
total allocated memory is 348 MB.

Fig. 5 shows the monostatic scattering pattern for fy = 1°. In
this case, both source and observation points are in the paraxial
region and » = 0, vn = 1 is the dominant mode in this re-
gion. Therefore, Ej, varies as cos?(¢/2) and Ej, varies as
sin?(¢/2), approximately. Fig. 6 shows the mono-static scat-
tering pattern for 6y = 80°. We can observe that electric field
intensity has dropped significantly compared with the paraxial
case since the effect of edge guided waves diminishes as we
move away from the edge. Furthermore, higher order modes are
also excited.

According to Figs. 5 and 6, the T-matrix and the dyadic
Green’s function solutions are in perfect agreement.

T-matrix is also applied to a prolate spheroid for which the
minor axis is & = 0.25X and the ratio of major axis to minor
axis is ¢/a = 1.25. Impedance of the scatterer is considered
as 7 = 1.5Z,. Monostatic scattering pattern for a point source
positioned in the far-field of the scatterer at elevation angle #y =
45° is plotted in Fig. 7.

Table II shows the convergence of monostatic scattered field
for the prolate spheroid geometry. According to Table II, rel-
ative error is below 1% where the reference solution has the
truncation size of M = 10, N = 10.

In order to observe the effect of the surface impedance of the
scatterer, monostatic scattering pattern is plotted for a spher-
ical sphere of radius ¢ = 0.25\ with impedances of 1/7, =
0,1.5,2. Note that, = 0 represents the PEC scatterer. It can
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Fig. 5. Monostatic scattering pattern for the spherical boss witha = 0.25A and
d = 0.1X at elevation angle 8; = 1° (a) #8 polarization (b) ¢¢ polarization.
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Fig.6. Monostatic scattering pattern for the spherical boss with @ = 0.25X and
d = 0.1X at elevation angle 8, = 80° (a) #8 polarization (b) ¢¢ polarization.

be observed that surface impedance of the scatterer also affects
the scattered field amplitude. As the impedance mismatch be-
tween the scatterer and the free space increases, the maximum
value of the scattered field increases. However, scattering pat-
tern also varies with respect to the impedance of the scatterer.

VI. CONCLUSION

In this work, scattering from impedance object at the edge of a
perfectly conducting wedge is investigated. For the simple case
of a spherical boss, dyadic Green’s function is developed. Then,
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TABLE II

240 300

° (a) a9 polarization (b) @(b

360

CONVERGENCE OF T-MATRIX FOR PROLATE SPHEROID
WITH @ = A/4, ¢fa = 0.1A

Mo | [ [
10 9 4.66 x 10~4 2.84 x 10—4
10 8 5.51 x 104 8.39 x 10~
9 10 0.0038 0.0010
9 9 0.0037 0.0011
9 8 0.0038 0.0014

for the single irregularly shaped scatterer, T-matrix formulation
was introduced. This method is applied to a spherical scatterer
and the solution is compared with the dyadic Green’s function
solution. Perfect agreement between two methods is achieved
for two cases of a spherical scatterer at the origin and the origin
shifted away from the center of the sphere. According to the
obtained scattering patterns, electric field intensity is highly en-
hanced due to the edge guided waves. Therefore, scattered field
intensity is high in the paraxial region where source is posi-
tioned close to the edge. As we move away from the paraxial
region, field intensity drops significantly. In addition, scattering
patterns for several surface impedance values are presented and
according to this numerical results it can be concluded that as the
impedance mismatch between the scatterer and the free space
increases, maximum field intensity also increases.

As a future work, this solution can be asymptotically evalu-
ated in order to improve higher order propagation models for
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Fig. 8. Monostatic scattering pattern for the impedance spherical scatterer with
radius @ = 0.25A and n/Z, = 0,1.5,2 at elevation angle 8y = 1° (a) 66
polarization (b) ¢¢ polarization.

terrain profiles [19]-[22]. In addition, contribution of the scat-
terer to the edge currents can be calculated by evaluating the
scattered field in the paraxial region to be used as a benchmark
solution for equivalent edge current approaches [23], [24].

APPENDIX A
SPHERICAL VECTOR WAVE FUNCTIONS

Solenoidal spherical vector wave functions are defined as
follows:

Mé” (kR) = kzl(f_)H,(kr)ﬁw,z!m(ﬁ,gf)), (69)

N (ER) = o, (0T 1 (6,9)
[ k)] 2 l8,0) - (00)
where 7ftln(k7‘) is the radial function representing spherical

Bessel and Hankel functions and e and o subscripts represents
the even and odd functions. m - anl0,0). e (A, 4) and
e ,m(H ¢) are the auxiliary vector wave function. They are
51mp1y defined by factoring out the radial dependence

sin

:F:M e (M¢)Ty+n((‘()b 9)

CcOs

e un(8.9) =

9

Sin f
cos
sin

- (l )(]9 [ ;1+77,(COb 6)]

(71
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Fig. 9. Monostatic scattering pattern for the shifted sphere with radius @ =
0.25X and 17/Zo = 0,1.5,2 at elevation angle 85 = 80° (a) 66 polarlzatlon
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llvn(es ¢) =7 X 'mc ltn(e- (b) (72)
= (W’) 5 [T Lu(cos0)] 6
Sln
wo (up)T, L, (cosb)
o ocos pt ; .

sin #

L (8, 6) =(/1+ﬂ)(/1+77+1) ( 1), (cosO) 7 (74)

where T' +n(c0< f) is the Ferrer’s type associated Legendre
function Where the sum of the index and order is an integer n.
Hence, the function is regular when § — 0. Detailed analysis
and orthogonality relations of vector wave functions are given
in [10].
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