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Abstract—In this correspondence, we study the convexity properties for
the problem of detecting the presence of a signal emitted from a power con-
strained transmitter in the presence of additive Gaussian noise under the
Neyman–Pearson (NP) framework. It is proved that the detection prob-
ability corresponding to the -level likelihood ratio test (LRT) is either
strictly concave or has two inflection points such that the function is strictly
concave, strictly convex, and finally strictly concave with respect to in-
creasing values of the signal power. In addition, the analysis is extended
from scalar observations to multidimensional colored Gaussian noise cor-
rupted signals. Based on the convexity results, optimal and near-optimal
time sharing strategies are proposed for average/peak power constrained
transmitters and jammers. Numerical methods with global convergence
are also provided to obtain the parameters for the proposed strategies.

Index Terms—Convexity, detection, Gaussian noise, jamming, Neyman-
Pearson (NP), power constraint, stochastic signaling, time sharing.

I. INTRODUCTION

In coherent detection applications, despite the ubiquitous restric-
tions on the transmission power, there is often some flexibility in the
choice of signals transmitted over the communications medium [1].
Due to crosstalk limitation between adjacent wires and frequency
blocks, wired systems require that the signal power should be carefully
controlled [2]. A more pronounced example from wireless systems
dictates the signal power to be limited both to conserve battery power
and to meet restrictions by regulatory bodies. It is well-known that the
performance of optimal binary detection in Gaussian noise is improved
by selecting deterministic antipodal signals along the eigenvector of
the noise covariance matrix corresponding to the minimum eigenvalue
[1]. Further insights are obtained by studying the convexity properties
of error probability in [3] for the optimal detection of binary-valued
scalar signals corrupted by additive noise under an average power con-
straint. It is shown that the error probability is a nonincreasing convex
function of the signal power when the channel has a continuously
differentiable unimodal noise probability density function (PDF) with
a finite variance. This discussion is extended from binary modulations
to arbitrary signal constellations in [4] by concentrating on the max-
imum likelihood (ML) detection over additive white Gaussian noise
(AWGN) channels. The symbol error rate (SER) is shown to be always
convex in signal-to-noise ratio (SNR) for 1-D and 2-D constellations,
but nonconvexity in higher dimensions at low to intermediate SNRs
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Fig. 1. Illustrative example demonstrating the benefits via time sharing be-
tween two power levels under an average power constraint.

is possible, while convexity is always guaranteed at high SNRs with
an odd number of inflection points in-between. When the transmitter
is average-power constrained, this result suggests the possibility of
improving the error performance in high dimensional constellations
through time sharing of the signal power, as opposed to the case for
low dimensions (1-D and 2-D). The convexity properties of the SER
with respect to jamming power (i.e., multiplicative reciprocal of SNR)
are also addressed in the same study.
Fig. 1 depicts how time sharing helps improve the error probability

under an average power constraint via a simple illustration. Suppose
that the average power constraint is denoted with . It is seen that
the average probability of error can be reduced by time sharing between
power levels and with respect to the constant power transmission
with . More precisely, time sharing exploits the nonconvexity of
the plot of error probability versus signal power. With the advent of the
optimization techniques, there has been a renewed interest in designing
time sharing schemes that improve/degrade (jamming problem) the
error performance of communications systems operating under signal
power constraints. Since performance gains in AWGN channels due
to such stochastic approaches are restricted to higher dimensional con-
stellations,1 the attempts to exploit the convexity properties of the error
probability have been diverted towards channels withmultimodal noise
PDFs [5], [6]. Goken et al. have shown in [5] that for a given detector,
the optimal signaling strategy results in a time sharing among no more
than three different signal values under second and fourth moment con-
straints, and reported significant performance improvements over con-
ventional signaling schemes under Gaussian mixture noise. When mul-
tiple detectors are available at the receiver of an -ary power con-
strained communications system, it is stated in [6] that the optimal
strategy is to time share between at most two maximum a-posteriori
probability (MAP) detectors corresponding to two deterministic signal
vectors.
Until recently, the discussions on the benefits of stochastic signaling

were severely limited to the Bayesian formulation, specifically to the
error probability criterion. However, in many problems of practical in-
terest, it is not possible to know prior probabilities or to impose spe-
cific cost structures on the decisions. In such cases, the probabilities
of detection and false alarm become the main performance metrics as
described in the Neyman-Pearson (NP) approach [1]. For example, in
wireless sensor network applications, a transmitter can send one bit of
information (using on-off keying) about the presence of an event (e.g.,
fire). In [7], the problem of designing the optimal signal distribution is
addressed for on-off keying systems to maximize the detection proba-
bility without violating the constraints on the probability of false alarm
and the average signal power. It is shown that the optimal solution can
be obtained by time sharing between at most two signal vectors for
the on-signal and using the corresponding NP-type likelihood ratio test

11-D and 2-D constellations are almost universally employed in practice.
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(LRT) at the receiver. Although the results are general, numerical ex-
amples have been chosen from multimodal Gaussian mixture distribu-
tions to demonstrate benefits from time sharing approaches. Unfortu-
nately even in that case, finding the optimal signal set to maximize the
detection probability is a computationally cumbersome task necessi-
tating the use of global optimization techniques [7].
In this correspondence, we report an interesting and obviously

overlooked fact for the problem of detecting the presence of a signal
emitted from a power constrained transmitter operating over an ad-
ditive Gaussian noise channel within the NP framework. Contrary to
the error probability criterion [4], it is shown that for false alarm rates
smaller than , remarkable improvements in detection probability
can be attained even in low dimensions by optimally distributing the
fixed average power between two levels ( denotes the -func-
tion). More specifically, we study analytically the convexity properties
of determining the presence of a power-limited signal immersed in
additive Gaussian noise. It is proved that the detection probability
corresponding to the -level LRT is either concave for or
has two inflection points such that the function is strictly concave,
strictly convex and finally strictly concave with respect to increasing
values of the signal power for . Numerical methods with
global convergence are provided to determine the regions over which
time sharing enhances the detection performance over deterministic
signaling at the average power level. In addition, the analysis is ex-
tended from scalar observations to multidimensional colored Gaussian
noise corrupted signals. Based on the convexity results, optimal and
near-optimal time sharing strategies are proposed for average/peak
power constrained transmitters. For almost all practical applications,
the required false alarm probability values are much smaller than

. As a consequence, time sharing can facilitate
improved detection performance whenever the average power lim-
itations are in the designated regions. Finally, the dual problem is
considered from the perspective of a Gaussian jammer to decrease
the detection probability via time sharing. It is shown that the optimal
strategy results in on-off jamming when the average noise power is
below some critical value, a fact previously noted for spread spectrum
communications systems [8].

II. PROBLEM FORMULATION

Consider the problem of detecting the presence of a target signal,
where the receiver needs to decide between the two hypotheses
or based on a real-valued scalar observation acquired over an
AWGN channel.

(1)

Here, is a standard Gaussian random variable with zero
mean and unit variance, is the noise standard deviation at the
receiver, represents the transmitted signal for the alternative hy-
pothesis , and is the corresponding signal power. The addi-
tive noise is statistically independent of the signal . The scalar
channel model in (1) provides an abstraction for a continuous-time
system that passes the received signal through a correlator (matched
filter) and samples it once per symbol interval, thereby capturing the
effects of modulator, additive noise channel and receiver front-end pro-
cessing. In addition, although the abovemodel is in the form of a simple
additive noise channel, it may be sufficient to incorporate various ef-
fects such as thermal noise, multiple-access interference, and jamming
[3].
It is well-known that the NP detector gives themost powerful -level

test of versus [1]. In other words, when the aim is to maximize
the probability of detection such that the probability of false alarm does

not exceed a predetermined value , the NP detector is the optimal
choice and takes the following form of an LRT for continuous PDFs:

if
if

(2)

where the threshold is chosen such that the probability of false
alarm satisfies , with subscript 0
denoting that the probability is calculated conditioned on the null hy-
pothesis . Then, the NP decision rule is the optimal one among all
-level decision rules, i.e., is maximized,
where the probability is calculated under the condition that the alterna-
tive hypothesis is true.
The hypothesis pair in (1) can be restated in terms of the distribu-

tions on the observation space as and
. The likelihood ratio for (1) is then given by

. Since , the likeli-
hood ratio is a strictly increasing function of the observation .
Therefore, comparing to the threshold is equivalent to com-
paring to another threshold , where is the in-
verse function of . Then, the probability of false alarm is expressed
as , where
-function is the tail probability of the standard Gaussian distribu-

tion, i.e., . It is noted that any value
of false alarm probability can be attained by choosing the threshold

, where is the inverse -function. Then, for fixed
, the optimal -level NP decision rule employed at the receiver is
given by

if
if

(3)

which also possesses the constant false alarm rate (CFAR) property
[1]. Let denote the normalized signal power at the receiver.
Then, the detection probability achieved by is obtained as

(4)

For fixed , the relationship between the detection probability and is
known as the power function of the test in radar terminology [1].
We will first discuss the convexity properties of the detection prob-

ability with respect to the signal power for the NP test given in (3).
This is motivated by the possibility of enhancing the detection perfor-
mance via time sharing between two signal power levels while satis-
fying an average power constraint [3], [4], [9]. In the absence of fading,
the average received power is a deterministically scaled version of the
transmitted power for non-varying AWGN channels. Hence, any con-
straint on the transmitted power can be related to one on the received
power and consecutively to one in the normalized form, and vice versa.
In addition to the average power constraint, a hard limit on the peak
transmitted power can be imposed as well in accordance with practical
considerations.

III. CONVEXITY PROPERTIES IN SIGNAL POWER

A. Convexity/Concavity Results

In the following analysis, the endpoints are excluded from the set
of feasible false alarm probabilities. Specifically, is confined in the
interval (0,1) excluding the trivial cases of . We first note
the limits of the detection probability, i.e., and

. Differentiating with respect to yields
, which is positive

indicating that is a strictly increasing function of . Similarly,
the limits for the first derivative is given as and

.
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Proposition 1: For , is a monotoni-
cally increasing and strictly concave function of . For

, is a monotonically increasing function with
two inflection points such that is strictly concave for

, strictly convex for , and strictly concave for
.

Proof: It suffices to consider the second derivative of the detec-
tion probability with respect to , i.e.,

(5)

Since the first two terms in (5) are positive , the sign of the
second derivative is determined by the third term, i.e.,

. First, it is noted that for , we have
which implies for all and the de-

tection probability is strictly concave. Next, let . The third
term in (5) has the reversed sign of for

. The sign of quadratic polynomial can be determined
from its discriminant, which is given by . When

, the discriminant is negative , and we have
. Both and imply that
. Thus, it is concluded that is strictly concave for

. For , has two distinct roots
corresponding to the inflection points of , which are given as

(6)

suggesting that is strictly concave for
and strictly convex for .
Fig. 2 depicts the detection probability of the NP decision rule in

(3) versus for various values of the false alarm probability . As
expected, is strictly concave for , and consists of
strictly concave, strictly convex and finally strictly concave intervals
for . For the latter case, even though its existence is
guaranteed, the effect of the first inflection point is far less obvious than
the second inflection point. This can be attributed to the fact that for
small values of , and whereas
and , where the approximations are obtained using the
first order Taylor series expansion.

B. Optimal Signaling

The concavity of detection probability for stated in
Proposition 1 indicates that the detection performance of an average
power-limited transmitter cannot be improved by time sharing be-
tween different power levels. This follows from Jensen’s inequality
since the detection probability achieved via time sharing, which is
the convex combination of detection probabilities corresponding to
different power levels, is always smaller than the detection proba-
bility when transmitting at a fixed power that is equal to the same
convex combination of the power levels. Fortunately, the range of
false alarm probabilities facilitating improved detection performance,

, have higher practical significance. In order to obtain
the optimal time sharing strategy, we first present the following lemma
which is proved in the Appendix.
Lemma 1: Let , and and be the inflection points

of as given in (6). There exist unique points and
such that the tangent to at is also tangent at

and this tangent lies above for all .

Fig. 2. Detection probability of the NP decision rule in (3) is plotted versus
for various values of the false alarm probability . As an example, when

, the inflection points are located at and
with and . The second inflection point

is also marked on each curve for .

Using a similar analysis to that in the proof of Lemma 1, we can also
obtain the following lemma.
Lemma 2: Let , and and be the inflection points

of . Suppose also that and are the contact points of the
tangent line as described in Lemma 1. Given a point ,
there exists a unique point such that the tangent at

passes through the point and lies above for
all .2

Based on Lemma 1 and Lemma 2, we state the optimal signaling
strategy for the communications system in (1) operating under peak
power constraint and average power constraint

.
Proposition 2: Let . For or or

, the best strategy is to exclusively transmit at the average
power , i.e., time sharing does not help. When
and , the optimal strategy is to time share between powers

and with the fraction of time allo-
cated to the power . On the contrary if
while , the optimal strategy is to time share be-
tween powers and the peak power with the frac-
tion of time allocated to the
power . Consequently, if while

, transmitting continuously at is the optimal strategy.3

Proof: We state the proof in the absence of a peak power con-
straint. Let . For an av-
erage power , the proposed strategy achieves

if

if
(7)

It is easy to see that is concave. Next, we need to show that the
detection probability cannot be increased any further by time sharing
between different power levels. More precisely, is the smallest
concave function that is larger than [3]. For

2The dependence of tangent point to is explicitly emphasized by writing
it as a function, i.e., .
3The cases of and can be practically uninteresting

since they result in very low detection probabilities.
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, this clearly holds. For , the proof is via
contradiction. Suppose that there exists another concave function
greater than with the property for
some . Due to concavity of , we have

for any
and . Now let , ,

and . Then, ,
which is a contradiction. This completes the proof. The proofs for the
proposed time sharing strategies that are detailed according to the var-
ious relations among , , , , and can be obtained
similarly.
It should be noted that the transmitter requires the knowledge of

the noise variance at the receiver in order to employ the optimal time
sharing strategy. If we do not pay attention to the peak power con-
straint for a second, these results indicate that very weak and strong
transmitters should operate continuously at their average power while
transmitters with moderate power can benefit significantly from time
sharing strategies.
The critical points and can be obtained as the unique pair

that satisfies
, which can be solved numerically by plugging in the cor-

responding expressions. Since the simultaneous solution of these
equality constraints can be difficult due to terms involving expo-
nentials and -functions, we propose two approaches to obtain the
optimal signaling strategy. The first is to solve the following non-
convex optimization problem:

(8)

where , , and denotes the
fraction of time power is used assuming and

. A local solver can be employed using multiple start points
that are uniformly distributed within the bounds. The global optimum
can then be selected among those local maxima by returning the one
with the maximum score. In our trials, we observe that close to optimal
solutions can be obtained using as few as 10 start points from each
interval without compromising the computational efficiency.
A much more effective numerical method to obtain the unique tan-

gent points and is presented next. Based on
a bisection search, this method is guaranteed to converge to the exact
values for and with desired accuracy. More explicitly, we pro-
pose the following algorithm.

Algorithm 1

,

,

,

do

if ,

then , ,

else , ,

while

To see that the tangent points and can be obtained
via the proposed algorithm, a few observations are noted first.
The slope of strictly decreases in the interval ,
strictly increases in the interval , and then again strictly
decreases in the interval . Consequently, we have

. Using the analyt-
ical expressions derived for , and , the computations of

and are straightforward. Hence, initial lower and
upper bounds are obtained for the slope of at the tangent points

and . These are denoted with and at the beginning
of the proposed algorithm, respectively.
Let and be as defined in (7). It is noted that repre-

sents the upper boundary of the convex hull of . Now consider
the function for . Since for all

, we have .
The maximum of the right-hand side occurs at , for which
a unique solution exists for all positive . This is because

over the intervals and , where
is strictly decreasing and continuous with

, and . Hence,
we have for all .
More explicitly, by defining , it
is seen that is a decreasing function of with
for and for .
These observations are exploited in Algorithm 1 as follows. Since

is strictly concave over the intervals and ,
and can be computed efficiently at each iteration by means of

convex optimization methods. Furthermore, the bounds denoted with
get tighter with each iteration for , 2. Suppose

that at the first iteration. Then, the maximum is attained
within the interval and

is satisfied. Since , all values greater than the cur-
rent value of are discarded by setting . Likewise, since

and , all the values smaller than the cur-
rent values of and are discarded from the search intervals
for the next values of and , respectively. If at the
first iteration, the maximum is attained within the interval
and is satisfied. In this case,
we have and all values smaller than the current value of
are discarded by setting . Likewise, since

and , all the values greater than the current values of
and are discarded from the search intervals for the next values of

and , respectively. At each iteration, either increases
towards or decreases towards , and

is assured. Thus, converges to . At convergence, we have
and

. In practice, a suffi-
ciently small value is selected for to control the accuracy of the solu-
tion at convergence.
Proposition 2 requires also the knowledge of for the

optimal signaling strategy in the case of , where
is as defined in Lemma 2. A similar bisection search can be

used to find after and are obtained via Algorithm
1. This method is described in Algorithm 2, the proof of which can be
stated similarly.
As an example, for , , and ,

the optimal strategy can achieve a detection probability of 0.1946 by
employing power with probability 0.7307 and
power with probability 0.2693, whereas by exclu-
sively transmitting at the average power, the detection probability re-
mains at 0.0690. If the peak power constraint is lowered to
, the optimal strategy can still increase the detection probability to

0.1445 by time sharing between and peak power
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Algorithm 2

,

,

do

if ,

then ,

else ,

while

with approximately equal fractions as suggested by the
solution of . Finally,
it should be emphasized that the detection probability can be improved
even further by designing the optimal signaling scheme jointly with the
detector employed at the receiver as discussed in [7]. However, in that
case we need to sacrifice from the simplistic structure of the threshold
detector which is also easier to update if the channel statistics change
slowly over time.

C. Near-Optimal Strategy

It should be noted that Algorithm 1 requires the solution of two
convex optimization problems at each iteration to obtain the critical
points and , that are needed to describe the optimal signaling
strategy. Moreover, should also be determined using Algo-
rithm 2 whenever . In the following, it is shown that
near-optimal performance can be achieved with computational com-
plexity comparable to only that of Algorithm 2.
We recall from the previous discussion that for small values of the

false alarm probability, the first inflection point gets close to zero.
It is also stated above that the value of equals approximately
to in that case. Since the critical points and are located in-
side the interval , they get close to zero as well while the corre-
sponding detection probabilities approach . Also evident from the ex-
ample above, this observation gives clues of a suboptimal approach.We
make a simplifying assumption and suppose that is convex over
the interval . Using arguments similar to those in the Appendix,
it is then possible to show that there exists a unique point such
that the tangent to at passes through the point . This
observation leads to the following near-optimal strategy in the case of
strict false alarm requirements.
Near-Optimal Strategy: Let . A suboptimal strategy with

reasonable performance is to switch between powers 0 and with the
fraction of on-power time when . For

, the proposed suboptimal strategy time shares between
powers 0 and with the fraction of on-power time .
For , the transmission is conducted exclusively at the av-
erage power.

can be obtained from . More ex-
plicitly, we need to solve for such that

(9)

and the contact point can be obtained by substituting
. The form of the equation in (9) suggests that a fixed

point iteration can be employed to obtain the solution [10]. However,
the convergence is not assured in general. Instead, we revert to a

Fig. 3. Detection probability of the NP decision rule in (3) is evaluated at the
inflection points and .

numerical method with global convergence to . This is shown in
Algorithm 3. Again, a convex optimization problem is solved at each
iteration.

Algorithm 3

,

,

do

if ,

then ,

else ,

while

Fig. 3 provides more insight about the near-optimal performance of
the proposed approach. For various values of the false alarm probability
, we have computed the inflection points and from (6), evalu-
ated the corresponding detection probabilities and , re-
spectively, and plotted the resulting detection performance curves with
respect to . As the false alarm constraint is tightened (smaller values),
it is observed that the vertical gap between the detection performances
calculated at the respective inflection points becomes much more pro-
nounced. Since is monotonically increasing and is
assured from Lemma 1, always takes values smaller than

, which is denoted with the red curve. On the contrary, the de-
tection probability corresponding to the larger contact point re-
sults in , which is represented by the blue curve.
For a given , the optimal strategy stated in Proposition 2 time shares
between and , whose contributions to the detection perfor-
mance should therefore lie below the red curve and above the blue
curve, respectively. As a result, the contribution from the smaller con-
tact point can safely be ignored over a large set of false alarm prob-
abilities without sacrificing from the detection performance claimed
by the optimal strategy stated in Proposition 2. When the example in
Section III-B is solved by assuming on-off signaling, it is observed that
there is virtually no performance degradation.
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D. Extension to Multidimensional Case

As mentioned earlier in the introduction, when the observations
acquired by the receiver are corrupted with colored Gaussian noise,
the detection probability can be maximized by transmitting along
the eigenvector corresponding to the minimum eigenvalue of the
noise covariance matrix [1]. More specifically, we consider the
following hypothesis-testing problem where, given an dimen-
sional data vector, we have to decide between and

, where is a Gaussian
random vector with zero mean and covariance matrix , and is
the normalized eigenvector corresponding to the minimum eigenvalue
of with . It should be pointed out that a feedback
mechanism is required from the receiver to the transmitter in order to
facilitate signaling along the least noisy direction. In the absence of
such a mechanism, the following analysis provides an upper bound on
the detection performance.
At the receiver, the optimal correlation detector employs the decision

statistics , which is a linear combination of jointly
Gaussian random variables. Hence, the hypotheses can be rewritten
as and ,
where denotes the minimum eigenvalue of [1]. From the false
alarm constraint, the detector threshold can be obtained as

and .
The corresponding optimal NP decision rule is given as

if
if

(10)

By defining , the detection probability at-
tained by is computed from

. Notice that this expression
is exactly in the same form as (4) after replacing with
and similar results to those in Section III can be obtained in this
multidimensional setting.

IV. CONVEXITY PROPERTIES IN NOISE POWER

In this section, we investigate the binary hypothesis testing problem
stated in (1) from the perspective of a power constrained jammer. By
assuming signal power to be fixed, we aim to determine the optimal
power allocation strategy for a power constrained jammer that aims to
minimize the detection probability at the receiver. The jamming noise
is typically modeled with a Gaussian distribution [4], [8], [11], [12].
The power of the jammer is controlled over time through the variable
, which is independent of and . It is assumed that the jamming

power varies slowly in comparison with the sampling time at the re-
ceiver so that a smart receiver can estimate the current value of the jam-
ming power [12].4 Then, the receiver updates its decision threshold
via to maintain a constant false alarm probability .
Until the jammer changes its power to another value for , this is the
optimal -level NP decision rule. On the other hand, jamming would
be performedmore effectively if the receiver could not adapt to varying
jamming power.
Under constant transmit power , the detection probability as a func-

tion of the normalized jamming power, , can be expressed
as . The limits can be computed as

and . Differentiating with
respect to yields

, which is negative . The limits for the first derivative
are and .

4On the other hand, if the jamming power changes rapidly within the sampling
period at the receiver, the net effect observed by the receiver would be jamming
at the average power, which is shown to be suboptimal in Proposition 4 for
jammers subject to stringent average power constraints.

Fig. 4. Detection probability of the NP decision rule in (3) is plotted versus
for various values of the false alarm probability . As an example, when

, the inflection point is located at with .

Proposition 3: is a monotonically decreasing function of
with a single inflection point at

(11)

that is strictly concave for and strictly convex for
.

Proof: The second derivative of the detection probability is

. As before, the sign of the second derivative is de-
termined by the right-most expression in parentheses. By substituting

, the roots of the resulting quadratic polynomial are obtained

as . Since , the
positive root results in the inflection point given in (11) indicating
that is strictly concave for and strictly convex for

.
The detection performance of the NP detector given by (3) is de-

picted in Fig. 4 versus for various values of the false alarm prob-
ability , which point out the possibility of decreasing the detection
probability via time sharing of the jammer noise power. In order to ob-
tain the optimal time sharing strategy for the jammer, we first present
the following lemma which can be proved using a similar approach to
that provided in the Appendix.
Lemma 3: Let be the inflection point of as given in (11).

There exists a unique point such that the tangent to
at lies below and passes through the point .
The contact point can be obtained from
, or equivalently solving for in

(12)

and then substituting into . A fixed point iter-
ation approach is not guaranteed to converge in general. Fortunately, a
variant of the proposed numerical method can be employed to obtain

as well. Once again, a convex optimization problem is solved at
each iteration and the bisection search facilitates rapid convergence.
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Algorithm 4

,

,

do

if ,

then ,

else ,

while

Next, we present the optimal strategy for a Gaussian jammer oper-
ating under peak power constraint and average power constraint

towards a smart receiver employing the adaptable
threshold detector given in (3).
Proposition 4: The jammer’s optimal strategy is to switch between

powers 0 and with the fraction of on-power time when
. For , the optimal strategy time

shares between powers 0 and with the fraction of on-power time
. For , jamming is performed continuously at the

average power.
Again the proof follows by noting that the stated strategy results

in the largest convex function that is smaller than for
. Finally as an example, for , , and
, on-off Gaussian jamming can reduce the detection prob-

ability from 0.8999 down to 0.7109 by transmitting with power
for approximately 45.56 percent of the time and aborting jam-

ming for 54.44 percent of the time. If the peak power constraint is low-
ered to , the optimal strategy can still decrease the detec-
tion probability to 0.7612 by time sharing between 0 and peak power

with two-thirds of on-power time fraction.

V. CONCLUSIONS AND FUTURE WORK

In this correspondence, we have examined the convexity properties
of the detection probability for the problem of determining the pres-
ence of a target signal immersed in additive Gaussian noise. Unno-
ticed in the previous literature on the NP framework, we have found
out that the detection performance of a power constrained transmitter
can be increased via time sharing between different levels whenever
the false alarm requirement is smaller than . Although
the optimal strategy indicates time sharing between two nonzero power
levels for moderate values of the power constraint, it is shown that
the on-off signaling strategy can well approximate the optimal perfor-
mance. Next, we have considered the dual problem for a power con-
strained jammer and proved the existence of a critical power level up
to which on-off jamming can be employed to degrade the detection
performance of a smart receiver. A future work is to analyze how the
optimal strategy for the transmitter changes with the jammer’s time
sharing and vice versa. Equilibrium conditions can be sought in a game-
theoretic setting.
The results in this study can be applied for slow fading channels

assuming that perfect channel state information (CSI) is present at the
transmitter, and a short-term power constraint is imposed by computing
the average over a time period close to the duration of the channel co-
herence time. In that case, the only modification in the formulations
would be to update the definition of by scaling it with the channel
power gain. In particular, considering a block fading channel model,

the proposed optimal and suboptimal signaling approaches can be em-
ployed for each block. If the transmitter does not have perfect CSI,
then the detection probability achieved by the optimal signaling ap-
proach based on perfect CSI can be used as an upper bound on the
detection performance. For fast fading channels, the instantaneous CSI
may not be available at the transmitter and the optimum power control
strategy, which adapts the transmit power as a function of the instan-
taneous channel power gain, may not be obtained. The performance
metric should be changed to the average detection probability over the
fading distribution. In that case, the convexity properties would change
(and in general depend on the fading distribution), and a new analysis
would be required. Nevertheless, we can still state that the average de-
tection probability is concave with respect to the transmit signal power
for since a nonnegative weighted sum of concave func-
tions is concave. Moreover, the optimal power control scheme can still
be described as time sharing between at most two power levels due
to Carathéodory’s theorem [13], but whether the time sharing would
improve over the constant power transmission scheme and over which
regions it would improve need to be analyzed for the specific fading
distribution under consideration.

APPENDIX

A. Proof of Lemma 1

As can be noted from the expression in the first paragraph of
Section III-A, the derivative of the detection probability
is a continuous and positive function with the limits

and . In Proposition 1, it
is stated that is strictly concave over the intervals and

, whereas it is strictly convex over the interval . More
precisely, monotonically decreases over the interval ,
monotonically increases over the interval , and monotonically
decreases over the interval . Therefore, there exists a unique
point , at which the derivative of the detection probability
is equal to that at the second inflection point, i.e., .
Similarly, there exists a unique point , at which the
derivative of the detection probability is equal to that at the first
inflection point, i.e., . More generally, for every

there exists a unique point such
that the derivatives at both points are equal .
In other words, a one-to-one continuous function can be defined
from the interval onto the interval as follows

. Now, consider the function
, which provides the vertical

difference between the detection probability and the value of
the line tangent to the detection probability curve at . Recall that for
a given , is zero at a unique
point . Next, we define the following continuous func-

tion: .
The operation of this function can be described informally as follows.
It takes as input a point , finds the corresponding unique
point with the same slope such that ,
draws the tangent line to the detection probability curve at the point
with the slope , and calculates the vertical separation

between the detection probability curve and the tangent line at
the point . In the sequel, we show that has a unique root

. By differentiation, it is observed that is an in-
creasing function over . More formally,

, where the last equality follows from
and the inequality is due to the strict concavity of

over . By selecting , we have
and .
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The last inequality follows by noting that for
and . On

the other hand, by selecting , we have and
. Again,

the inequality follows from for and
. Since is a continuous

and increasing function, it must have a unique root .
Consequently, tangent to at is also tangent at the point

.
Next, we show that the tangent line, which passes through the points

and , lies above for all
. Since is strictly concave over , the tangent at
lies above for . Recall that the same line is also
tangent to at and as a result, it lies above for
. Subsequently, the line segment connecting the points

and lies above for since is
convex over this interval. Since the inflection points and

are below the tangent line, the line segment connecting
them also lies below the tangent line. This proves that the tangent line
lies above for all .
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