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a b s t r a c t

The p-hub maximal covering problem aims to find the best locations for hubs so as to maximize
demands within a coverage distance with a predetermined number of hubs. Classically, the problem is
defined in the framework of binary coverage only; an origin–destination pair is covered if the cost (time,
etc.) is lower than the critical value, and not covered at all if the cost is greater than the critical value. In
this paper, we extend the definition of coverage, introducing “partial coverage”, which changes with
distance. We present new and efficient mixed-integer programming models that are also valid for partial
coverage for single and multiple allocations. We present and discuss the computational results with
different data sets.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Hubs are special facilities that serve as switching, transship-
ment and sorting centers in many-to-many distribution systems.
The main advantage of hubs is their efficiency due to the econo-
mies of scale achieved by consolidating flows at the hubs. In
“classical” hub location problems, the cost between any two hubs
is reduced by a discount factor, α, whereas variable discount factors
changing with the flow on the links are also used in the literature.
Consolidating flows also enables us to use fewer links in the
network. The hub location problem includes selecting the location
of hub facilities and assigning demand nodes to these hubs to route
the flow for each origin–destination (O–D) pair. For flow routing,
two types of assignment structures are defined. In single allocation,
each node is served by a single hub and all the incoming/outgoing
flows of each node are routed through that hub. In multiple
allocation, flows can be sent and received through more than
one hub.

The hub location problem is first proposed by O'Kelly [25], then
garners great interest with the research of Campbell [6]. Campbell
[6] classifies hub location problems into four categories with
respect to their objectives: p-hub median, the uncapacitated hub
location, p-hub center and hub covering problems. The aim of the
p-hub median problem is to minimize total transportation cost,
and the aim of the uncapacitated hub location problem is to

minimize total transportation cost plus the fixed cost for locating
hub facilities. The p-hub center problem minimizes maximum
distance or service time. The hub covering problem minimizes
the number of hubs while satisfying a service requirement for all
O–D pairs; i.e. the distance between any O–D pair through located
hubs should be shorter than a predetermined distance. Whereas
the first two problems focus on economic objectives, usually the p-
hub center and hub covering problems focus on service level.

Most hub location studies consider complete networks, but some
do consider incomplete networks [13,23]. Alternative approaches are
presented to model economies of scale; flow dependent discount
factor [27] or hub arc models [9]. The studies also vary in their
solution techniques. Calik et al. [5] propose a tabu-search-based
heuristic for the hub covering problem and Chen [10] solves the
uncapacitated hub location problem with a hybrid heuristic based on
simulated annealing and a tabu search. See Alumur and Kara [2],
Campbell and O'Kelly [8] and Kara and Taner [19] for more informa-
tion about the various hub location problems and solutions.

In this paper, we study the p-hub maximal covering problem,
which is considered a special type of hub covering problem. The
first formulation of the hub covering problem is provided by
Campbell [6]. Kara and Tansel [21] provide different linearizations
of the original quadratic formulation and propose a new formula-
tion for the single assignment hub covering problem. They also
prove that the problem is NP-Hard. Later, Wagner [30] improves
the model given in [21] and provides new formulations for the hub
covering problem. Ernst et al. [15] show that the formulation in
[30] can be further tightened by lifting some of the constraints.
They also propose a new formulation for the single allocation
version of the problem.
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The p-hub maximal covering problem maximizes the demands
that are covered with a predetermined number of hubs. The
problem for both allocations is posed by Campbell [6]. Later,
Hwang and Lee [18] propose a new model for the single assign-
ment version of the problem with Oðn4Þ variables and constraints.
For the multiple assignment version of the problem, Weng et al.
[31] develop a new formulation with Oðn2Þ variables and con-
straints. The authors also prove the NP-Hardness of the problem.
Qu and Weng [28] use the formulation in [31] in their solution to
the problem.

Similar to the hub center and hub covering problems, the
p-hub maximal covering problem has a service-oriented objective.
Although the problems with economic objectives (i.e. the p-hub
median problem) are applicable, the solutions can sometimes lead
to unsatisfactory results in terms of service level [14]. Therefore, for
some sectors better service may be preferable to lower costs. For
example, in cargo delivery, firms may choose shorter travel times
over lower costs. More-detailed discussions on the p-hub median
and the p-hub maximal covering problems are presented in Section
6.3.

The above-noted papers on the p-hub maximal covering pro-
blem are only conducted in the framework of binary coverage; any
O–D pair is covered if the “cost” (time, etc.) of the path is within
the critical value, referred to as β, and the O–D pair is not covered
at all if the cost exceeds the critical value. However, such an
assumption for coverage may not be always realistic. The notion of
coverage may change drastically, even with an incremental change
in the critical value (β). For example, i.e. if the cost of a path is β�ε,
it is considered as “fully covered”, but if the cost is βþε, it is
considered as “not covered”. Therefore, instead of binary (or
constant) coverage, “partial coverage”, which changes with dis-
tance, may sometimes yield more realistic solutions.

Partial coverage has been studied in the context of the covering
problem in the general location literature. The maximal covering
problem with binary coverage is first defined by Church and
ReVelle [11], with binary definitions for “fully covered” and “not
covered” nodes. Church and Roberts [12] present the first idea of
partial coverage and introduce “partially covered” nodes. They
develop a set of new models using step-wise piecewise linear
coverage functions. Since binary coverage does not allow one to
differentiate the coverage with respect to distance or time; in real
life, there may be some cases where the coverage for each zone is
different. For example, while the nearest zone's demand is con-
sidered fully covered, the farthest zone's demand may only be
partially covered. Therefore, to imitate the real life, Berman and
Krass [3] formulate the same problem by defining k different zones
for coverage and k different radii for each demand node. The
coverage function is defined as a nonincreasing step function; the
nodes in the first zone are fully covered and beyond the kth zone
are not covered at all. Later, this problem is generalized for
different types of nonincreasing decay functions by Berman et al.
[4]. To solve the problem, Adenso-Diaz and Rodriguez [1] use a
tabu search metaheuristic, Galvao and ReVelle [17] use a Lagran-
gean heuristic for the maximal covering problem with binary
coverage. For partial coverage, Karasakal and Karasakal [22] pro-
vide a solution procedure based on a Lagrangean relaxation. More
information can be found about the extensions of the covering
problem in a recent review by Farahani et al. [16].

Similarly, the deficiency of the binary coverage also exists in the
p-hub maximal covering problem. Instead of binary coverage,
partial coverage can be utilized and it may yield higher profit or
better customer service level. For instance, in the cargo delivery
sector, customers are time sensitive and are looking for fast and
punctual delivery services. Therefore, in today's competitive envir-
onment, companies try to decrease the time frame within which
packages are guaranteed to be delivered. Classically, with binary

coverage, zones outside the critical value are not covered and
therefore not served. Therefore, the company loses all cargo from
these noncovered customers. However, with partial coverage, due
to other factors (being a reliable company, etc.), some portion of
the noncovered customers may choose to ship their cargo with that
company and accept a longer time frame. Hence, the company
loses only some of the customers and can make more revenue than
with binary coverage. In addition, to attract more customers and
encourage them to accept a longer time frame, the carrier may
charge less than competitors. For economic reasons, the carrier
may still choose not to cover everybody; that is, the carrier may
choose to serve only to a threshold value (i.e. serving a small
demand for a longer time frame may not profitable for the carrier).
Hence, determining the zones that are covered fully or partially
and how far to extend partial coverage may depend on economic
and competitive issues.

To the best of our knowledge, there is no study on partial
coverage in the hub location literature. In this paper, we first relax
the definition of binary coverage that has been used in the hub
location literature and extend partial coverage to hub location
problems. Second, we provide efficient formulations for the p-hub
maximal covering problem that can be readily applied with partial
coverage. We also provide the NP-Hardness proofs of both cover-
age types on both allocation versions of the hub covering problem.

There are some research where the general assumption on the
economies of scale (constant and flow independent) is challenged
by showing that there can be more flow on the some spoke links
(link between origin/destination and hub) than the flow on the
links between hubs [7]. In order to better represent the economies
of scale, hub arc type models [9] can be utilized. However in this
paper, the main motivation is to provide efficient formulations to
the standard p-hub maximal covering problems and extend them
with the partial coverage notion. Even though this constant
economies of scale limits the current work, we aim to develop
the idea of partial coverage to the hub location literature. One can
extend the notions developed here to flow dependent scale factor
or hub arc models.

The rest of the paper is organized as follows: In the next two
sections, we provide the new mathematical programming formu-
lations of the p-hub maximal covering problem for single and
multiple allocations, respectively. In Section 4, we prove that the
single allocation version of the problem is NP-Hard even if the hub
locations are given. We also present an alternative proof for the
multiple allocation version of the problem. We provide the
computational results of the new formulations and comparisons
with the existing formulations with both binary and partial cover-
age types for single allocation in Section 5 and for multiple
allocation in Section 6. We also discuss the effect of allowing
partial coverage to the objective value and hub locations. The paper
concludes with Section 7.

2. Single allocation p-Hub maximal covering problem
(SApHMCP)

2.1. Model development of SApHMCP

Let N be the demand node set, H be the set of potential hubs
(HDN) and the graph be complete and directed. The flow of
demand between each O–D pair i–j is denoted by wij. Also, cijkm

represents the “cost” of the total path length from origin node i to
destination node j using hubs k and m, respectively, such that
ckmij ¼ ηdikþαdkmþδdjm 8 i; jAN and 8k;mAH. dij represents dis-
tance, time, etc. from origin i to destination j, 8 i; jAN and it
satisfies triangular inequality. Since the graph is complete, at most
two hubs are used for each O–D pair. For the interhub connection,
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the cost of the distance between the two hubs k and m is
discounted by α. η and δ are the transportation factors for
collection from an origin to a hub and for distribution from a
hub to a destination, where generally αrη and αrδ. βij is the
maximum allowable service cost (or coverage distance) for each
O–D pair and p is the number of hubs to be located. For binary
coverage, a new binary parameter is defined, aij

km, to decide
whether an O–D pair (i–j) is covered by using hubs k and m,
respectively, or not:

akmij ¼ 1 if ckmij rβij

0 otherwise

(
8 i; jAN; 8k; mAH ð2:1Þ

For the partial coverage case, all parameters are the same except
for akmij . We define a new parameter for coverage, bkmij , and a new
parameter for the upper bound, γij, that is, for the service level that
can be partially provided. Then, the coverage is defined as follows:

bkmij ¼
1 if ckmij rβij

f ðckmij Þ if βijrckmij rγij
0 otherwise

8>><
>>: 8 i; jAN; 8k; mAH ð2:10Þ

where f is any nonincreasing decay function and the range of the
function f is (0,1).

The first linear formulation for SApHMCP, given by Campbell
[6], keeps track of the route for each O–D pair. The formulation is as
follows:

Campbel ½6� max
X
iAN

X
jAN

X
kAH

X
mAH

akmij wijYijkm ð2:2Þ

s:t:X
kAH

Hk ¼ p ð2:3Þ

X
kAH

X
mAH

Yijkm ¼ 1 8 i; jAN ð2:4Þ

XikrHk 8 iAN; kAH ð2:5Þ
X
jAN

X
mAH

ðwij YijkmþwjiYjimkÞ ¼
X
jAN

ðwijþwjiÞXik 8 iAN; kAH

ð2:6Þ

HkAf0;1g 8kAH ð2:7Þ

0rYijkmr1 8 i; jAN; 8k; mAH ð2:8Þ

XikAf0;1g 8 iAN; kAH ð2:9Þ
The binary variable Hk takes 1 if a hub is located at node k and

0 otherwise. Xik takes 1 if node i is assigned to a hub located at
node k and 0 otherwise. Yijkm is the fraction of coverage from origin
node i to destination node j using the hubs located at nodes k and
m, respectively. The objective function maximizes the covered
demand of all O–D pairs. Constraint (2.3) guarantees that exactly
p hubs are opened. Constraint (2.4) assures that the flow for every
O–D pair is routed via some hub pair. Constraint (2.5) satisfies that
node i can be assigned to node k if k is a hub. Constraint (2.6)
guarantees the single allocation of each node using flow balance
equality. Constraints (2.7)–(2.9) are for the domain restrictions.

The second formulation, which is similar to the formulation in
[6], is proposed by Hwang and Lee [18]. The main difference is the
constraint that satisfies the single allocation: instead of (2.6), the
authors guarantee the single assignment with constraint (2.11). The
other difference is that the Yijkm variable is defined as a binary
variable and Hk is not used. The formulation is

Hwang and Lee ½18� max ð2:2Þ
s:t: ð2:9Þ

XikrXkk 8 iAN; kAH ð2:10Þ
X
kAH

Xik ¼ 1 8 iAN ð2:11Þ

X
kAH

Xkk ¼ p ð2:12Þ

2YijkmrXikþXjm 8 i; jAN; 8k; mAH ð2:13Þ

YijkmAf0;1g 8 i; jAN; 8k; mAH ð2:80Þ
Although in both papers only binary coverage is defined, the

formulations are also applicable to partial coverage by simply
replacing aij

km with bij
km in the formulations.

We now propose a novel formulation for the p-hub maximal
covering problem. The new formulation does not need to keep
track of routes, so we do not need the four-indexed decision
variables. The decision variables for assigning the demand nodes
are adequate to calculate the fraction of coverage of each O–D pairs.
The proposed formulation for SApHMCP is as follows:

P&K�S max
X
iAN

X
jAN

wijZij ð2:14Þ

s:t: ð2:9Þ–ð2:12Þ
Zijr

X
kAH

akmij Xikþλijð1�XjmÞ 8 i; jAN; mAH ð2:15Þ

ZijZ0 8 i; jAN ð2:16Þ
The decision variable Xik is the same as in previous formula-

tions: it takes 1 if node i is assigned to a hub located at node k, and
0 otherwise. Zij is the fraction of flow routed from origin node i to
destination node j that is covered. The aim of the objective function
is to maximize the covered demands between O–D pairs. Con-
straints (2.9)–(2.12) are the standard hub covering assignment
constraints, given in the previous formulation. Constraint (2.15)
calculates the fraction of flow between O–D pairs i–j that is covered
with the correct allocation of Xik (origin node i to hub k) and Xjm

(destination node j to hub m). To tighten the constraint, we utilize
λij ¼maxk;mAHakmij . Due to constraint (2.11), only one m, say m0, can
be 1 ðXjm0 ¼ 1Þ. So, constraint (2.15) reduces to either Zijr

P
kAHa

km
ij

Xikþλij for Xjm ¼ 0 8mam0 or Zijr
P

kAHa
km0

ij Xik for Xjm0 ¼ 1. Then,
Xik0 ¼ 1 such that k0 ¼ argmaxkAHfakm

0

ij g since the first inequality is
redundant due to the definition of λij. Finally, constraint (2.16) is
the non-negativity of the coverage variable.

The new formulation is readily applicable to the partial cover-
age case by replacing aij

km with bkmij . Obviously, the proposed model
has fewer variables and constraints than the previous formulations.

2.2. Strengthening the formulation

First, we observe that the following inequality is valid for the
single allocation p-hub maximal covering problem since Zij stands
for the fraction of flow that is covered between O–D pairs. There-
fore, the maximum value it can take is λij.

Zijrλij 8 i; jAN ð2:17Þ
We also derive several valid inequalities for SApHMCP to
strengthen the formulation.

Proposition 2.1. Inequality

ZijZ
X
kAH

akmij XikþðXjm�1Þ 8 i; jAN; mAH ð2:18Þ

is valid for P&K-S.

Proof. Due to constraint (2.11), ( a node s such that Xis ¼ 1 and
Xit ¼ 0 8 tas. Thus,

P
kAHa

km
ij Xik ¼ asmij . Therefore, if destination
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node j is assigned to hub m ðXjm ¼ 1Þ, then (2.18) simplifies to ZijZ
asmij and is the correct coverage fraction via hubs s and m. If Xjm ¼ 0,
the inequality becomes ZijZasmij �1 and is a redundant constraint
since asmij r1 8 i; j;m. ’

Proposition 2.2. The following inequality is valid for P&K-S:

Zijr
X
mAH

ðakmij �λijÞXikþλij 8 i; jAN; kAH ð2:19Þ

Proof. If Xik ¼ 0, (2.19) becomes Zijrλij, that is, the valid inequality
(2.17). Due to constraint (2.11), ( a node s such that Xis ¼ 1, and
then the constraint simplifies to Zijr

P
mAHðasmij Þ. Since in the

optimum solution, Zij ¼ asnij for a hub nAH, (2.19) is valid since

asnij r
P

mAHa
sm
ij 8 i; j;n.

The propositions are also valid for partial coverage by replacing

aij
km with bkmij . ’

3. Multiple allocation p-Hub maximal covering problem
(MApHMCP)

3.1. Model development of MApHMCP

In the multiple allocation p-hub maximal covering problem, any
demand node can be allocated to several hubs. Campbell [6] poses
the first linear formulation of this problem:

Campbell ½6� max ð2:2Þ
s:t: ð2:3Þ; ð2:4Þ; ð2:7Þ; ð2:8Þ
YijkmrHk 8 i; jAN; 8k; mAH ð3:1Þ

YijkmrHm 8 i; jAN; 8k; mAH ð3:2Þ
The objectives and constraints are similar to the formulation for

the single allocation version given in [6]. Since an assignment to
exactly one hub is not necessary, the assignment variable Xik is not
used in the multiple allocation version. For guaranteeing that only
hubs are used for the route assignments of O–D pairs, constraints
(3.1) and (3.2) are added to the formulation. This formulation can
easily be applied to the partial coverage case by changing the
coverage parameter aijkm to bkmij .

Weng et al. [31] have a different formulation for the same
problem. They neither keep track of the routes for the O–D pairs
nor the assignments of the demand nodes to hubs. They only
calculate the coverage for O–D pairs that can be covered with
located hubs. The formulation is

Weng et al: ½31� max
X
iAN

X
jAN

wijUij ð3:3Þ

s:t: ð2:3Þ; ð2:7Þ
Uijr

X
kAH

X
mAH

akmij Wkm 8 i; jAN ð3:4Þ

HkþHmZ2Wkm 8k; mAH ð3:5Þ

WkmAf0;1g 8k; mAH and UijAf0;1g 8 i; jAN ð3:6Þ
The decision variable Uij takes 1 if the O–D pair i–j is covered by

located hubs and 0 otherwise. They define Hk to be 1 if a hub is
located at node k, and 0 otherwise. Wkm is 1 if both nodes k and m
are selected as hubs and 0 otherwise. The objective function
maximizes the covered demand of O–D pairs by located hubs.
Constraint (3.4) assures that O–D pair i–j can be covered if two
hubs (or the same hub, i.e. Wkk) cover the path. Constraint (3.5)
ensures if that Wkm can be 1 only if Hk and Hm are 1. Constraint
(3.6) is for the integrality of the decision variables. Since it does not
include the path for each O–D pairs, the formulation has Oðn2Þ
constraints and Oðn2Þ variables.

We remark here that, even though it is not given in [31], Uij,
which is defined as a binary variable in [31], can be relaxed as
Uijr1 without losing optimality.

This formulation is not applicable to the partial coverage model
because the formulation might not calculate the correct coverage
of O–D pairs i–j for that case. Evenwith the relaxed definition of Uij,
there is a possibility of calculating an incorrect coverage of O–D
pairs. This problem can be observed from the following example:
Consider a network on five nodes and let N¼ f1;2g and
H¼ f3;4;5g. Let the coverage values for the nodes in the set N be
b3412 ¼ b4321 ¼ 0:75 and b3512 ¼ b5321 ¼ 0:5, and let the rest of the values be
equal to 0. If the formulation in [31] is used to solve MApHMCP
with partial coverage for p¼3, from constraint (3.4), we obtain
U12r1:25 and U21r1:25. Due to constraint (3.6), they both take
the value 1. However, U12 and U21 should be equal to 0.75. Thus, for
the multiple allocation version of the p-hub maximal covering
problem for the partial coverage case, the model in Campbell [6] is
the only formulation from the previous literature that can be used.

We now propose a new formulation for MApHMCP that is
readily applicable to the partial coverage case. The notion of this
formulation is different than both of the formulations given in the
literature. Let Xijk be 1 if the first hub of the O–D pair i–j is k, and
Yijm be 1 if the second hub of the O–D pair i–j is m. Hk takes 1 if
node k is selected as a hub, otherwise it is zero. Zij is the fraction of
flow routed from origin node i to destination node j that is covered.
The proposed formulation is

P&K�M max ð2:14Þ
s:t: ð2:3Þ; ð2:7Þ; ð2:16Þ
Zijr

X
kAH

akmij Xijkþλijð1�YijmÞ 8 i; jAN; mAH ð3:7Þ

Zijr
X
mAH

akmij Yijmþλijð1�XijkÞ 8 i; jAN; kAH ð3:8Þ

X
kAH

Xijk ¼ 1 8 i; jAN ð3:9Þ

X
mAH

Yijm ¼ 1 8 i; jAN ð3:10Þ

XijkrHk 8 i; jAN; kAH ð3:11Þ

YijmrHm 8 i; jAN; mAH ð3:12Þ

XijkAf0;1g 8 i; jAN; kAH ð3:13Þ

YijmAf0;1g 8 i; jAN; mAH ð3:14Þ

The objective function maximizes the covered demand of all i–j
pairs. Constraints (3.7) and (3.8) calculate the fraction of flow
between O–D pairs i–j that is covered using the correct route
allocations of Xijk and Yijm. Constraint (3.9) guarantees that each
path from origin node i to destination node j can be assigned to
only one hub as the first hub. Similarly, constraint (3.10) satisfies
that the same route can be assigned to only one hub as the second
hub. Constraints (3.11) and (3.12) satisfy that the path i–j can be
assigned to nodes k and m only if k and m are hubs, respectively.
Constraints (3.13) and (3.14) are the domain constraints.

3.2. Strengthening the formulation

Similar notions for developing the valid inequalities used in
Section 2.2 can be also used for the multiple allocation version of
the problem. The first inequality (2.17) is also valid for P&K-M:
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Proposition 3.1. The following inequality is valid for P&K-M.

ZijZ
X
kAH

akmij XijkþðYijm�1Þ 8 i; jAN; mAH ð3:15Þ

Proof. Due to constraint (3.9), ( s such that Xijs¼1 and Xijt¼0 8
tas. Thus,

P
kAHa

km
ij Xijk ¼ asmij . Then, if Yijm¼1, (3.15) simplifies to

ZijZasmij , which is the coverage of flow between O–D pairs via hubs

s andm. If Yijm¼0, then ZijZasmij �1 and it is a redundant constraint

since asmij r1 8 i; j;m, given that the range of function f is (0,1). ’

Proposition 3.2. The following inequality is valid for P&K-M:

Zijr
X
mAH

ðakmij �λijÞXijkþλij 8 i; jAN; kAH ð3:16Þ

Proof. Inequality (3.16) is similar to inequality (2.19) proposed for
P&K-S. So, the same proof also holds for inequality (3.16), with Xijk

replacing the Xik in (2.19). The inequalities are also valid for the
partial coverage case by replacing aij

km with bkmij . ’

4. Computational complexity

In this section, we show that both SApHMCP and MApHMCP are
NP-Hard. The second result is also known from [31] in considering
every O–D pair as a single node. We present that our proof for the
NP-Hardness of SApHMCP can also be used for MApHMCP. We
prove the NP-Hardness of the problems with binary coverage, and
thus the NP-Hardness of the problems with partial coverage
follows. We also prove that SApHMCP is NP-Hard even if the hub
locations are known.

Proposition 4.1. SApHMCP with binary coverage is NP-Complete
even if α¼0, δ¼0.

Proof. To show the NP-Completeness of the problem, we reduce
the maximum coverage problem (MCP) to SApHMCP in polynomial
time with the following instance:

The decision version of SApHMCP is as follows: Is there a set of
vertices HDV and jHj ¼ p with an assignment vector u, where
uiAH, such that

P
i;jASwijZT , where S is a set of vertices with

property ηdiui þαduiuj þδdujjrβ 8 i; jAS and ui, ujAH? The instance
for the problem is given as G¼ ðV ; EÞ, η;α; δZ0, pr jV j . β
represents the coverage distance, weight wij 8 i; jAV , distance
dij 8 i; jAV and TZ0.

Similarly, the decision version of MCP can be stated as follows:
Is there a set of vertices H0DV 0 and jH0 j ¼ p such that

P
i: ( jAH0 and

dijrβwiZT 0? The instance for MCP is also given as G0 ¼ ðV 0; E0Þ,
pr jV 0 j , β is for coverage distance, weight wi 8 iAV 0, distance
dij 8 i; jAV 0 and T 0Z0.

For MCP, consider an arbitrary instance of the graph G0, where
vertices V 0 denote the set of customers and potential sites for the
facilities. Let wi be the demand of customer i, and if dijrβ for
iAV 0; jAH0, then wi is covered. At most p facilities can be located at
the potential sites, and this problem (MCP) is known to be NP-Hard
[24]. Now consider an instance of SApHMCP with the following
data set: G¼ G0 and the flow 8 i; jAV is wij ¼wi=ðjV 0 j �1Þ for ia j
and wii ¼ 0. α¼ δ¼ 0 and hubs can be opened in at most p
locations. Then, the two problems are equivalent, because MCP
has a solution, with at most p facilities satisfying

P
i:( jAH0 and

dijrβwiZT 0 if and only if SApHMCP has a solution with at most p
hubs with

P
i;jA SwijZT , where S is a set of vertices with property

ηdiui
þαduiuj þδdujjrβ 8 i; jAS and ui, ujAH. From the solution of

MCP, a vector u can be generated as k¼ argminlAH0dil and
ui ¼ k8 iAV 0, and from the solution of SApHMCP, a solution for
MCP can be obtained: if diui

rβ then wi is covered. So, SApHMCP is
NP-Complete. ’

Proposition 4.2. MApHMCP with binary coverage is NP-Complete
even if α¼0, δ¼0.

Proof. To show the NP-Completeness of the problem, the same
reduction in Proposition 4.1 can be used. To generate the assign-
ments, let Ri ¼ flAH0 : dilrβg. Then, ui ¼ k 8kARi and 8 iAV 0,
which becomes a solution of MApHMCP. From this solution, a
solution of MCP can be generated: if diui rβ holds at least one
element of ui, then wi is covered. Thus, MApHMCP is NP-
Complete. ’

Alternatively, we can prove the NP-Hardness of the problems by
showing that a specific instance of them is equivalent to the p-hub
center problem. Let an instance of SApHMCP be such that
η;α; δr1, distance is dij and weight is wij 8 i; jAV . For coverage
distance, let β¼ 3maxði;jÞAEdij and T ¼P

ði;jÞAEwij. With these para-
meter settings, the condition

P
i;jA SwijZT , where S is as given

above, is directly satisfied, and thus SApHMCP is equivalent to the
single allocation p-hub center problem. Therefore, solving
SApHMCP with that instance will be as hard as solving the p-hub
center problem with that instance. Since the single allocation

Fig. 1. Locations of demand nodes and possible hub locations for the CAB data set.
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p-hub center problem is in NP-Hard [20], SApHMCP is also in
NP. ’

A similar conversion can be easily applied for the proof of the
NP-Hardness of the multiple allocation version of the p-hub
maximal covering problem. Since the multiple allocation version
of the p-hub center problem is proven NP-Hard in Ernst et al. [14],
using the same data set given above, MApHMCP reduces to the
multiple allocation p-hub center problem.

As a special case of the p-hub maximal covering problem, we
also discuss the complexity of the allocation problems. The alloca-
tion problem is the problem of determining the assignments of
nonhub nodes to hub(s) whose locations are fixed and known in
advance.

The allocation problem of the multiple assignment p-hub
maximal covering problem is polynomially solvable by solving
the jNj2 shortest path for each O–D pair, where jNj is the
cardinality of the number of nonhub nodes. However, the alloca-
tion problem of SApHMCP is in NP since a special instance of the
problem is equivalent to the allocation problem of the p-hub center
problem, whose NP-Hardness is also proven by Ernst et al. [14].

Proposition 4.3. The allocation problem of SApHMCP is NP-
Complete.

Proof. The decision version of SApHMCP can be expressed as
follows: Is there an assignment vector u, where uiAH, such thatP

i;jASwijZT , where S is a set of vertices with property

ηdiui þαduiuj þδdujjrβ8 i; jAS and ui, ujAH? Similarly, the decision
version of the allocation problem of the hub center problem can be
given as: Is there an assignment vector u, where uiAH such that
ηdiui þαduiuj þδdujjrβ 8 i; jAV and ui, ujAH?

Let an instance of SApHMCP be such that η;α; δr1, distance is
dij and weight is wij 8 i; jAV . For coverage distance, let
β¼ 3maxði;jÞAEdij and T ¼P

ði;jÞAEwij. The decision version of the
allocation problem of SApHMCP can be modified with

P
i;jA S

wijZT , as done in the alternative proof of the NP-Hardness of
SApHMCP. Then the decision version of the allocation problem of
SApHMCP is equivalent to the decision version of the allocation
problem of the p-hub center problem. Since the allocation problem
of the p-hub center is NP-Hard [14], the allocation problem of
SApHMCP is proven to be NP-Hard. ’

5. Computational results for SApHMCP

In this section, we first explain the data sets and the parameters
that are used for computational test. We then test the combination
of valid inequalities for the proposed formulation. For SApHMCP,
we compare the results of the new formulation with the existing
ones explained in Section 2. We also discuss the effect of allowing
partial coverage to the solution time, coverage percentage, hub
locations and allocation of nonhub nodes. For this purpose, we
compare the solutions of the proposed formulation with binary
and partial coverage types for different instances.

5.1. Data generation

We tested the proposed formulations with US Civil Aeronautics
Board (CAB) and Turkish network (TR) data sets. O'Kelly [26]
introduces the CAB data sets based on airline passenger transpor-
tation between 25 US cities. All cities are considered possible hub
locations (Fig. 1).

We used the distance matrix as in the original data set, and we
scaled the flow to 100 for testing the formulations. For the
maximum service distance, we generated parameter (β) by using
the results of the p-hub center problem, β0, given in [21]. The
results of the p-hub center problem for different α and p values are
presented in Table 1.

We used η¼ δ¼ 1 in all the computational analyses, and the
parameter aijkm is defined as follows:

akmij ¼ 1 if ckmij r0:75β0

0 otherwise

(
8 i; jAN and 8k;mAH ð5:1Þ

For partial coverage, we use the same values of parameters α, p and
β that are used in the binary coverage. We adapt the definition of

Table 1
Solutions of the p-hub center problem for the CAB data set for α¼0.2, 0.4, 0.6,
0.8 and p¼2–5 [21].

α p Obj. value (β0)

0.2 2 2136
3 1913
4 1617
5 1346

0.4 2 2401
3 2099
4 1881
5 1597

0.6 2 2557
3 2336
4 2184
5 2002

0.8 2 2713
3 2552
4 2457
5 2307

Fig. 2. Locations of demand nodes and hub locations for the TR data set.
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bij
km to the partial coverage with a stepwise function:

bkmij ¼

1 if ckmij r0:75β0

0:75 if 0:75β0ockmij r0:8β0

0:5 if 0:8β0ockmij r0:85β0

0:25 if 0:85β0ockmij r0:9β0

0 otherwise

8>>>>>>>><
>>>>>>>>:

8 i; jAN and 8k;mAH

ð5:2Þ

We also used a relatively larger data set, TR, to analyze the
performance of the formulations. The TR data set compromises 81
demand nodes (cities), of which 22 are selected as potential hub
locations. These 22 are among the most populated and industria-
lized cities in Turkey [29,32] and are shown in Fig. 2 with circles.
For the computational analysis we varied p between 5, 10, 15
and 20.

We used travel times for calculating the parameters and we
assumed that travel time is directly proportional to distance. For

binary coverage, we considered a half-day service limit:

akmij ¼ 1 if ckmij r12 h

0 otherwise

(
8 i; jAN and 8k;mAH ð5:3Þ

where dij is the travel time between nodes i and j. For the partial
coverage parameter setting, we again used a stepwise function
with the upper bound γ¼24 h, that is, beyond 24 h no path can be
covered even partially.

bkmij ¼

1 if ckmij r12 h

0:75 if 12 hockmij r16 h

0:5 if 16 hockmij r20 h

0:25 if 20 hockmij r24 h

0 otherwise

8>>>>>>>><
>>>>>>>>:

8 i; jAN and 8k; mAH

ð5:4Þ
For the economies of scale parameter, we used estimations from
Turkish cargo companies, who calculated the time and cost savings

Table 2
Effect of valid inequalities on P&K-S with binary coverage for the TR data set.

α p No valid ineq (2.17) (2.18) (2.19) (2.18), (2.19) (2.17), (2.19) (2.17), (2.18) (2.17), (2.18), (2.19)

0.8 5 Best bn at root node (%) 84.93 84.93 84.93 82.53 82.53 82.53 84.93 82.53
CPU (sec) 255.77 250.88 516.19 171.21 619.11 146.24 381.69 321.34

0.8 10 Best bn at root note (%) 88.63 88.63 88.63 87.61 87.61 87.61 88.63 87.61
CPU (sec) 113.74 98.25 195.95 43.8 81.52 35.38 247.45 88.54

0.9 5 Best bn at root note (%) 79.61 79.61 79.61 76.86 76.86 76.86 79.61 76.86
CPU (sec) 200.69 193.81 355.86 145.01 220.24 112.31 329.21 226.36

0.9 10 Best bn at root note (%) 83.29 83.29 83.29 82.08 82.08 82.08 83.29 82.08
CPU (sec) 92.02 76.78 159.34 16.77 33.95 19.25 177.26 40.08

Table 3
Effect of valid inequalities on the P&K-S with partial coverage for the TR data set.

α p No valid ineq (2.17) (2.18) (2.19) (2.18), (2.19) (2.17), (2.19) (2.17), (2.18) (2.17), (2.18), (2.19)

0.8 5 Best bn at root node (%) 168.80 97.11 168.80 97.11 97.11 97.11 97.11 97.11
Gap (%) 79.17 2.26 80.61 2.62 2.48 2.22 3.02 3.04

0.8 10 Best bn at root node (%) 166.97 97.36 166.97 97.36 97.36 97.36 97.36 97.36
Gap (%) 71.32 0.33 74.75 0.44 0.41 0.23 0.46 0.46

0.9 5 Best bn at root node (%) 167.16 95.83 167.16 95.83 95.83 95.83 95.83 95.83
Root node (%)
Gap (%) 79.60 2.05 79.51 2.10 2.32 2.05 2.34 2.34

0.9 10 Best bn at root node (%) 165.00 96.05 165.00 96.05 96.05 96.05 96.05 96.05
Root node (%)
Gap (%) 71.13 0.29 77.01 0.36 0.42 0.29 0.42 0.43

Table 4
SApHMCP solutions with binary coverage for the CAB data set.

α p P&K-S Campbell [6] Hwang and Lee [18]

Coverage (%) CPU (sec) best int (%) CPU (sec)/opt.gap (%) bb at root (%) best int (%) CPU/opt.gap (%) bb at root (%)

0.6 2 90.01 8.93 Opt 2542.6/0.00 100 79.24 41 h=11:97 1189.93
3 91.91 3.7 90.57 41 h=1:46 100 89.31 41 h=2:83 1109.25
4 91.51 4.65 87.16 41 h=4:75 100 89.83 41 h=1:84 1036.36
5 88.38 3.28 86.32 41 h=2:33 96.71 86.90 41 h=1:68 945.55

0.8 2 87.79 1.06 80.46 41 h=8:35 97.18 78.16 41 h=10:97 1130.56
3 87.35 2.16 81.29 41 h=6:93 92.72 83.70 41 h=4:17 1086.78
4 87.30 4.36 82.56 41 h=5:43 91.87 83.35 41 h=4:53 1059.68
5 86.23 2.02 85.12 41 h=1:29 90.85 83.43 41 h=3:25 1000.70
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due to flow consolidation as 10% and 20%, respectively [32]. We
considered both savings and α was taken as 0.8 and 0.9 for
interhub connections.

Since the data sets used in this paper (CAB and TR) have
symmetric distance matrices, the solution time can be improved
by reducing the number of constraints. So, constraint (2.15) is
substituted with

Zijr
X
kAH

akmij Xikþλijð1�XjmÞ 8 i; jAN : ir j; 8mAH ð2:150Þ

Similarly, ir j is added to all the valid inequalities (2.17)–(2.19)
given in Section 2.2. The objective function (2.14) can also be
improved in a similar way, since Zij ¼ Zji 8 i; jAN:

max
X
iAN

X
jAN:ir j

ðwijþwjiÞZij ð2:140Þ

5.2. Performance analysis of the proposed valid inequalities

We first compare all the combinations of valid inequalities
given in Section 2.2 for P&K-S with the TR data set for both the
binary and partial coverage types. All the computational results
were made on a Linux environment with a 4xAMD Opteron
Interlagos 16C 6282SE 2.6G 16 M 6400MT 96 GB RAM. Based on
our preliminary analyses, we decided to use CPLEX 12.4 for single
allocation and Gurobi 5.0.2 for multiple allocation.

In eachmulti-row in Tables 2 and 3, the first line lists the percentage
of the best upper bound at the root node and the second line presents
either the CPU time (if the solution time is under one hour) or the gap
reported by the solver at the end of the one-hour time limit. Columns
4 through 11 correspond to all possible combinations of the valid
inequalities. Our preliminary analyses show that for binary coverage,
the lowest best bound at the root node is achieved when inequality

(2.19) is added to any of the combinations (columns 7–9, 11) (Table 2).
The lowest solution times are obtained when inequalities (2.17) and
(2.19) are used together, except for the last row (where the difference is
about 2.5 s). For partial coverage, the lowest percentage of best upper
bounds at the root nodes are achieved with either (2.17) or (2.19) (or
both) (Table 3). In terms of the gaps at the end of the one-hour time
limit, the lowest gaps are obtained with inequalities (2.17) and (2.19).
Due to the above findings, we decided to use valid inequalities (2.17)
and (2.19) in the computational experiments for P&K-S.

5.3. Computational experiments for SApHMCP

In this section, we compare the solutions of the new formula-
tion with the existing ones explained in Section 2. For comparison
purposes, although applicability to the partial coverage is not
mentioned in the existing literature, in addition to binary coverage,
we compared the results with the application of partial coverage.
We tested the models with the CAB and TR data sets and used a
time limit of one hour for the small data set (CAB) and two hours
for the large data set (TR).

In all Tables 4–6 and 10–12, in the coverage(%) column, we report the
optimal solution as the percentage of total flow covered. The CPU
column shows the solution time of those instances and the bb at root(%)
column shows the best upper bound percentage that is obtained at the
root node. If optimality is not verified within the time limit, we report
the best int(%), which is the corresponding coverage percentage for the
best solution obtained at the end of the time limit. Last, in column opt.
gap(%), we report the gap between the best solution and the optimal
solution, calculated as ðcoverage�best intÞ=coverage� 100.

For the CAB data set, since the gaps of the existing formulations
reported by the solver are too high, we only report and compare the
solutions for α¼0.6 and 0.8 (Tables 4 and 5). The results of the
proposed formulation for the remaining instances are given in the
Appendix Table A1. It is evident from Tables 4 and 5 that P&K-S
outperforms the existing formulations. The maximum solution time of
the proposed formulation is about nine seconds, whereas the existing
formulations usually must be terminated before solving due to the time
limit. The results show that the most up to date formulation in the
literature, given in [18], performs worse than the basic formulation [6]
although the main purpose of the paper was not computational

Table 5
SApHMCP solutions with partial coverage for the CAB data set.

α p P&K-S Campbell [6] Hwang and Lee [18]

Coverage (%) CPU (sec) Best int (%) CPU (sec)/opt. gap (%) bb at root (%) best int (%) CPU/opt. gap (%) bb at root (%)

0.6 2 93.47 29.05 Opt 3315.73 /0.0 100 Opt 41 h=0:00 1376.07
3 94.02 38.76 92.65 41 h=1:45 100 93.94 41 h=0:08 1284.49
4 94.62 43.84 88.20 41 h=6:79 100 92.77 41 h=1:95 1211.82
5 93.0 131.1 91.47 41 h=1:65 99.07 90.08 41 h=3:14 1098.50

0.8 2 91.83 26.95 90.68 41 h=1:24 99.28 84.52 41 h=7:95 1322.16
3 90.86 50.27 85.81 41 h=5:56 97.46 89.19 41 h=1:83 1261.81
4 90.87 116.57 87.52 41 h=3:69 97.03 88.88 41 h=2:19 1236.92
5 89.29 132.42 86.34 41 h=3:30 93.96 87.01 41 h=2:55 1157.85

Table 6
Solutions of P&K-S for binary and partial coverage types for the TR data set.

α p Binary Partial

Coverage (%) CPU (sec) Coverage (%)/best int (%) CPU (sec)/gap (%)

0.8 5 78.83 146.24 (94.59) 42 h=2:26
10 86.74 35.38 96.68 4850.03
15 89.48 2.53 97.37 367.06
20 90.02 2.1 97.51 10.11

0.9 5 73.78 112.31 (93.33) 42 h=2:05
10 81.71 19.25 95.43 4342.87
15 83.54 3.88 95.88 1040.17
20 84.38 0.72 96.09 211.99

Table 7
Partially covered O–D pairs for the CAB data set for the instance with α¼0.2, p¼4.

(i, j) Zij ¼ Zji (i, j) Zij ¼ Zji (i, j) Zij ¼ Zji

(1, 23) 0.5 (9, 22) 0.75 (11, 23) 0.75
(2, 23) 0.25 (10, 14) 0.5 (14, 19) 0.5
(8, 14) 0.75 (10, 19) 0.75 (14, 22) 0.5
(9, 10) 0.75 (10, 22) 0.75 (19, 23) 0.5
(9, 19) 0.75
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analysis. None of the eight instances is solved to optimality with the
formulation in [18] within one hour, whereas with the basic formula-
tion, the optimal solution is found for one instance. We also report the
percentage of the best upper bound at the root node for both coverage
types for all instances, and the value with P&K-S is smaller than with
the other two formulations (Appendix Table A1). We also note that for
all instances, the percentages with the formulation in [18] are always

more than 100%, which is the objective value when all O–D pairs are
covered.

Similar analyses and conclusions are also valid for the partial
coverage case for the CAB data set (Table 5). Although the solution
times of the proposed formulation increase, they are still much
better than the existing ones. Optimality is proved within three
minutes with the proposed formulation (Appendix Table A1).

Fig. 3. Hub locations for single allocation for the instance α¼0.6, p¼4 with both coverage types for the CAB data set.

Fig. 4. Hub locations of hubs for single allocation for the instance α¼0.4, p¼5 with both coverage types for the CAB data set.

Table 8
Effect of valid inequalities on P&K-M with binary coverage for the TR data set.

α p No valid ineq (2.17) (3.15) (3.16) (3.15), (3.16) (2.17), (3.16) (2.17), (3.15) (2.17), (3.15), (3.16)

0.8 5 Best bn at root node (%) 90.17 90.17 90.17 90.14 90.14 90.14 90.17 90.14
Gap (%) 8.85 8.80 9.63 3.20 3.22 3.20 9.46 3.16

0.8 10 Best bn at root node (%) 90.29 90.29 90.29 90.27 90.27 90.27 90.29 90.27
Gap (%) 1.61 1.61 1.64 0.56 0.43 0.68 1.64 0.43

0.9 5 Best bn at root node (%) 85.19 85.19 85.19 85.17 85.17 85.17 85.19 85.17
Gap (%) 11.00 11.00 8.91 6.80 6.18 6.80 8.91 6.18

0.9 10 Best bn at root node (%) 85.26 85.26 85.26 85.25 85.25 85.25 85.26 85.25
CPU (h) 0.70 0.76 0.83 0.59 0.58 0.53 0.83 0.53

Table 9
Effect of valid inequalities on P&K-M with partial coverage for the TR data set.

α p No valid ineq (2.17) (3.15) (3.16) (3.15), (3.16) (2.17), (3.16) (2.17), (3.15) (2.17), (3.15), (3.16)

0.8 5 Best bn at root node (%) 171.94 97.54 171.94 100.66 100.64 97.54 97.54 97.54
Gap (%) 66.80 2.54 68.40 11.20 2.85 2.48 2.22 2.22

0.8 10 Best bn at root node (%) 172.06 97.57 172.06 100.66 100.64 97.57 97.57 97.57
Gap (%) 57.80 0.60 56.20 0.46 1.61 0.60 0.48 0.49

0.9 5 Best bn at root node (%) 170.57 96.30 170.57 99.40 99.37 96.30 96.30 96.30
Gap (%) 69.80 2.35 69.00 1.49 7.85 2.27 1.59 1.59

0.9 10 Best bn at root node (%) 170.68 96.31 170.68 99.40 99.37 96.31 96.31 96.31
Gap (%) 52.00 0.26 57.30 0.23 0.30 0.25 0.25 0.26
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We also compare the formulations with the TR data set for both
coverage types and the results are presented in Table 6. The TR data
set is relatively larger than the CAB data set, therefore we set a
two-hour time limit. Since the existing formulations have O(n4)
variables, we ran out of memory for both coverage types and could
not obtain even the initial solutions. Therefore, we show only the
results of the proposed formulation.

For binary coverage, all the instances are solved to optimality with
P&K-S within three minutes. For partial coverage, the solution times
increase, but only in two instances (α¼0.8, p¼5 and α¼0.9, p¼5) is
optimality not proved within two hours. For these instances, we report
the gap(%) that is reported by the solver at the end of the time limit.
Also, independent from the coverage type, for each α, the solution time
decreases with the increment of p. Throughout the paper, the best
integer values are written in parentheses when they are not optimally
verified with any of the formulations.

We also conclude from Table A1 in the Appendix and Table 6 that for
each p, the increment in α results in a decrement in optimal coverage
for both coverage types. We also find that smaller α values generally
give better coverage. For the TR data set, this result is consistent because
the lower and upper time limits for each zone are the same, so as α
increases, traversing the link between any two hubs also increases, and
hence any O–D pair turns out less likely to be covered than it is with
smaller α. However, for the CAB data set, this pattern does not always
hold due to having different limits for different α and p values. If we
check the two instances α¼0.2, p¼2 and α¼0.4, p¼2, the maximum
coverage is higher for the second one since the former has β¼2136 and
the latter has β¼2401.

Last, we analyze the effect of allowing partial coverage; the
complete results of P&K-S with the CAB data set for all α values are
presented in the Appendix Table A1. As well as optimal values and
CPU times, we also provide hub locations. For the CAB data set, first
we again emphasize that allowing partial coverage increases CPU
time by about 50 s.

When we compare the percentages of maximum coverage, as
expected, the values for partial coverage are higher than the values
for binary coverage, and on average, the increment is 3.22%. One of the
reasons for this increment is due to allowing partial coverage; even if all
hub locations are the same for both coverage types, some of the O–D
pairs are partially covered, whereas they are not covered at all with
binary coverage. For example, for the instance α¼0.2, p¼4, the O–D
pairs given in Table 7 are the ones that are not covered with binary
coverage (Zij ¼ Zji¼0) and are partially coveredwhen partial coverage is
allowed. Thus, the increment in the objective function value is only due
to these partially covered pairs. Recall that Zij is the fraction of flow
between O–D pairs that is covered.

The other reason for this increment in optimum value is due to
the change in hub locations and the change in the allocation of
nonhub nodes. From Table A1 in the Appendix it can be observed
that in half the instances, the hub locations change. For example,
when partial coverage is allowed, for the instance with α¼0.6,
p¼4, three of the hub locations change (Fig. 3). With binary
coverage, node 14 is selected as a hub, but with partial coverage
node 13 is selected as a hub instead. This change is remarkable
since the distance (d13;14) between nodes 13 and 14 is almost half
the coverage distance and affects the objective value significantly.
However, in some instances, the changes are not so important. For
example, for the instance with α¼0.4, p¼5, all the optimal hubs
for partial coverage are the same as for binary coverage except for
one; when partial coverage is allowed, the hub located at node 18
moves to the nearest node, 17 (Fig. 4).

From the Appendix, Table A1 it can be inferred that hub
locations become more distant from each other when partial
coverage is introduced. For the instance with α¼0.6, p¼4, node
12 is selected as a hub for both coverage types; for binary coverage,
nodes 11, 14 and 20 are chosen, and for partial coverage, nodes 13,

18 and 22 are chosen (Fig. 3). Spatially, the latter hubs are more
distant from each other than the former ones. This result is similar
to the other instances where the hub locations are different for
both coverage types. Becoming more distant with partial coverage
seems consistent with this type of coverage. Since longer distances
can be covered by moving the hubs farther apart, more demands
can be covered (but with poorer value). However, we remark here
that the differences of the hub locations with binary and partial
coverage for the CAB data set are mainly due to having dispersed
locations of nodes. So, the hub locations may not be so far away
from each other with more dense locations of the nodes.

Note that hub locations generally move to larger cities such as
New York (17) or San Francisco (22) when partial coverage is
introduced. For the instance with α¼0.6, p¼3, this is evident;
instead of nodes 5 and 11, nodes 13 and 17 are selected as hubs.
This case can also be seen for node 22. For some instances, for
example α¼0.6, p¼5, even if node 12 (the nearest node to 22) is a
hub for binary coverage, 22 is also selected as a hub for partial
coverage due to its size. And even if nodes 4 and 17 are hubs for
binary coverage, the flows between node 12 and nodes 3, 6, 9, 17,
18, 20 and 25 (more than one-third of its total flow) are not
covered. Therefore, at partial coverage, node 22 is also selected. We
also calculated the objective values for partial coverage using the
optimal hub locations for binary coverage and found that the
difference between the optimal objective value of partial coverage
varies between 0.03% and 5%. Therefore, we can conclude that with
these parameter settings, the optimal locations of hubs with binary
coverage also yield “good” solutions for partial coverage.

Next, we compare the solutions with the TR data set for the results
for both coverage types in Table 6. The effect of partial coverage on the
objective value and solution time is more evident for the TR data set.
We note that the effect of partial coverage strongly depends on the
parameters in binary and partial coverages and the effect of using
partial coverage may increase or decrease depending on the functions
used at aijkm and bij

km. With the parameter settings given in Section 5.1,
the difference between the solution times of both coverage types is
higher than the difference with the CAB data set. Although the problem
is solved within three minutes for binary coverage in all instances, for
partial coverage there exist two instances whose optimality is not
verified within the two-hour time limit. The importance of partial
coverage can be observed easily from the results with the TR data set;
on average a 15.06% improvement is obtained when partial coverage is
allowed. Since the hub locations are the same for the instances where
we obtained the optimal solutions for both coverage types, we do not
present them here.

6. Computational results for MApHMCP

In this section, we first test the combination of valid inequalities for
the proposed formulation. For MApHMCP, we compare results of the
new formulation with the formulation in [6]. As explained in Section 3,
the formulation in [31] works significantly better than the others since
it has Oðn2Þ decision variables and constraints. However, since the
formulation does not work with partial coverage, we did not perform
any computational analyses using that model. We again argue the effect
of partial coverage to the solutions and we compare the results of the
proposed formulation with binary and partial coverage. Lastly, we
discuss and compare the solutions of two problems in terms of cost
and coverage that one of them has service oriented objective whereas
other one has economic objective.

Similar to P&K-S, the proposed formulation for MApHMCP can
be improved for a symmetric distance matrix. Similarly, the
objective function can again be changed to (2.140) and 8 i; jAN :

ir j can be added to constraints (3.7)–(3.12) and to valid inequal-
ities (2.17), (3.15) and (3.16). Additionally, from P&K-M we can
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remove one set of binary variables for the route allocations since
Xijk ¼ Yjik 8 i; jAN; kAH for the symmetric distance matrix; thus,
we remove Yijm from the formulation. Therefore, the related
constraints ((3.8), (3.10), (3.12) and (3.14)) are also removed. This
change reduces the number of constraints by almost half. After
removing Yijm, constraint (3.7) is substituted with

Zijr
X
kAH

akmij Xijkþλijð1�XjimÞ 8mAH; 8 i; jAN : ir j ð3:70Þ

6.1. Performance analysis of the proposed valid inequalities

First, we report and compare the effect of the valid inequalities
explained in Section 3 for P&K-M. The preliminary analyses are
given for binary and partial coverages with the TR data set for the
combination of parameters of α¼0.8, 0.9 and p¼5, 10.

The effect of valid inequality (2.17) is easily observed from
Table 9. If the inequality is not added, there is a possibility of
having the best bound at the root node higher than 100% (columns
4 and 6–8). Our preliminary analyses show that for each instances
in Tables 8 and 9, the lowest gaps are attained in columns 9 and 11;
the differences between the column gaps are always lower than 1%.
For those columns, in order to have better selection criteria, we
also consider the solutions after two hours. After that time, the
gaps in column 9 (which uses the same valid inequality combina-
tions for P&K-S) gives slightly better results. Thus, we decide to use
valid inequalities (2.17) and (3.16) in the computational experi-
ments of P&K-M.

6.2. Computational experiments for MApHMCP

For MApHMCP, we again report coverage(%), bb at root(%) and
CPU if the solution is obtained within the time limit, and best int(%)
and gap(%) if it is not solved to optimality within time limit.
Observe that for binary coverage, for the CAB data set the proposed
formulation is better than the formulation in [6] since the aim of
that paper was to define and formulate the problem. In only one
instance is the optimality not verified within one hour, thus
resulting in a 1.5% gap at the end of one hour. For the same
instance, the gap using the formulation in Campbell [6] is 7.58%.
For the remaining instances, the P&K-M solution times are always
shorter than the solution times of the formulation in [6] (Table 10).

The results of both formulations for partial coverage with the
CAB data set are presented in Table 11. If we compare the CPU
times for solved instances and the gaps for the others, in nine
instances the proposed formulation results in a better solution. In
terms of the solution quality, the proposed formulation cannot
prove the optimality of seven instances out of 16 within the time
limit, and the average gap of these instances is 1.42% at the end of
one hour. On the other hand, the formulation in Campbell [6]
cannot prove the optimality for five instances, and the average gap
of those instances is 4.75%. We also note that for MApHMCP the
best upper bound value with the existing formulation provides
slightly better results than the proposed one.

The results of the binary and partial coverages with the TR data
sets are presented in Table 12. We again set a two-hour time limit.
Similar to the single allocation version of the problem, Campbell

Table 10
MApHMCP solutions with binary coverage for the CAB data set.

α p P&K-M Campbell [6]

Coverage
(%)/best int
(%)

CPU
(sec)/gap
(%)

bb at
root
(%)

Coverage
(%)/best int
(%)

CPU (sec)/
gap (%)

bb at
root
(%)

0.2 2 93.10 95.85 99.95 86.873 41 h=15:10 100
3 96.58 266.65 100 96.58 41 h=3:54 100
4 95.71 1275 99.98 95.711 41 h=4:48 100
5 (92.70) 41 h=1:5 99.94 (92.70) 41 h=7:58 100

0.4 2 96.04 85.75 99.89 94.46 41 h=5:86 100
3 96.24 112.66 99.92 95.57 41 h=4:28 100
4 95.01 395.94 99.92 95.01 1961.37 99.99
5 91.84 453.14 99.74 91.84 1346.49 99.10

0.6 2 93.96 69.67 99.76 93.96 1116.52 99.84
3 93.17 100.58 99.79 93.17 1044.94 99.33
4 93.63 101.91 99.77 93.64 724.6 98.41
5 90.19 139.82 96.50 90.19 767.52 94.26

0.8 2 89.92 103.71 96.88 89.92 1732.31 94.98
3 90.08 64.57 92.62 90.08 821.92 91.91
4 89.61 141.5 91.80 89.61 612.8 91.14
5 89.05 86.95 90.79 89.05 654.03 90.09

Table 11
MApHMCP solutions with partial coverage for the CAB data set.

α p P&K-M Campbell [6]

Coverage (%)/best int (%) CPU (sec)/gap (%) bb at root (%) Coverage (%)/best int (%) CPU (sec)/gap (%) bb at root (%)

0.2 2 97.01 520.35 100 93.36 41 h=7:11 100
3 98.26 1962.78 100 98.24 41 h=1:79 100
4 (97.14) 41 h=0:78 100 (92.67) 41 h=7:90 100
5 (94.91) 41 h=4:40 99.99 (94.91) 41 h=4:60 100

0.4 2 97.70 422.41 99.99 97.70 41 h=2:35 100
3 97.23 2885.75 99.99 97.23 3461.27 100
4 96.90 4 1 h/ 0.67 99.98 96.90 2179.51 100
5 95.12 4 1 h/ 1.75 99.89 95.12 1819.72 99.66

0.6 2 96.2 547.99 99.95 96.2 1069.59 99.95
3 95.74 3369.32 99.95 95.74 1358.43 99.82
4 96.12 41 h=0:61 99.93 96.12 1536.86 99.45
5 94.61 41 h=1:33 98.96 94.61 1145.15 97.66

0.8 2 94.16 618.99 99.20 94.16 1064.1 98.26
3 93.66 790.15 97.39 93.66 969.32 96.62
4 93.58 2587.47 96.96 93.58 985.04 95.46
5 91.51 41 h=0:43 93.91 91.51 878.69 92.83
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[6] has Oðn4Þ variables and constraints, so with the TR data set for
both coverage types, the formulation cannot generate an initial
solution due to the memory requirements. Therefore, we only
present the results of the proposed formulation.

For binary coverage, we obtain five optimal solutions out of eight
within the two-hour time limit. The gaps for the remaining instances
vary between 0.29% and 2.24%. For partial coverage, we obtain one
fewer optimal solution, and the gap for that instance (α¼0.9, p¼10) is
0.07% at the end of the time limit. The gaps for partial coverage are
slightly smaller than the gaps for binary coverage, with the maximum
gap for partial coverage 2.17%. For the TR data set, we observe from the
results that the gaps decrease with the increment of p for each α for
both coverage types, and finally, for p¼15 and 20, the gaps become
zero. Similarly, the solution times for each α for the instances with
p¼15 and 20 decrease with the increment of p; the CPUs of the
instances with p¼15 are smaller than the CPUs of the instances with
p¼20 for each α.

A similar observation for the relationship between α and
optimal value holds for multiple allocation for both data sets and
both coverage types (Table 12 and Appendix, Table A2). Generally,
an increment in α yields a decrement in the optimal solution, with

the only exception occurring with the same instances as single
allocation (α¼0.2, p¼2 and α¼0.4, p¼2). Again, the optimal value
for α¼0.4, p¼2 is higher than the optimal value for α¼0.2, p¼2.

Next, we analyze the effect of allowing partial coverage to
MApHMCP, with the results for P&K-M for the CAB data set shown
in the Appendix, Table A2. First, again observe that, as expected, the
objective values increase for each instance, and on average, the
increment is 2.92% when partial coverage is allowed. Note that the
average increment may change (either increase or decrease) since
there is a chance of having a higher coverage value than the given best
integer solutions for the three instances. The increment in solution
time is evident in the Appendix, Table A2. The increment in solution
time also leads to an increment in the number of unsolved instances
for partial coverage.

We also compare the difference in hub locations for both coverage
types. Since optimality is not proved for partial coverage for the two
instances (α¼0.2, p¼4 and α¼0.2, p¼5), we do not consider them.
Therefore, in 11 instances out of 14, the hub locations change when
partial coverage is allowed. From Table A2 it can be inferred that some
changes in hub locations are not significant; for five instances, only one
of the hubs with partial coverage is different than the hubs with binary
coverage. Generally, the new hub with partial coverage is the nearest
node to the hub with binary coverage. For example, for the instance
with α¼0.2, p¼3, all hubs are same except node 12; in the partial
coverage case, node 22 (the nearest node to 12) is selected instead.

Similar conclusions as explained in Section 5 for SApHMCP also
hold for the multiple allocation version of the problem. When partial
coverage is allowed, hubs become more distant from each other
because the distances are greater than in binary coverage. For example,
for the instance with α¼0.8, p¼4, for binary coverage the longest
distance is between hubs 1 and 22; for partial coverage it is between
hubs 17 and 22. We again note here that the differences of the hub
locations with binary and partial coverage for the CAB data set are
mainly due to the having dispersed locations of nodes. Moreover,
similar to the discussion regarding SApHMCP, hubs are more likely to
be located in (or near) larger cities. This deduction can be easily
verified with the instances for α¼0.4, p¼4 and α¼0.8, p¼5, where

Table 12
MApHMCP solutions with binary and partial coverage types for the TR data set.

α p Binary Partial

Coverage (%)/best
int (%)

CPU (sec)/
gap (%)

Coverage (%)/best
int (%)

CPU (sec)/
gap (%)

0.8 5 (84.59) 41 h=2:24 (95.51) 41 h=1:88
10 (88.63) 41 h=0:29 (97.15) 41 h=0:29
15 89.97 1241.52 97.49 5581.7
20 90.33 32.17 97.58 81.34

0.9 5 (82.63) 41 h=1:21 (94.10) 41 h=2:17
10 84.47 2097.88 (96.12) 4 1 h/ 0.07
15 85.01 239.55 96.25 3463.75
20 85.25 144.85 96.31 111.53

Table 13
Comparison of p-hub median and p-hub maximal covering problems.
(a) Results of the single allocation p-hub median and SApHMCP with binary coverage for the CAB data set

α p p-hub median p-hub maximal covering

Optimal hubs Min cost (�103) Coverage value of solution (%) Optimal hubs Max coverage (%) Cost value of solution (�103)

0.8 2 12, 20 1294.08 80.59 8,21 87.79 1477.23
3 2, 4, 12 1158.83 82.36 5, 11, 12 87.35 1308.50
4 1, 4, 12, 18 1087.66 82.73 5,11,19,22 87.30 1350.87
5 1, 4, 7, 12, 18 1034.1 82.66 1, 9, 11, 12, 22 86.23 1313.34

(b) Results of the p-hub median problem and p-hub maximal covering problem with different coverage and cost constraints

p-hub median p-hub maximal covering

CoverageZ Cost value with coverage constraint (�103) costr ð�103Þ coverage value with cost constraint (%)

87.30 1342.31 1087.66 82.73
86.43 1298.19 1114.85 85.17
85.55 1211.56 1142.04 85.42
84.68 1095.26 1169.23 85.52
83.81 1095.09 1196.43 85.52
82.94 1095.09 1223.62 85.74
82.06 1087.66 1250.81 86.06

1278.00 86.38
1305.19 87.04
1332.38 87.04
1359.58 87.30
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node 23 is selected as the hub that can be considered the farthest from
any other node, but for none of the solutions with binary coverage is
node 23 selected as a hub. The situation is also evident for the instance
with α¼0.8, p¼4: for partial coverage, nodes 12 and 17 are again
chosen as hubs instead of nodes 1 and 19, which were selected as hubs
for binary coverage.

As a direct result of the changes in hub locations, the assignments
(and the routes for each O–D pair) are also affected. Therefore, both
increments and decrements occur in the value of the pair coverage and
we investigate one of the solutions of an instance with α¼0.4, p¼4.
We compare the fraction of flow that is routed from/to node 23 and for
binary coverage only the three pairs {12, 23}, {19, 23} and {22, 23} are
covered. But for partial coverage, each pair such that (i, 23) or (23, i) is
fully covered for i¼ 1…25 except node 14. Even though node 14 is the
farthest node from 23, the O–D pair is partially covered (Z13;24 ¼
Z24;13 ¼ 0:25). There are also decrements in coverage values; O–D pairs
{8, 14}, {14, 19}, {14, 22}, {15, 19} and {15, 22} are covered for the binary
coverage case, but are not covered at all with located hubs for the
partial coverage case.

6.3. Discussion about cost and coverage of the p-hub maximal
covering problem

As noted in the first section, the p-hub maximal covering problem
only has a service level objective and does not consider any economic
aspects in its pure form. However, because problems that do have
economic objectives, such as the p-hub median problem, can lead to
unsatisfactory results in terms of coverage, to increase the service level
one may focus on covering objectives. We decided to compare the
service networks of these two objectives, thus we compared the results
of the p-hub median and the p-hub maximal covering problems in
terms of hub locations, cost value and coverage percentages for α¼0.8
and p¼2-5 for the CAB data set. For this purpose, we used single
allocation and binary coverage with the same parameters given in
Section 5.2. After obtaining the hub locations of the p-hub median
problem, we calculated the coverage value of the resulting network,
and similarly, after obtaining the hub locations of SApHMCP, we
calculated the associated cost value and they are presented at columns
5 and 8 respectively (Table 13a). For example, for p¼4, the optimal hub
locations for the p-hub median problem are 1, 4, 12 and 18 with an
objective value of 1087.66(�103). The associated coverage percentage
of the network is 82.73%. However, when the same instance is solved
with the p-hub maximal covering problem, the optimal hub locations
are 5, 11, 19 and 22 giving a maximum coverage percentage 87.30%. For
this solution, the cost is calculated and it is equal to 1350.87(�103).

From the table, the trade-off between cost and coverage is easily
observed. As expected, the p-hub maximal covering problem leads to
better coverage andmore cost than the p-hubmedian problem; and the
p-hub median version provides the best possible cost with less cover-
age. If we allow more cost, a 6.21% improvement can be achieved with
the p-hub maximal covering problem. Note that, optimal hub locations
for the p-hub median problem tend to be at large cities such as 4
(Chicago) or 12 (Los Angeles) to minimize the total cost. However,
optimal hub locations for the p-hub maximal covering problem are not
need to be at large cities and can be located at more centralized cities.

We remark here that, this analysis still uses a single objective;
either minimizing the cost or maximizing the coverage. We extend
this analysis by including other objective as a constraint with the
best attained values. That is, we solve the p-hub maximal covering
problem with a cost constraint and p-hub median problem by
adding a coverage constraint. For example, for the same instance
(p¼4) we solve the p-hub maximal covering problemwith a cost of
less than or equal to 1087.66(�103) and p-hub median problem
with a minimum coverage percentage of 87.30%. The solutions of
the eight instances in Table 13a are the same with the solutions
when the constraints are added except p¼4 and 5 for the p-hub

median problem. For p¼4, the minimum cost of the solution that
satisfies 87.30% coverage is 1342.31(�103) and for p¼5, the
minimum cost of the solution that satisfies 86.23% coverage is
1241.01(�103). From this analysis, we conclude that adding these
constraints to the problems can yield better solutions rather than
the calculated value of the optimal solution.

Since we observe differences in the solution of the problems
with and without the constraints, we further analyze the effect of
adding cost and coverage constraints. Therefore, beside using the
best attained values, the problems are solved with satisfying
different coverage percentages and cost values. From Table 13b,
generally, when lower coverage requirement is allowed at the p-
hub median problem, the minimum cost decreases and similarly,
the maximum coverage percentage increases with the increment
of the cost value. However, from the results, it can be observed
that, even if we increase (decrease) the right-hand side of the
constraints, the maximum coverage percentage (minimum cost
value) does not change. For instance, the p-hub median problem
provides the same results that satisfy two different coverage
percentages (83.81% and 82.94%).

As stated, in the p-hub maximal covering problem, the cost is
underestimated and the optimal solution is obtained because there
is no cost to establish links between nonhub nodes and hubs or
between hubs. With this assumption, using single allocation seems
useless because multiple allocation gives better coverage. We
calculated the number of spoke links (links between nonhub nodes
and hubs) for both allocations and both coverage types (Appendix
Table A3). For the single allocation, number of spoke links is the
same (n–p links) regardless of the coverage type. For the multiple
allocation we calculated them for both coverage types because they
can increase or decrease depending on hub locations. For multiple
allocation, even assuming there is no cost to the links, any nonhub
node can be assigned to all the hubs even if there is no flow
between them or even if the time between them is larger than the
threshold value. Moreover, we also observed that with the para-
meters that we used in the computational analysis, many alter-
native solutions exist due to assigning almost all nonhub nodes to
every hub, although some are them are not necessary. Therefore,
we report the number of spoke links that are needed and used
(Appendix, Table A3).

For each instance, as expected, the number of spoke links with
single allocation is fewer than the number of spoke links with
multiple allocation because the latter is a relaxation of the former.
So, if we want to calculate the cost of establishing these links, with
the assumption that each of them has equal weight, the cost of the
links with multiple allocation will be higher than the cost of the
links with single allocation. Similar to the previous discussion, if
costs exists, there is a trade-off between cost and coverage with the
single and multiple allocations of the p-hub maximal covering
problem: MApHMCP gives better coverage but with more spoke
links than SApHMCP. Hence, a carrier that wants “good” coverage
but still wants to consider the cost of establishing the links might
choose SApHMCP rather than MApHMCP.

From the same table, we can also discuss the effect of having partial
coverage on the number of spoke links for MApHMCP. Generally, the
number of spoke links increases with the use of partial coverage. For
seven out of 14 instances, the number of spoke links increases when
partial coverage is used instead of binary coverage. (We do not count
the two instances α¼0.2 p¼4, 5 where optimality is not proved.)
However, we cannot say that with partial coverage the number always
increases, because for five instances it remains the same and for three
instances it decreases. So, the number of spoke links not only depends
on the type of coverage, it also depends on hub locations. We can only
discuss that even if hub locations are the same for both coverage types,
there is no guarantee of an increment; for the instance α¼0.6, p¼4, the
number of spoke links is the same for both coverage types.
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7. Conclusion

In this paper, we studied SApHMCP and MApHMCP and
observed that in the hub location literature, only binary coverage
is taken into account. We extended the definition of coverage and
introduced partial coverage to the hub location literature. We
developed efficient mixed-integer programming formulations for
both allocation types that can also be applied for partial coverage.
In this paper, we also proved that both problems are NP-Hard.
Further, we showed that the assignment version of SApHMCP is
NP-Hard.

Extensive computational study was carried out with the CAB and
TR data sets. Based on the computational results, we conclude that
both formulations generally perform better than the existing for-
mulations. Thanks to the decrement in the number of variables and
constraints, we obtain optimal (or near-optimal) solutions for a
larger data set. We also discuss the impact of introducing partial

coverage and present the results for both coverage types. As
expected, the coverage percentages increase when partial coverage
is allowed and for the TR data set, for SApHMCP, on the average
15.06% increment is calculated. We also compared the hub locations
and observed that for the CAB data set, in the partial coverage case
hubs are more likely located at or towards larger cities and they are
more distant from each other. Lastly, we discuss briefly the p-hub
median and p-hub maximal covering problem and we obtain that if
having greater costs is allowed, higher service levels are obtained.
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Table A1
P&K-S solutions for binary and partial coverage types for the CAB data set.

α p Binary coverage Partial coverage

Coverage (%) CPU (sec) bb at root (%) Hub locations Coverage (%) CPU (sec) bb at root (%) Hub locations

0.2 2 92.66 16.83 99.33 5, 12 96.19 13.96 99.97 5, 22
3 95.97 11.24 99.91 2, 12, 13 97.76 15.80 100 2, 13, 22
4 95.67 10.75 99.43 1, 2, 11, 12 97.07 21.14 99.99 1, 2, 11, 12
5 92.38 9.11 97.99 4, 7, 12, 18, 24 94.68 67.87 99.92 4, 7, 12, 18, 24

0.4 2 94.01 9.03 98.59 5, 12 96.53 16.89 99.88 5, 12
3 95.40 8.52 98.04 12, 13, 17 96.72 23.91 99.90 12, 13, 17
4 94.39 8.46 97.41 11, 12, 14, 18 96.49 29.85 99.85 11, 12, 14, 18
5 89.19 5.68 93.24 12, 18, 21, 22, 24 93.40 149.97 99.43 12, 17, 21, 22, 24

0.6 2 90.01 8.93 95.11 5, 12 93.47 29.05 99.63 5, 12
3 91.91 3.7 93.82 5, 11, 12 94.02 38.76 99.65 12,13,17
4 91.51 4.65 93.74 11, 12, 14, 20 94.62 43.84 99.58 12, 13,18, 22
5 88.38 3.28 90.63 4, 7, 12, 17, 24 93.00 131.1 98.46 11, 12, 18, 22, 24

0.8 2 87.79 1.06 89.53 8, 21 91.83 26.95 98.61 8, 21
3 87.35 2.16 89.15 5, 11, 12 90.86 50.27 96.87 5, 11, 12
4 87.30 4.36 89.21 5, 11, 19, 22 90.87 116.57 96.51 8, 12, 17, 21
5 86.23 2.02 87.48 1, 9, 11, 12, 22 89.29 132.42 93.51 6, 8, 11, 12, 24

Table A2
P&K-M solutions for binary and partial coverage types for the CAB data set.

α p Binary coverage Partial coverage

Coverage (%) CPU (sec)/gap (%) Hub locations Coverage (%)/best int (%) CPU (sec)/gap (%) Hub locations

0.2 2 93.10 95.85 5, 12 97.01 520.35 5, 22
3 96.58 266.65 2, 12, 13 98.26 1962.78 2, 13, 22
4 95.71 1275 1, 11, 12, 25 (97.14) 41 h=0:78 1, 11, 12, 25
5 (92.70) 41 h=1:5 4, 7, 12, 18, 24 (94.91) 41 h=4:40 4, 7, 12, 18, 24

0.4 2 96.04 85.75 5, 12 97.70 422.41 5, 12
3 96.24 112.66 12, 13, 20 97.23 2885.75 12, 13, 17
4 95.01 395.94 11, 12, 14, 18 96.90 41 h=0:67 12, 13, 18, 23
5 91.84 453.14 1, 2, 11, 12, 22 95.12 41 h=1:75 11, 12, 18, 22, 24

0.6 2 93.96 69.67 5,12 96.20 547.99 5,12
3 93.17 100.58 5, 8, 12 95.74 3369.32 11, 12, 25
4 93.63 101.91 12, 13, 18, 22 96.12 41 h=0:61 12, 13, 18, 22
5 90.19 139.82 4, 12, 16, 17, 22 94.61 41 h=1:33 11, 12, 17, 22, 24

0.8 2 89.92 103.71 6,8 94.16 618.99 8,20
3 90.08 64.57 2, 11, 12 93.66 790.15 11, 12, 20
4 89.61 141.5 1, 4, 19, 22 93.58 2587.47 12, 17, 21, 22
5 89.05 86.95 1, 4, 8, 12, 22 91.51 41 h=0:43 12, 21, 22, 23, 25
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Appendix A

See Tables A1–A3.
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Table A3
Number of spoke links in optimal solutions for the CAB data sets.

α p SA MA

Binary & Partial Binary Partial

0.2 2 23 24 24
3 22 23 23
4 21 22 22
5 20 22 24

0.4 2 23 26 26
3 22 24 23
4 21 22 25
5 20 25 29

0.6 2 23 28 30
3 22 31 32
4 21 27 27
5 20 27 29

0.8 2 23 34 36
3 22 31 30
4 21 33 28
5 20 30 31
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