
Information and Software Technology 59 (2015) 136–148
Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof
Analyzing impact of experience curve on ROI in the software product
line adoption process
http://dx.doi.org/10.1016/j.infsof.2014.09.008
0950-5849/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail addresses: etuzun@havelsan.com.tr (E. Tüzün), bedir@cs.bilkent.edu.tr

(B. Tekinerdogan).
Eray Tüzün a,⇑, Bedir Tekinerdogan b

a Information and Security Technologies Division, Havelsan A.S�., Ankara, Turkey
b Computer Engineering Department, Bilkent University, Ankara, Turkey

a r t i c l e i n f o a b s t r a c t
Article history:
Received 22 November 2013
Received in revised form 16 July 2014
Accepted 18 September 2014
Available online 16 October 2014

Keywords:
Experience curve
Learning curve
Software product line engineering
Cost models
Productivity
Software reuse
Context: Experience curve is a well-known concept in management and education science, which explains
the phenomenon of increased worker efficiency with repetitive production of a good or service.
Objective: We aim to analyze the impact of the experience curve effect on the Return on Investment (ROI)
in the software product line engineering (SPLE) process.
Method: We first present the results of a systematic literature review (SLR) to explicitly depict the studies
that have considered the impact of experience curve effect on software development in general. Subse-
quently, based on the results of the SLR, the experience curve effect models in the literature, and the SPLE
cost models, we define an approach for extending the cost models with the experience curve effect.
Finally, we discuss the application of the refined cost models in a real industrial context.
Results: The SLR resulted in 15 primary studies which confirm the impact of experience curve effect on
software development in general but the experience curve effect in the adoption of SPLE got less atten-
tion. The analytical discussion of the cost models and the application of the refined SPLE cost models in
the industrial context showed a clear impact of the experience curve effect on the time-to-market, cost of
development and ROI in the SPLE adoption process.
Conclusions: The proposed analysis with the newly defined cost models for SPLE adoption provides a
more precise analysis tool for the management, and as such helps to support a better decision making.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Software reuse has been an important goal in the history of soft-
ware engineering [1]. Early reuse approaches such as abstract data
types, module-based programming, component-based software
development, reusable libraries and design patterns, can be
basically categorized as small-scale reuse [1]. On the other hand,
software product line engineering (SPLE) aims to provide pro-
active, pre-planned reuse at a large granularity to develop applica-
tions from a core asset base [2]. A product line is defined as a set of
software-intensive systems sharing a common, managed set of
features that satisfy the specific needs of a particular market
segment or mission and that are developed from a common set
of core assets in a prescribed way [2]. The benefits for adopting a
product line approach have been analyzed and discussed before
by several authors [2–5], and usually include developing products
more efficiently, get them to the market faster to stay competitive
and produce with higher quality [5].

The core asset base in SPLE is developed through a domain engi-
neering process and requires an upfront investment even before a
single product has been developed. Despite the upfront investment
it is believed that SPLE will result in a Return on Investment (ROI), in
which the development cost and time-to-market value is lower
than in case a single system development would have been used.
In parallel with this assumption, it is generally acknowledged that
transitioning to a product line engineering approach needs to be
performed carefully to avoid failures and mitigate risks that are
inherent to the adoption of the product line engineering. Hence,
the product line engineering community has proposed different
transition strategies that aim to support the transition process
and as such help to define a proper product line engineering
approach for the organization. Hereby, for analyzing the ROI in
the adoption of the SPLE process, various cost models have been
developed that typically focus on the cost for preparing the organi-
zation, the cost for developing the asset base, the cost of unique
development and the cost for reusing assets. The result of this anal-
ysis process is typically used to provide a decision on whether to

http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2014.09.008&domain=pdf
http://dx.doi.org/10.1016/j.infsof.2014.09.008
mailto:etuzun@havelsan.com.tr
mailto:bedir@cs.bilkent.edu.tr
http://dx.doi.org/10.1016/j.infsof.2014.09.008
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof


E. Tüzün, B. Tekinerdogan / Information and Software Technology 59 (2015) 136–148 137
adopt an SPLE approach, and if so, which transition strategy to
select.

A close study to the cost models and the transition strategy
approaches shows that the experience gained by the developers
in the development of the products is not explicitly considered in
the corresponding cost models. From practice, it is known that
most tasks can be carried out faster with increased experience. A
more experienced developer who has worked on similar tasks for
a long time will be able to develop products faster and on its turn
the cost to develop the subsequent products will be reduced. The
experience of the developer as such can have a direct impact on
the success or failure of the adoption of SPLE. This observation
implies that the experience effect should also be explicitly consid-
ered in the cost models adopted in SPLE transition strategies.

In fact the impact of experience has been widely discussed in
different disciplines including management science, education,
construction and manufacturing, in which the notion of experience
curve has been introduced to analyze and measure productivity. In
this context, experience curve explains the phenomenon of
increased worker efficiency and improved organizational perfor-
mance with repetitive production of a good or service [6].

In this paper we aim to analyze the impact of the experience
curve effect on the ROI in the SPLE process. For this, we first inves-
tigate the impact of experience curve in software engineering in
general, by adopting the results of the systematic literature review
on experience curve in software development practices. The sys-
tematic literature review resulted in total 15 primary studies that
confirm the impact of the experience curve in software develop-
ment projects. In alignment with the results of the identified pri-
mary studies we study the impact of experience curve on the
adoption of software product line engineering. As stated before,
an important metric for analyzing the impact of the SPLE adoption
is the ROI for which various cost models have been provided in the
SPLE community [7,8]. It appears that none of the cost models as
published in the SPLE literature consider the impact of experience
curve effect explicitly. Hence, in this paper we provide an analysis
approach for integrating the experience curve effect within the
current cost models for analyzing ROI of the adoption of SPLE. With
the adapted cost models we aim to provide a more precise analysis
for the adoption of the SPLE and the expected ROI. The presented
analysis shows new insight in comparing single system develop-
ment with product line engineering that can impact the decision
for adopting SPLE or not. We illustrate the application of the anal-
ysis for predefined SPLE adoption scenarios. Further we discuss the
result of the application of the approach within a real industrial
context of Havelsan.

The remainder of the paper is organized as follows. In Section 2
we describe the background on the experience curve effect. Section
3 presents the systematic literature review on the impact of expe-
rience curve in software engineering. Section 4 presents the SPLE
cost models and the proposed cost models that integrate the expe-
rience curve effect. Section 5 shows the analysis using the refined
cost models. Section 6, discusses the adoption of the analysis
approach for a real industry project. Section 7 provides the discus-
sion and the general practical implications of the approach. Section
8 presents the related work and finally Section 9 concludes the
paper.
2. Experience curve effect

From practice we can state that the more frequent a task is per-
formed, the less time is required on each subsequent iteration. This
increase in efficiency is inherently based on the learning effect;
after each iteration more will be learned on applying the task
and likewise the subsequent iteration will take less time. This
phenomenon was first observed by the 19th century German psy-
chologist Ebbinghaus [9] who investigated the difficulty of memo-
rizing nonsense syllables, and recorded the success over a number
of trials. According to Ebbinghaus the sharpest increase of learning
occurs after the first trial, and gradually evens out after subsequent
trials. The corresponding learning curve is a graphical representa-
tion of the increase of learning with experience. Hereby, the
horizontal axis represents the experience either directly as time
spent on the activity, or it can be related to time and define the
number of trials. The vertical axis represents the learning or profi-
ciency. Depending on the adopted metric it can either be increasing
(e.g. the score in a test), or decreasing (the time to complete a test).

Initially, the learning curve concept related the time required to
perform a task to the number of times the task has been
performed. Soon it was observed that the learning curve is quite
general and can be applied to other domains than learning and
psychology. In 1936, Theodore Paul Wright proposed a mathemat-
ical model of the learning curve and described the effect of learning
on production costs in the aircraft industry [10]. In the correspond-
ing studies, a systematic decline in the labor hours required to
produce an airplane was observed. Every time the total aircraft
production doubled, the required labor time decreased by 10–15
percent. In 1968, Bruce Henderson of the Boston Consulting Group
(BCG) further adapted the model of Wright and proposed the so-
called experience curve. In the experience curve, unit cost is plotted
against total production. The experience curve is currently a broad
concept that is applied in different domains. The main reason for
the reduced cost is often attributed to the faster development of
the tasks.

The mathematical formula for experience curve is relatively
simple and is defined as a power law function:
Cn ¼ C1ne ð1Þ
where
� C1 is the cost of the first unit of production,
� Cn is the cost of the nth unit of production,
� n is the cumulative volume of production,
� e ¼ log/

log2 = The learning index,

� a = The Learning rate. where 1 � a is the progress ratio.

Assume for example that the cost of developing the first prod-
uct is 100 and the learning rate (a) is 90%, then according to the
above formula the cost of developing the second product is 90,
the cost of developing the third product is 84.6, the fourth product
is 81, and so on. It appears that for every doubling of the input the
cost for developing the product reduces with 10%, which defines
the so-called progress ratio (1 � a). The experience curve effect
shows that experience has a direct impact on the productivity of
a task. Different learning rates will have a different impact on
the productivity. Fig. 1 shows, for example, the experience curve
for three different learning rates (90%, 80%, and 70%). The left figure
shows the linear version, while the right figure shows the loga-
rithm version of the three curves, resulting in straight lines. Note
that for higher learning rates (90%) the direct cost per unit
decreases much faster than for lower learning rates (70%). In this
case, the higher the percentage of the learning rate a, the lower
the progress rate (1 � a), and as such the lower the productivity.

Depending on the characteristics of the required tasks different
industrial domains appear to have their own specific learning rate,
ranging from 75% to 95% [11]. Example domains together with
their derived learning rates are shown in Table 1. In general, the
nature of the tasks defines the experience curve. Hereby, it appears
that the learning curve rate is lower (thus progress rate is higher)
for domains in which tasks requires more manual intervention.



0

20

40

60

80

100

120

0 50 100 150

Di
re

ct
 c

os
t p

er
 u

ni
t

Cumulative units of production

90%

80%

70%

1

10

100

1 10 100

Di
re

ct
 c

os
t p

er
 u

ni
t (

lo
g 

sc
al

e)

Cumulative units of production (logs scale)

90%

80%

70%

Fig. 1. Experience curve shown in linear–linear and log–log forms.

Table 1
Different domains with their learning rates.

Domain Learning rate (%)

Aerospace 85
Shipbuilding 80–85
Complex machine tools for new models 75–85
Repetitive electronics manufacturing 90–95
Repetitive machining or punch-press operations 90–95
Repetitive electrical operations 75–85
Repetitive welding operations 90
Raw materials 93–96
Purchased parts 85–88

Table 2
Publication sources searched.

Source Number of included studies
after applying search query

Number of included
studies after exclusion
criterion

IEEE Xplore 65 2
ACM Digital Library 19 1
Wiley Interscience 31 0
Science Direct 13 1
ISI Web of Knowledge 58 4
Other channels 974 7
Total 1160 15

138 E. Tüzün, B. Tekinerdogan / Information and Software Technology 59 (2015) 136–148
3. Systematic literature review on experience curve effect

3.1. SLR protocol

The experience curve has a direct impact on the productivity in
different domains. An important question is whether this also
holds for the software engineering domain. To investigate the
experience curve effect on software development we have con-
ducted a systematic literature review using the guidelines as
described by Kitchenham and Charters [12]. In particular we were
interested in the answers to the following research questions:

� RQ1: For which goals has the experience curve effect been
studied in software engineering?

� RQ2: In which domain contexts has the experience curve
model been applied in software engineering?

� RQ3: What is the reported evidence in the application of the
experience curve models in software engineering?

� RQ4: In which software lifecycle activities has the experience
curve model been applied?

� RQ5: What are the identified findings with respect to experi-
ence curve effect in software engineering?

Our search scope included all the papers that were published
before July 2014. We searched for full papers in selected venues
that publish high quality papers. We used the following search dat-
abases: IEEE Xplore, ACM Digital Library, Wiley Inter Science Jour-
nal Finder, ScienceDirect, ISI Web of Knowledge, and other
channels including Microsoft Academic Search and manual search
channels. These venues are listed in Table 2. Our targeted search
items were journal papers, conference papers, and workshop
papers.

To search the selected databases we used both manual and
automatic search strategies. Automatic search is realized through
entering search strings on the search engines of the electronic data
source. Manual search is realized through manually browsing the
conferences, journals or other important sources and checking
the references of selected papers. The manual searches appeared
to be quite useful since we retrieved some good-quality articles
that an automatic search could not reveal.

The adopted search string was as follows:

(‘‘experience curve’’ OR ‘‘learning curve’’) AND (‘‘software develop-
ment’’ OR ‘‘software engineering’’ OR ‘‘software process’’ OR ‘‘soft-
ware project’’)
The result of the overall search process after applying the search
queries and the manual search is shown in the second column
of Table 2. As it can be seen from the table we could identify
1160 papers at this stage of the search process. We have also run
a similar query to check if the effect of experience curve is
discussed in the SPLE context. We ran a similar analysis with
(‘‘software product line’’ OR ‘‘software product family’’) AND
(‘‘experience curve’’ OR ‘‘learning curve’’) keywords. After the
initial set of exclusion, we were unable to find any papers that
discuss this issue.

In accordance with the SLR guidelines [12] we further applied
the following exclusion criteria on the large number of papers in
the first stage:

– Abstract or title does not primarily discuss the effect of
‘‘experience curve’’ on software development productivity

– Not a primary study
– Repeated in an already mined source
– Most of the content is repeated in a similar paper (Extended

version is chosen over the shorter one)

The exclusion criteria were checked by a manual analysis by
both the authors. To the best of our knowledge, no other secondary
study has been published related to experience curves in software
development. After applying the exclusion criteria to the identified
1160 papers we selected 15 papers for a detailed analysis.

3.2. Data extraction results

For data extraction and synthesis process as required by the
systematic review protocol we thoroughly studied the primary



E. Tüzün, B. Tekinerdogan / Information and Software Technology 59 (2015) 136–148 139
studies in detail to answer our five defined research questions. The
identified primary studies and the result of the data extraction and
synthesis process are summarized in Table 3. The answers to the
research questions RQ1 to RQ4 are directly shown in the table.
The specific answers to RQ5 are described in the following para-
graphs in which we provide a short summary of each identified pri-
mary study with the basic conclusions:

3.2.1. A learning curve primer for software engineers [13]
The basic aim of this paper from 1996 is to raise the level of

understanding of learning curves within the Software Engineering
Table 3
The identified primary studies and the result of the data extraction and synthesis process

Study RQ1
Goal

A learning curve primer for software
engineers [13]

General understanding and introduction
of the effects of learning curve in softwar
development process

Human oriented improvement in the
software process [14]

Investigate the impact of second-order
learning (induced learning) on progress i
software development

Learning and forgetting curves in software
development [15]

Investigate the impact of learning curve
and forgetting curve for different types o
knowledge including domain, technolog
and methodology

Learning from experience in software
development – multi-level analysis
[16]

Investigate impact of the accumulating
specialized experience in a system,
diversified experience in related and
unrelated systems, and experience from
working with others on productivity

A matter of balance: specialization, task
variety, and individual learning in a
software maintenance environment
[17]

Investigate (1) how experience enhances
individual learning and impacts
productivity? (2) the role of variety in
individual learning (3) the impact of the
composition of an individual’s overall
portfolio of experience on learning and
productivity

A learning curve based simulation based
model for software development [18]

Investigate the impact of learning curve
on software development to support
estimating and/or predicting the
development time and the total work
effort in project planning

An empirical study of ICASE learning
curves and probability bounds for
software development effort [19]

Investigate the existence of learning
curves in software development in
general, and impact of programmers
experience in an integrated Computer-
aided software engineering (ICASE) tool
on the software development effort

Optimal allocation of testing effort during
testing and debugging phases a control
theoretic approach [20]

Investigate optimal allocation of testing
effort during testing and debugging
phases considering learning curve effect

Virtual organizational learning in open
source software development projects
[21]

Investigate whether learning effect is
universally present in Open Source
Software (OSS) projects, and identify the
factors that affect the learning process

A quantitative learning model for software
test process [22]

Define a novel quantitative learning
model for software test processes

Organizational learning in open-source
software projects: an analysis of
debugging data [23]

Investigating the learning curve effect in
open source software projects

A learning curve explanatory theory for
team learning valuation [24]

Introducing a theory for team learning
valuation

A comparative analysis of learning curves
implications for new technology
implementation management [25]

Examining the impact of learning curve
theory on ERP implementation planning
and management

Quantitative control of process changes
through modeling, simulation and
benchmarking [26]

Provide a comparison between
productivity learning curve model derive
by Motorola and COCOMO II

People applications in software process
modeling [28]

Explores the role of people in process
modeling including the learning curve
theory aspect
community. The paper is primarily written for managers and devel-
opers who want to better understand learning curves. The author
first defines learning curves, provides the historical background
and argues that learning curves also apply to software engineering.
The paper further elaborates on the challenge of both stabilizing
and improving a software development process. The paper argues
that learning curves denote the relationship between stability and
improvement, and show the implications of learning curves on
staffing a project. Based on these findings the paper shows that Fred
Brooks’s observations about man-months can be explained in terms
of learning curves, and that it is needed to keep teams together on
.

RQ2 RQ3 RQ4
Domain context Validation approach Life cycle

activity

e
NA General discussion Development

No validation

n
Small-sized student
projects

Experiment using 12 student
software developers, who
completed one small-sized project

Development

f
y

IT Service Retrospective Analysis from sample
of 556 projects from 2005–2007

Development

Telecommunications
industry

Retrospective analysis of covering
more than 14 years of systems
development work on a major
telecommunications product

Maintenance

Offshore software
support services
operation

Retrospective analysis covering a
data set covering 88 individuals
who worked on 5711 maintenance
tasks over a period of six years

Maintenance

NA Simulation using four different
scenarios including parameter
values for number of developers,
learning curve rates and activity
property

Development

Software projects
from Texas
Instruments and
Electronic Data
Systems

Retrospective analysis of data set
covering forty projects obtained
from two major companies in the
North Eastern USA

Development

NA Analytical evaluation Testing

Open Source
Software Projects

Retrospective analysis of number
and percentage of resolved bugs
and bug resolution time of 118

Maintenance

SourceForge.net OSS projects
IT Software Analysis of a tool that transforms

Cobol Code to SAP/R3 and
interviews with project manager

Testing

Open Source
Software Projects

Retrospective analysis by analysis
of debugging data of Apache and
Mozilla projects

Maintenance

Mixed Retrospective analysis of ISBG
database software projects

Development

ERP Empirical analysis of four ERP
implementation projects in three
companies

Development

d
NA Simulation of the models with

different parameters
Development

NA No Validation Development



140 E. Tüzün, B. Tekinerdogan / Information and Software Technology 59 (2015) 136–148
long-term projects because of the learning curve effect. In the final
section of the paper different equations for learning curves are pro-
vided that can be used to model a process and measure the impact
of learning curves on software engineering projects.

3.2.2. Human oriented improvement in the software process [14]
This paper discusses the so-called progress functions that differ

from learning curves because the former also incorporates a sec-
ond-order learning mechanism. Whereas first-order learning (also
referred to as autonomous learning) is the improvement due to
the experience, which a person gains by repeatedly doing the same
task, second-order learning (also known as induced learning) is due
to the technologies injected by the organization. The paper makes
an explicit distinction between learning curve and progress func-
tion and aims to analyze these separately. For this, the paper
describes the setup and results of laboratory experiment for ana-
lyzing the impact of progress due to second-order learning. The
described experiment involved a sample of 12 student software
developers, who completed one small-sized project every week
for ten weeks. A within-subject, repeated-measure, time-series
quasi-experimental design was used as the research method. The
statistical tests showed that on average, progress takes place at a
rate of about 20%, with technology injection this amounts to 13%
improvement over autonomous learning alone. The authors claim
that such a distinction is useful for making decisions regarding
initiating formal training programs and making engineering tech-
nology changes.

3.2.3. Learning and forgetting curves in software development [15]
In this study, the authors aim to explore what type of knowl-

edge, among domain, technology, and methodology knowledge, is
most influential to the performance of software development. To
answer this question the paper presents the results of an empirical
study of the impact of learning and forgetting curves in software
development using archival data from sample of 556 software
development projects in an IT service company. This sample of pro-
jects involved 3341 unique employees, 6675 employee-project
assignment records, and 206,173 employee project-technology
records. The basic findings of the paper are that prior experiences
with the same methodology or technology have a stronger impact
on software project performance than those in the same applica-
tion domain. Furthermore, the results of the study show that meth-
odology knowledge is more easily forgotten than domain or
technology knowledge. The authors argue that these insights have
implications for the development of knowledge and skills as well
as other organizational issues in software development such as
project team staffing and career development.

3.2.4. Learning from experience in software development – multi-level
analysis [16]

This study discusses the impact of the learning curve on indi-
viduals, groups, and organizational units learn from experience in
software development and whether this learning improves pro-
ductivity. The study evaluates the relative productivity impacts
from accumulating specialized experience in a system, diversified
experience in related and unrelated systems, and experience from
working with others on modification requests (MRs) in a telecom-
munications firm. The study includes the analysis of data archives
covering more than 14 years of systems development work on a
major telecommunications product dating from the beginning of
its development process. The findings of the study show that the
relative importance of the different types of experience differs
across levels of analysis. According to the study specialized experi-
ence has the greatest impact on productivity for MRs completed by
individual developers, whereas diverse experience in related
systems plays a larger role in improving productivity for MRs
and system releases completed by groups and organizational units.
Diverse experience in unrelated systems has the least influence on
productivity at all three levels of analysis. The paper concludes that
learning curves have an impact in software development and, in
particular provides insights in when specialized or diverse experi-
ence may be more valuable.

3.2.5. A matter of balance: Specialization, task variety, and individual
learning in a software maintenance environment [17]

The primary study aims to provide answer to the following
questions. (1) How does the pattern of past experience enhance
individual learning and productivity? (2) What is the role of variety
in individual learning? (3) How does the composition of an individ-
ual’s overall portfolio of experience affect learning and productiv-
ity? To answer these questions the authors have analyzed 88
individuals who worked on 5711 maintenance tasks in an offshore
software support services operation. The study concludes that spe-
cialization enhances productivity in general, and a proper balance
between specialization and exposure the variety is needed to
achieve the highest productivity. A further conclusion of the study
reveals that the degree of variety experience lost has a greater
impact on productivity than the degree of specialized experience
that is lost.

3.2.6. A learning curve based simulation model for software
development [18]

In this article, the authors propose a simulation model for soft-
ware development that takes into account the developer’s learning
curve. As such it can be used to compute a developer’s productivity
and the quantity of gain to the developer’s knowledge in executing
an activity. Based on this simulation model, a project-planning
prototype has been implemented. The proposed model and the
prototype have been applied to four typical scenarios in a case
study. The presented prototype can help managers to decide
whether the new software development environment should be
used in the project or not.

3.2.7. An empirical study of ICASE learning curves and probability
bounds for software eevelopment effort [19]

In this article, the authors investigate the existence of learning
curves in software development. The authors illustrate this by
examining the relationship between a programmer experience in
an integrated Computer-aided software engineering (ICASE) tool
and the software development effort. They have validated their
approach on actual software development effort in forty projects
obtained from two major companies in North Eastern USA.

3.2.8. Optimal allocation of testing effort during testing and debugging
phases a control theoretic approach [20]

The main goal of this paper is to investigate an optimal resource
allocation plan to minimize the cost of software during the testing
and operational phase. During the analysis, it has been observed
that due to the experience curve phenomenon, the effort required
to fix an error keeps on decreasing with time. At the same time,
testing effort keeps on increasing as in the later stages of a
planning period it becomes hard to detect faults. Based on this fact
they propose an alternate rationale for optimal allocation of testing
resources using learning curve phenomenon under dynamic
environment.

3.2.9. Virtual organizational learning in open source software
development projects [21]

The study aims to provide answers to the following two
research questions: (1) Are learning effects universally present in
Open Source Software (OSS) projects? (2) What are the factors that
affect the learning process? For this, the authors used the number



E. Tüzün, B. Tekinerdogan / Information and Software Technology 59 (2015) 136–148 141
and percentage of resolved bugs and bug resolution time to
measure learning effects. Further they also looked at how different
project types, number of developers (project team size) and their
experience, and the intensity of assigned bugs affected the learning
rates. The data for this study were obtained from the Source-
Forge.net database. The findings of the paper show that both adap-
tive and organizational learning were observed in the projects.
Further, the results also showed that OSS development project
performance was influenced by the number of developers on the
team, the amount of experience that they possessed, project
category, and percentage of bugs assigned to a person. Finally,
the results indicated that though smaller teams learned faster, they
suffered from greater variability in efficiency.

3.2.10. A quantitative learning model for software test process [22]
The authors investigate the learning curve effects on software

test processes and compare existing learning models. An existing
formal software test process model is modified to include the
effects of learning. The updated software test process model with
an integrated learning curve is applied to several industrial
software test projects for validation. The authors conclude that
the larger the learning phase, the better the predictions of
improved model when compared to the previous model.

3.2.11. Organizational learning in open-source software projects: an
analysis of debugging data [23]

This paper analyzes the organizational learning effect in open-
source programming projects. For this, the study uses the data
from Apache and Mozilla projects to analyze bug cycle times. The
authors conclude that despite of the similarity among the projects
there are significant qualitative and quantitative differences in
their learning processes. The authors observed a higher impact of
the learning curve for a mature project compared to an emerging
project. This observation implies that the success of any given
learning approach is likely to be situational, and should be exam-
ined in the context of the given organization.

3.2.12. A learning curve explanatory theory for team learning
valuation [24]

This paper examines how the learning curve effect can be used
to derive monetary information for team learning observed within
knowledge-intensive production environments. For this, software
development is selected as an identical example of a team-based,
knowledge-intensive production environment. The interaction of
learning rate of the developer teams and the improvements on
the productivity is modeled as a Lotka–Volterra predator–prey
interacting populations system establishing a causal relationship
between the human capital (HC) of organizational teams and the
observed learning curve effects on their performance. The theoret-
ical justification is supported by empirical evidence based on the
ISBSG database.

3.2.13. A comparative analysis of learning curves implications for new
technology implementation management [25]

This paper examines how the learning curve theory would
affect better planning and management of ERP implementation
projects. In the literature, there have been several studies that
discuss the effect of team training/learning on software implemen-
tation projects’ schedule and cost. Based on this the authors
explore the learning curve methods for adopting in ERP project
management. Using empirical data from 4 ERP projects, the
authors provide a comparison between general logistic and
S-curves in learning curve theory. The authors conclude that a
logistic curve is a good approximation for the majority of the ERP
implementations.
3.2.14. Quantitative control of process changes through modeling,
simulation and benchmarking [26]

In this paper, the authors have evaluated the productivity learn-
ing curve as defined by Motorola [27] and compared it with the
COCOMO II model cost drivers. The selected COCOMO II cost
drivers APEX, LTEX, PLEX are calibrated to represent learning
curve effects. The paper lists the advantages and disadvantages
of using both models when representing learning curve effects
for measuring software development productivity.
3.2.15. People applications in software process modeling [28]
This paper discusses the importance of people factors and

human relations above technical aspects for improving productiv-
ity in software development. A list of people factors are provided
including motivation, exhaustion, experience and learning curves,
training, hiring and retention, communication, stakeholder collab-
oration and workforce dynamics.
3.3. Threats to validity

The findings from the SLR could have suffered from several
validity threats. Below we describe the potential threats and briefly
discuss the mitigation strategy for each threat.

Construct validity refers to the degree to which the SLR measures
what it aims to be measuring. One possible threat to construct
validity is exclusion of relevant studies. In order to minimize this
threat, we applied detailed guidelines of systematic literature
review protocol and defined a rigorous search strategy. In our
SLR we used the important search databases: IEEE Xplore, ACM
Digital Library, Wiley Inter Science Journal Finder, ScienceDirect,
ISI Web of Knowledge, and Google Search. We also searched for
company journals, grey literature, conference proceedings and
the internet, which led us to new papers that we could not identify
in our regular search. We performed the inclusion/exclusion proce-
dures on a well-established screening of primary studies. In our
search we have only considered the title and abstract because in
the other case the false positives are dramatically large. In
particular the term learning curve is a widely used daily term that
is not directly related to the scientific concept that we refer to. For
reducing the selection bias for selecting the primary studies,
the evaluation and the selection of the primary studies were
performed separately by two researchers. Each researcher
recorded also the reasons of acceptance or rejection for all the
considered studies. Despite of the careful and in-depth search we
realize that we might have still missed some studies. Nevertheless,
we believe that we have captured the important studies that
discuss learning curve and that are of value to discuss the impact
of the learning curve on the ROI in SPLE.

Internal validity threat includes the possibility of deriving an
invalid causal relationship based on the findings. In the context
of the present study, the SLR was essentially exploratory, with
the aim to identify answers to the corresponding research ques-
tions. Hence, it was sufficient to ensure that the selected primary
studies were relevant in the literature.

Conclusion validity (reliability) is the degree to which conclu-
sions about the relationship among variables based on the data
are correct or reasonable. This threat is mitigated by adopting a
clear SLR protocol including well-defined steps and the involve-
ment of two researchers. The outcome of the SLR is quite broad
and if the study would be replicated by different set of researchers
it is possible that the final set of selected primary studies could be
slightly different, but the general findings would be quite similar.
As such, we believe that the conclusion validity of the SLR is high
given the use of a very systematic procedure and the involvement
and discussion among the two researchers.



142 E. Tüzün, B. Tekinerdogan / Information and Software Technology 59 (2015) 136–148
External validity refers to the extent to which the results of the
SLR can be generalized outside the scope of the study. Within the
context of our study we can relate this to the degree to which
the primary studies and the extracted data elements are represen-
tative of the overall goal of the review. This risk is largely mitigated
by the detailed and careful review protocol that we have discussed
above.
4. Software product line engineering cost models

The overall conclusion of the systematic literature review is that
the experience curve has a direct impact in software development.
As we have discussed in the previous section this conclusion has
been drawn from research in various contexts in software develop-
ment. Unfortunately, the experience curve effect in SPLE in partic-
ular has not been directly addressed before. For transitioning to
SPLE it is important to define the proper cost models for providing
the cost-benefit analysis of adopting an SPLE approach. In current
transition strategies that adopt different cost models the experi-
ence curve effect has not been taken into account. Very often, this
is not realistic in practice and can lead to a wrong decision making
in the SPLE adoption process. In the following we first take a closer
look at the cost models using the experience curve effect for both
single development and SPLE, and then extend these cost models
to provide a more precise analysis to support the decision making
process.

The following represents the general formula for calculating the
cost of adopting SPLE as discussed in the Structured Intuitive
Model for Product Line Economics (SIMPLE) [8,29]:

C ¼ COrg þ CCab þ
Xn

i¼1

ðCUniqueðpiÞ þ CReuseðpiÞÞ ð2Þ

In the formula, C represents the overall cost and consists of the cost
of adapting the software reuse approach for the organization (COrg),
the cost to define the asset base (CCab), the sum of the cost for devel-
oping unique portion of the products (CUnique) and the sum of the
cost of reusing core assets (CReuse) for a software product line of n
products denoted by pi.

For calculating the development cost in single system develop-
ment only the cost for developing unique products is needed,
(COrg), (CCab), and (CReuse) can be omitted. As such, the cost model
for this situation is shown in Eq. (3).

C ¼
Xn

i¼1

ðCUniqueðpiÞÞ ð3Þ

Based on the general cost models, several other cost models for dif-
ferent scenarios have been defined [7,8]. An important point in the
process of adopting an SPLE approach is the break-even point after
which the organization will start to get the ROI for the upfront
investment. Considering either the cumulative cost for developing
products or the time needed to deliver the products to the market
the ROI will be expressed differently. This is shown in Fig. 2.

The left figure shows the ROI for the cost of developing the
products, while the right figure shows the ROI with respect to time.
Typically finding the break-even point is critical for an organiza-
tion, because this will usually guide the decision for adopting SPLE
or not. The exact location of the break-even point depends on var-
ious characteristics such as the organization and market character-
istics, the range and kind of products, and the selected transition
strategies. However, in the SPLE literature the break-even point
is generally reported between 2 and 3 products [2–4,30]. The ROI
of SPLE can be calculated by dividing the Cost Savings with Cost
of investment. Cost savings can be calculated by subtracting the
cost of SPLE approach (Eq. (2)) from the cost of single development
(Eq. (3)). The cost of investment is (COrg + CCab). As such, the for-
mula for ROI can be expressed as follows:
Pn

i¼1CUniqueðpiÞ � ðCOrg þ CCab þ
Pn

i¼1ðCUniqueðpiÞ þ CReuseðpiÞÞÞ
COrg þ CCab

ð4Þ

Eqs. (2)–(4) have been derived from the SPLE literature. As it can be
observed none of these explicitly consider the experience curve
effect. We elaborate on this in the next section.

5. Integrating experience curve effect in cost models

To analyze the impact of experience curve on SPLE we will con-
sider both the equations for the experience curve (Eq. (1)) and the
equations for the cost models of SPLE as defined in Eqs. (2)–(4). For
this we will adopt the following scenario that is derived from the
scenario template as defined in [8]:

‘‘An organization of size s, plans to bring k products to the market-
place but hasn’t begun developing them yet. It wants to explore
building them as a software product line from a common set of core
assets.’’

For this scenario, we will first define the cost models with the
experience curve effect, and then use these cost models to compare
the cost of developing a set of products both in SPLE approach, and
single-system development approach.

5.1. Cost models with experience curve effect

In the cost model for SPLE (Eq. (2)) we can identify several cost
elements that can be influenced by the experience curve. Since COrg

and CCab are non-repeating activities we assume that the experi-
ence curve has a negligible or no effect for these elements. The ele-
ments CUnique and CReuse� however, are repeating activities and will
be typically influenced by the experience curve effect. As such, we
can now adapt the formula Eq. (2) by integrating the experience
curve effect as defined in Eq. (1). The result is as follows:

C ¼ COrg þ CCab þ
Xn

i¼1

ðCUniqueðp1Þi
e1 þ CReuseðp1Þi

e2Þ ð5Þ

where
C(unique)(p1): is the cost of building the unique parts of the first
product
C(reuse)(p1): is the cost of building the common parts of the first
product using core asset base
n: is the number of products in the product line
e1: is the learning index for developing unique portions of dif-
ferent product in the same product family
e2: is the learning index for developing reused portions of the
different products in the same product family

In fact Eq. (5) can now be considered as a more general equation
for calculating the product development costs. In case the experi-
ence curve effect is neglected it will represent the conventional
equation Eq. (2). The cost model of Eq. (5) is defined for the given
scenario in which product line is set up from the beginning (Big
Bang strategy). However, other scenarios as defined in [8] could
be adapted similarly.

We can also derive the cost model with the experience curve
effect for single system development. For this COrg, CCab and CReuse

will be zero, and likewise we will get the following formula:

C ¼
Xn

i¼1

ðCUniqueðp1Þi
eÞ ð6Þ

In this formula, C is the accumulated cost of building n products by
considering the experience curve effect, where CUnique(p1) is the cost



Single System 
Development

SPLE 
Approach

Break-even 
Point

ROI

Upfront 
Investment

Number of Different Products

C
um

ul
at

iv
e 

C
os

t /
 E

ffo
rt

Single System 
Development

SPLE 
Approach

Break-even 
Point ROI

Upfront 
Investment

Number of Different Products

Ti
m

e-
to

-M
ar

ke
t

Fig. 2. Typical ROI figure for software product lines.

E. Tüzün, B. Tekinerdogan / Information and Software Technology 59 (2015) 136–148 143
of building the first product, n is the number of products, and e is
again the learning index for developing similar software. The ROI
of SPLE with the experience curve effect can now be defined as
follows:

Pn
i¼1ðCUniqueðp1Þi

eÞ� ½COrgþCCabþ
Pn

i¼1ðCUniqueðp1Þi
e1þCReuseðp1Þi

e2Þ�
COrgþCCab

ð7Þ
Table 4
Variable definition and values [8].

Term How To compute Value

CProd �12 person-years(PY) per product �12 PY
COrg Organization Size ⁄ 1 person-month(PM) �2.4 PY
CReuse 70% ⁄ 10% ⁄ CProd �0.84 PY
CUnique 30% ⁄ CProd �3.6 PY
CCab 150% ⁄ 70% ⁄ CProd + CScop �13 PY
5.2. Analysis with refined cost models

Obviously, the refined cost models will have an impact on the
break-even point and the ROI. For calculating the cost formulas
of the given scenario in the introduction of this section, different
values can be provided for the parameters s (organization size)
and k (number of products). In the following we provide an exam-
ple calculation for organization of size 30 (s), which wishes to
develop 8 products (k). For the parameter values of the cost model
we adopt the constants that are given in [8], and which are shown
in Table 4. Here, CProd represents the cost of building a single prod-
uct, COrg represents the cost of changing the organization to adopt
SPLE, CScop represents the cost for carrying out a scoping exercise to
determine the commonality and variability analysis for determin-
ing the core asset base. The remaining terms are derived from
these three constants. In the cost models of Eqs. (5) and (6) we
have also the parameter values e, e1 and e2 related to the experi-
ence curve. For defining the values for these experience curve
parameters we use the constant of 0.8 in alignment with the
literature and previous work on the effects of experience curve in
software development.

Once all the parameter values are defined we can calculate the
cost and define the ROI for the given scenario. Table 5 lists the
result of the calculation for the cost of producing the ith product
(in man-months). We have calculated the values for the cost
models as defined in Eqs. (2), (3), (5), and (6).

In Fig. 3 we can observe that the experience curve effect reduces
the cost of development for both single development and SPLE.
From this figure we can also observe that the experience curve
effect leads to a reduction of the cost of development. Hereby, SPLE
with experience curve effect is the most optimal for reuse and cost
reduction. In addition, we can also state that the experience curve
effect will slowly diminish in due time.

According to Eq. (7), we compared the cost models with and
without integrating the effects of experience curve, the results
are shown in Table 6. For SPLE it appears that the break-even point
is achieved later. In the cost model without experience curve effect
the ROI will be achieved with the second product. For the refined
cost model with experience curve effect the ROI is achieved
together with the third product. The experience curve effect seems
to have a clearly visible effect on the ROI.

The above analysis provides the results of the calculation for a
given set of values. The analysis can be used to simulate various
different cases to estimate the cost of SPLE adoption. Given an
organization the parameter values for the organization sizes, the
number of products (k), the different cost values for COrg and CCab,
and even the learning curve rates can be adopted to support the
cost estimation of the SPLE adoption.

6. Application within industrial project

To illustrate the application of the refined cost models and the
related analysis we describe the results of a real industrial case
study. We also discuss the implications of the application of the
refined analysis on the decision making of the adoption of SPLE.
Finally, we describe the threats to validity of the application of
the approach to the industrial case.

6.1. Industrial case

We have applied the previous analysis at Havelsan, which is a
leading Turkish software and systems company having business
presence in IT sector. The company operates in three main business
areas: command and control (C2), simulation and training systems,
and e-government systems. In the command and control division
three products were developed for different customers and the
fourth product is under development. The development language
and adopted tools were the same across all projects. The develop-
ment team was largely the same during all three projects. So far,
the products have been developed using a non-SPLE approach.
From a practical perspective the development of the second prod-
uct was realized in a shorter time of period than the first product.
On its turn the third product was realized in a shorter time than
the second product, indicating the impact of the experience curve
effect. In fact, the developed and planned products share lots of
commonality but an SPLE approach was not adopted. Moreover,
due to the stringent requirements for time-to-market and cost
of development, the management decided to analyze whether



Table 5
Cost comparison of different cost models for given scenario.

Number of products SPLE dev. (Eq. (2)) Single dev. (Eq. (3)) SPLE development with exp. curve (Eq. (5)) Single development with exp. curve (Eq. (6))

0 186.2 0 186.20 0.00
1 239.48 144 239.48 144.00
2 292.76 288 286.42 259.20
3 346.04 432 330.06 360.30
4 399.32 576 371.50 452.46
5 452.6 720 411.33 538.23
6 505.88 864 449.89 619.12
7 559.16 1008 487.42 696.08
8 612.44 1152 524.07 769.81

Fig. 3. Cost comparison of single system development and product line engineering, with and without the experience curve effect.

Table 6
ROI comparison for both cost models.

Number of
products

ROI without experience curve
effect (%) (Eq. (4))

ROI with experience curve
effect (%) (Eq. (7))

0 �100.00 �100.00
1 �51.28 �51.28
2 �2.56 �14.62
3 46.17 16.24
4 94.89 43.48
5 143.61 68.16
6 192.33 90.88
7 241.05 112.07
8 289.77 131.98

Table 7
Analysis of cost with and without considering experience curve effect in the context
of Havelsan.

Number of
products

Without experience
curve effect
(estimated
man-month)

With experience
curve effect
(estimated
man-month)

Measured actual
value (normalized
man-month)

1 – – 75
2 75 61.54 63.49
3 75 54.81 56.25
4 75 50.49 NA
5 75 47.38 NA
6 75 44.97 NA
7 75 43.04 NA
8 75 41.43 NA

144 E. Tüzün, B. Tekinerdogan / Information and Software Technology 59 (2015) 136–148
adopting an SPLE approach for the subsequent products would pay
off. For this we applied the analysis as described in the previous
sections.

The organization is a CMMI Level 3 company and likewise we
did not have serious problems to retrieve the required historical
data (man-month cost) that we collected from the company’s
time-tracking system (SAP). For the analysis first we calculated
the learning rate of the corresponding team as 0.82, which was
based on data from earlier projects. Next we focused on providing
the analysis of the system with and without using the experience
curve effect. The results of the analysis are shown in Table 7. The
first column represents the products that were developed or are
planned to be developed. The second column of the table shows
the estimated cost values in case experience curve effect is not
taken into account. The third and fourth column of the table show
respectively the estimated and measured cost values based on the
experience curve effect. We could derive the actual measured val-
ues for the first three products since these were already developed.
The cost of the first product was 75 man-months (mm); this was
directly measured using the time tracking system. Since single sys-
tem development is used and experience curve effect is not taken
into account, the cost value for each product is assumed to be con-
stant and this explains the values for the second column. In the
third column we can see that the calculated cost values are
increasingly lower than the cost of the first product (75 mm) and
this shows the impact of the integration of the experience curve
effect in the analysis. For the management it was important to
know whether these calculated values were accurate and reflected
the reality. The actual values of the fourth column seemed to be
close to the calculated values and the error rate of the calculations
was less than 5%. This error rate may be due to different factors,
such as development team changes, and external factors affecting
performance. Based on this input the calculated values showed
to be reliable.

Using this information we have applied Eq. (7) to find the ROI,
which is shown in Table 8. We applied Eq. (7) with the following
parameters: Organization size: 7; Commonality between products:
%67.5; e, e1 and e2 as 0.8205.

According to Table 8, with the original formula without the
experience curve effect, it is economically feasible to apply SPLE
development in case 2 products are developed. Using the formula
with the experience curve effect the ROI was achieved with the
third product. This confirms the case for applying SPLE. In this case,
it would have been indeed more beneficial for the company if an
SPLE approach would have been adopted from the beginning on.



Table 8
ROI for the C2 products.

Number of products ROI without experience
curve effect (%)

ROI with experience
curve effect (%)

0 �100.00 �100.00
1 �47.02 �47.02
2 5.96 �3.55
3 58.94 35.17
4 111.92 70.84
5 164.90 104.30
6 217.88 136.07
7 270.86 166.48
8 323.84 195.74

E. Tüzün, B. Tekinerdogan / Information and Software Technology 59 (2015) 136–148 145
On the other hand according to the new formula with the experi-
ence curve effect, SPLE provides a positive ROI after the third sys-
tem. This slightly favors the adoption of single development due to
the impact of the experience curve effect.

6.2. Impact on decision making for adopting SPLE

The adapted cost formulas with the experience curve effect pro-
vided new insight to the management and it was decided to inte-
grate this analysis in the further decision making process. The
theoretical formulas that we have defined in the different equa-
tions were not a problem because we implemented all these equa-
tions as a set of Excel sheets. The Excel sheets now forms an
important instrument for the management to do a cost benefit
(ROI) analysis in the Havelsan projects. The usage of the Excel sheet
is straightforward and requires only the input of the basic param-
eters. The charts as shown in Fig. 3 are automatically generated.

Initially, it was believed that the experience curve effect would
form an important argument for continuing with single system
development and adopting SPLE was actually not seriously consid-
ered. However, our analysis showed that adopting SPLE would still
pay off in the end, even with considering the experience curve
effect. This was an eye-opener for the management, and the
decision to transition to SPLE for potential projects was now much
easier. As stated before, this was also supported by the provided
other benefits of SPLE including increased quality and reduced
maintenance costs.

6.3. Threats to validity

We have carefully applied the refined cost models to the
industrial case study of Havelsan and as we have discussed in
the previous subsection we could directly observe the impact on
the decision making. Like any empirical study we can also identify
several threats to the validity of this analysis which we list below:

Internal Validity concerns the ability to draw conclusions
between the independent and dependent variables in the study.
Our basic independent variable in the study is the experience curve
effect, while the dependent variable is the development cost. Other
variables that could have an impact on the development costs in
the industrial case are the team, the work environment, the
adopted tools and the products that were developed. We have
ensured that all these parameters remained the same in the pro-
jects, and the developed products were similar products of the
company. Since the product sizes were not equal in most cases,
we also applied normalization approach to be able to compare
the costs of between different products. For this, we both checked
SLOC size and requirements size of the products.

Construct Validity concerns the appropriateness of the measures
for capturing the dependent variables. In our analysis we measured
the size of the products and the man-months to measure the
development costs. We measured the size data by looking at the
requirements documents and SLOC values of the produced
software in the company. We counted the SLOC from the version
control repositories using automated scripts. The requirements
documents are documented based on the CMMI Level 3 require-
ments and hence are substantially reliable. The development
team’s effort data for the projects was collected from the
company’s time-tracking system, which accurately represents the
costing data. We could not measure the values for SPLE experience
curves since these were not available before the SPLE adoption pro-
cess. Hence we used the calculations, which were based on
assumptions of earlier paper by Boeckle et al. [8].

External Validity concerns the ability to generalize the results of
the study. The formulas for the cost models for SPLE and experi-
ence curve effect have been derived from the literature. In the sys-
tematic literature review as described in Section 3 we have shown
that both types of cost models have been analyzed thoroughly and
validated earlier on. Our cost model that integrates both formulas
applies the experience curve effect for repeating tasks which were
identified as the cost of developing individual products and reuse
of products. This application is in alignment with the usage of
the experience curve effect in other contexts. Our findings are
based on the analysis of three real industrial products, which were
developed over two years. Hence the validation of the study is not
based on a toy project or simple academic case studies. We applied
a retrospective study for the analysis and the team members were
not aware that the project would be analyzed later on for our
purposes.
7. Discussion

The systematic literature review has shown that the experience
curve effect has also an impact in software development. Using the
SPLE cost models we have proposed and demonstrated the usage of
the extended cost models with the experience curve effect. Based
on our analysis and industrial experiences with the approach we
can derive several general practical implications for the decision
making process in the SPLE adoption process.

� Due to similar repeating tasks in SPLE the experience curve effect
will be observable

The experience curve is valid under the assumption that the
same knowledge is applied repeatedly. In case the knowledge is
outdated or novel knowledge is applied, a new experience curve
is required. Typical experience curve examples are about produc-
ing the same unit. In SPLE the second ‘‘similar’’ project/product
that is assumed to be in the same product family will not be iden-
tical, however it can be argued that the second project/product is
very similar due to the common platform (same set of tools, pro-
cesses, technology, etc.) Here it is critical to assess the similarity
between the products. Schilling et al. [31] suggest that people
working on different but similar types of problems over time, on
the average learned at a significantly faster rate than people work
at specialized tasks, or unrelated tasks. This means fine-grained
variation between products in a product line even has a positive
impact on the effect of learning. In the context of SPLE we can
assume that similar tasks are defined and as such the assumptions
on experience curve effect will have an impact here as well.

� The experience curve has a clear impact on the ROI

Our study and the scenarios that we have adopted show that
the experience curve has a clear impact on the cost models and
likewise the ROI. From a theoretical perspective we relied on the
conclusions of the systematic review and adopted estimations of



146 E. Tüzün, B. Tekinerdogan / Information and Software Technology 59 (2015) 136–148
the learning rate as described in the primary studies. The applica-
tion of the experience curve to cost models as adopted in the
industrial setting also showed the impact of the experience curve,
and led to decreasing time and cost to develop products. Although
this observation of experience curve seems to be intuitive it can
have an impact on the decision making process in case one needs
to decide whether to keep the single system development
approach or transition to SPLE.

� Experience curve and SPLE can be considered as alternative and
complementary instruments to increase productivity

Both the experience curve and SPLE are in fact different instru-
ments to increase the productivity of software development. Expe-
rience curve utilizes productivity by learning from previous
experience, while SPLE increases productivity by systematically
reusing artifacts among similar products. Although these are differ-
ent instruments to increase productivity, they can most certainly
be used together to increase productivity. An SPLE approach in
which the experience curve effect is high will indeed be the most
beneficial. This information can be used by the management to
invest in and plan activities for increasing the learning rate, for
example, through pilot projects, courses, etc. This observation is
also in alignment with the results of the systematic review in
which the goals for adopting experience curve effect in software
development was indeed to support the decision making and pro-
vide a more precise cost-benefit analysis.

� The impact of experience curve effect gets lower in case the number
of products increases

The literature shows that the experience curve effect flattens in
due time and its impact as such will reduce the more products are
developed. This counts for both single system development and
SPLE. The consequence of this is that for a sufficiently large number
of similar products, even in case of an initial high experience curve
effect, it will make sense in the end to choose an SPLE approach
instead of single development.

� The experience curve rate and the required upfront investment
defines the strategy for product development

It appears that both the experience curve effect and upfront
investment define the result for ROI. The experience curve or
upfront investment could be low or high. As such, we can identify
different combinations of experience curve effect and upfront
investment that might require a different strategy and decision.
If the experience curve effect is high then single system develop-
ment will usually perform quite well. In case of product line adop-
tion the upfront investment is crucial. If the upfront investment is
high together with a high experience curve effect in single devel-
opment then a resistance to adopting SPLE can be expected. How-
ever, if the upfront investment is low and in case of a high
experience curve effect then the adoption of SPLE becomes very
attractive.
Table 9
Characterization of cost model.

Perspective Description

Scope Adoption of SPLE
Type of analysis Cost/effort estimation
Economic function ROI
Underlying model SIMPLE
Viewpoint Corporate, systems
Scenario Yes
Market attributes No
Cost factors COrg, CCab, CUnique, CReuse, experience curve coefficients
Risk adjustment No
8. Related work

In our systematic review on experience curve effect in software
engineering in particular we could not find any related secondary
studies. Hence, the presented systematic literature review on expe-
rience curve effect in software engineering in this paper can be
considered as a novel contribution. Our systematic review identi-
fied 15 papers that explicitly consider the experience curve effect
and define various cost formulas that are used for different goals.
The second category of related work includes studies that dis-
cuss economic models to estimate the cost and ROI in software
reuse. Several surveys have been published that identify, discuss
and categorize these provided economic models for estimating
the ROI of software reuse [32,33]. Within the context of SPLE sev-
eral economic models have been provided that aim to estimate the
ROI for transitioning to SPLE. In this context Ali et al. [7] provide an
overview and comparative analysis of existing economic models
to estimate the benefits of transitioning to an SPLE approach. For
this, the authors use different perspectives including scope, types
of analysis, economic function, underlying model, viewpoint,
scenario, market attributes, cost factors, and risk adjustment.
Based on the perspectives 12 selected approaches have been
characterized.

In Table 9 we present the characterization of our approach with
the characterizations of Ali et al. [7]. The scope of the economic
models relate to either the adoption of SPLE or the entire life cycle.
Our approach focuses on the analysis of both the existing single
system development and the SPLE with experience curve. Hence
we could state that the scope is primarily focused on analyzing
the adoption of SPLE. Like most economic models the cost models
that we have presented in this paper are used for cost and effort
estimation. The basic economic function that we aim to calculate
is the ROI, which seems also an important function in many eco-
nomic models published in the literature. The existing economic
models can be actually classified into basic models that are pro-
posed from scratch and derived models that extend earlier defined
models. Our approach is an extension of the earlier SIMPLE model
[29] but in fact can also be applied to the other SPLE cost models
with minor effort. The viewpoint of our approach concerns both
the corporation and the system engineering. Since we adopt the
SIMPLE cost model we also reuse the predefined scenarios. Like
many economic models we do not concern market attributes and
risks and uncertainties in the analysis process. We extend the cost
factors of the SIMPLE model by integrating the experience curve
factors.

The survey of Ali et al. includes the papers until 2009. We have
elaborated on this survey and searched for other papers which
were published after 2009. Based on this we could find three more
publications [34–36] that discuss and present economic models in
the context of SPLE. None of the papers in the survey explicitly
address the notion of experience curve and do not integrate this
in the cost models. However, the COPLIMO [37] model and its
derivatives [38,35,36] implicitly assume the existence of the effect
of learning and experience. The underlying models of COPLIMO
and its derivatives is the COCOMO II model [39] that can be in prin-
ciple used to model the experience curve effect. Several parameters
of the COCOMO II model can be identified that relate to the expe-
rience curve. In this context, COCOMO II defines the so-called Per-
sonnel Experience (PREX) cost driver that combines the cost
drivers application experience (AEXP), platform experience (PEXP),
and language and tool experience (LTEX) which have range values



E. Tüzün, B. Tekinerdogan / Information and Software Technology 59 (2015) 136–148 147
from Very Low to Very High. Further, COCOMO II also includes the
parameter UNFM in the adopted cost model, which defines the
programmers’ relative unfamiliarity with the software. The UNFM
is measured using a simple Likert scale ranging from 0 to 1. These
cost drivers could be in principle re-interpreted and calibrated spe-
cifically to model experience curve in the product line context. An
interesting study is the integration of the experience curve formu-
las in the COCOMO II based models. In this context, Eickelmann
et al. [26] have used the combined multiplier which is defined as
the product of the COCOMO II cost drivers of APEX, LTEX, and PLEX
in order to obtain a single learning curve model. Further, they have
compared the results of this analysis with the results of the pro-
ductivity learning curve that was defined in [27]. The authors seem
to have considered single system development and did not discuss
the impact of learning curve on SPLE adoption. This would be an
interesting analysis which could be complementary to the
approach that we have provided in this paper.

In fact, we could state that both the proposed explicit learning
curve models and the parametric approaches have their own mer-
its and could have been used to study the impact of the learning
curve effect on SPLE adoption. The advantage of the explicit learn-
ing curve models is that these have been widely discussed in the
management and education literature and very detailed studies
have been published illustrating the usage of the learning curve
models. Hence, these explicit learning models have a clear theoret-
ical foundation from the perspective of the learning curve effect. In
our case, extending the SIMPLE approach with the explicit learning
curve models could also be integrated and adapted in a natural
way. Because of the theoretical foundation behind both the SIMPLE
approach and the learning curve models in the literature we could
rely on the defined formulas for analyzing the learning curve effect
on the SPLE adoption.

The advantage of the parametric approaches is that these are
largely flexible and can be used to either reuse or re-interpret
existing parameters or, if needed, new parameters can be defined.
As stated before, these approaches could be used and enhanced to
model the learning curve and analyze this for SPLE adoption. This
may require, however, more effort than the straightforward learn-
ing curve effect models that already provide the required attributes
and formula, which can be directly used for analysis.

Experience curve effect has also been discussed in software pro-
ject dynamics [40] and software process dynamics [41] which deal
with the dynamic nature of software process by using system
dynamics simulation. According to Madachy [41], there are mainly
three aspects: people applications, process and product applica-
tions, and project and organization applications. Experience curves
are primarily discussed and related to people applications. There
are also many studies related to learning curve and experience
curve effect in other domains such as education, management
science, and construction.
9. Conclusion

The impact of experience curve effect has been broadly dis-
cussed in management and education sciences. To the best of our
knowledge a systematic literature on experience curve effects in
software development has not been carried out before. The sys-
tematic literature review that we have carried out has shown that
the experience curve has been addressed in several studies that
focus on different aspects in software development. We have thor-
oughly studied all the identified 15 primary studies that resulted
from the SLR and characterized and summarized these. Elaborating
on these 15 identified primary studies and the literature on expe-
rience curve effect in management and education sciences we have
presented refined cost models that integrate the experience curve
effect in the cost models needed for estimating the transitioning to
SPLE. These cost models have been provided for both single system
development and software product line engineering to support a
more precise cost estimation. In our analytical analysis process
we have shown the impact of the various parameter values on
the cost models with and without the experience curve effect.
We could clearly observe the impact on the cost of development,
time-to-market and the ROI. Our study has been further strength-
ened by applying the cost models within an industrial context. Per-
haps the most important conclusion of our analysis is that the
experience curve has a direct impact on both single system
development and SPLE. This observation can support the decision
making process in adopting and planning an SPLE approach. The
experience curve can be also considered as a complementary
instrument to SPLE to further increase the productivity. Our
findings show that according to the adopted cost models and the
corresponding analysis, adopting SPLE seems to pay off sooner or
later. We have provided a useful and practical tool that can used
and customized in software projects to support the decision mak-
ing process. In our approach we have chosen to extend the SIMPLE
model [29], because it is well-known and recognized in both the
research and practice of software product line engineering. In this
way we aimed to support the validity of our study. Complementary
to our approach, modeling the experience curve using parametric
approaches could be an interesting exercise to compare the results
of both models. In our future work we aim to further experiment
with the experience curve effect within an SPLE context and imple-
ment a decision support system that supports the presented
refined cost models and the corresponding approach.

Acknowledgments

This work has been carried out in Havelsan. We would like to
thank Hakan Erdogmus for reviewing an earlier version of this
paper and useful comments to improve the paper.

References

[1] W.B. Frakes, Software reuse research: status and future, IEEE Trans. Software
Eng. 31 (7) (2005) 529–536.

[2] P. Clements, L. Northrop, Software Product Lines: Practices and Patterns,
Addison-Wesley, Boston, MA, USA, 2001, p. 608.

[3] S. Buehne, G. Chastek, T. Kaköla, P. Knauber, L. Northrop, S. Thiel, Exploring the
context of product line adoption, in: 5th International Workshop on Software
Product-Family Engineering, 2004, pp. 19–31.

[4] K. Pohl, G. Böckle, F. Van Der Linden, Software Product Line Engineering:
Foundations, Principles, and Techniques, vol. 49, Springer, Secaucus, NJ, USA,
2005, p. 467.

[5] K. Schmid, M. Verlage, The economic impact of product line adoption and
evolution, IEEE Softw. 19 (4) (2002) 50–57.

[6] W.G. Sullivan, E.M. Wicks, C.P. Koelling, Engineering Economy, 15th ed.,
Prentice Hall, 2011.

[7] M. Ali, M. Babar, K. Schmid, A comparative survey of economic models for
software product lines, in: 35th Euromicro Conference on Software
Engineering and Advanced Applications, 2009, pp. 275–278.

[8] G. Bockle, P. Clements, J.D. McGregor, D. Muthig, K. Schmid, Calculating ROI for
software product lines, IEEE Softw. 21 (3) (2004) 23–31.

[9] H. Ebbinghaus, Memory: A Contribution to Experimental Psychology, No,
Teachers College, Columbia University, 1913.

[10] T.P. Wright, Factors affecting the cost of airplanes, J. Aeronaut. Sci. 3 (4) (1936)
122–128.

[11] J.D.J. Rodney, D. Stewart, M. Richard, Wyskida (Eds.), Cost Estimator’s
Reference Manual, second ed., John Wiley & Sons Ltd., New York, 1995, p. 744.

[12] B. Kitchenham, S. Charters, Guidelines for Performing Systematic Literature
Reviews in Software Engineering, No. EBSE 2007-001, 2007.

[13] L.B. Raccoon, A learning curve primer for software engineers, Softw. Eng. Notes
2 (1) (1996) 77–86.

[14] K. Sherdil, N. Madhavji, Human-oriented improvement in the software
process, in: Proceedings of the 5th European Workshop on Software Process
Technology, 1996, pp. 145–166.

[15] K. Kang, J. Hahn, Learning and forgetting curves in software development: does
type of knowledge matter?, in: ICIS 2009 Proceedings, 2009.

[16] S.A. Slaughter, J.A. Espinosa, Learning from experience in software
development: a multilevel analysis, Manage. Sci. 53 (8) (2007) 1315–1331.

http://refhub.elsevier.com/S0950-5849(14)00207-9/h0210
http://refhub.elsevier.com/S0950-5849(14)00207-9/h0210
http://refhub.elsevier.com/S0950-5849(14)00207-9/h0010
http://refhub.elsevier.com/S0950-5849(14)00207-9/h0010
http://refhub.elsevier.com/S0950-5849(14)00207-9/h0010
http://refhub.elsevier.com/S0950-5849(14)00207-9/h0020
http://refhub.elsevier.com/S0950-5849(14)00207-9/h0020
http://refhub.elsevier.com/S0950-5849(14)00207-9/h0020
http://refhub.elsevier.com/S0950-5849(14)00207-9/h0020
http://refhub.elsevier.com/S0950-5849(14)00207-9/h0025
http://refhub.elsevier.com/S0950-5849(14)00207-9/h0025
http://refhub.elsevier.com/S0950-5849(14)00207-9/h0030
http://refhub.elsevier.com/S0950-5849(14)00207-9/h0030
http://refhub.elsevier.com/S0950-5849(14)00207-9/h0030
http://refhub.elsevier.com/S0950-5849(14)00207-9/h0040
http://refhub.elsevier.com/S0950-5849(14)00207-9/h0040
http://refhub.elsevier.com/S0950-5849(14)00207-9/h0045
http://refhub.elsevier.com/S0950-5849(14)00207-9/h0045
http://refhub.elsevier.com/S0950-5849(14)00207-9/h0045
http://refhub.elsevier.com/S0950-5849(14)00207-9/h0050
http://refhub.elsevier.com/S0950-5849(14)00207-9/h0050
http://refhub.elsevier.com/S0950-5849(14)00207-9/h0055
http://refhub.elsevier.com/S0950-5849(14)00207-9/h0055
http://refhub.elsevier.com/S0950-5849(14)00207-9/h0055
http://refhub.elsevier.com/S0950-5849(14)00207-9/h0055
http://refhub.elsevier.com/S0950-5849(14)00207-9/h0055
http://refhub.elsevier.com/S0950-5849(14)00207-9/h0065
http://refhub.elsevier.com/S0950-5849(14)00207-9/h0065
http://refhub.elsevier.com/S0950-5849(14)00207-9/h0080
http://refhub.elsevier.com/S0950-5849(14)00207-9/h0080


148 E. Tüzün, B. Tekinerdogan / Information and Software Technology 59 (2015) 136–148
[17] S. Narayanan, S. Balasubramanian, J.M. Swaminathan, A matter of balance:
specialization, task variety, and individual learning in a software maintenance
environment, Manage. Sci. 55 (11) (2009) 1861–1876.

[18] N. Hanakawa, S. Morisaki, K. Matsumoto, A learning curve based simulation
model for software development, Sci. Technol. 121 (19) (1998) 350–359.

[19] P.C. Pendharkar, G.H. Subramanian, An empirical study of ICASE learning
curves and probability bounds for software development effort, Eur. J. Oper.
Res. 183 (3) (2007) 1086–1096.

[20] P.K. Kapur, H. Pham, U. Chanda, V. Kumar, Optimal allocation of testing effort
during testing and debugging phases: a control theoretic approach, Int. J. Syst.
Sci. 44 (9) (Sep. 2013) 1639–1650.

[21] Y.a. Au, D. Carpenter, X. Chen, J.G. Clark, Virtual organizational learning in open
source software development projects, Inf. Manage. 46 (1) (2009) 9–15.

[22] G. Abu, W. Cangussu, J. Turi, A quantitative learning model for software test
process, in: 38th Hawaii International Conference on System Sciences (HICSS-
38 2005), vol. 00, no. C, 2005, pp. 1–10.

[23] C.L. Huntley, Organizational learning in open-source software projects: an
analysis of debugging data, IEEE Trans. Eng. Manage. 50 (4) (2003) 485–493.

[24] Y. Zorgios, O. Vlismas, A learning curve explanatory theory for team learning
valuation, VINE (2009).

[25] M. Plaza, O.K. Ngwenyama, K. Rohlf, A comparative analysis of learning curves:
implications for new technology implementation management, Eur. J. Oper.
Res. 200 (2) (2010) 518–528.

[26] N. Eickelmann, A. Anant, S. Hyun, J. Baik, Quantitative control of process
changes through modeling, simulation and benchmarking, in: Proceedings of
the 17th International Forum on COCOMO and Software Cost Modelling, 2002.

[27] D. Dorenbos, A learning curve model for the quality and productivity of the
software development process, in: Motorola Software Engineering
Symposium, 1993.

[28] R. Madachy, People applications in software process modeling and simulation,
in: Proceedings of the 6th International Workshop on Software Process
Simulation and Modeling, 2005, pp. 160–163.

[29] P. Clements, J. McGregor, S. Cohen, The Structured Intuitive Model for Product
Line Economics (SIMPLE), Technical Report CMU/SEI-2005-TR-003, No,
February, 2005.
[30] F. Van Der Linden, K. Schmid, E. Rommes, Software Product Lines in Action:
The Best Industrial Practice in Product Line Engineering, Springer-Verlag New
York Inc., Secaucus, NJ, USA, 2007, p. 334.

[31] M.A. Schilling, P. Vidal, R.E. Ployhart, A. Marangoni, Learning by doing
something else: variation, relatedness, and the learning curve, Manage. Sci.
49 (1) (2003) 39–56.

[32] J.S. Poulin, The economics of product line development, Int. J. Appl. Softw.
Technol. 3 (1) (1997) 20–34.

[33] W.C. Lim, Reuse economics: a comparison of seventeen models and directions
for future research, in: Proceedings of the 4th International Conference on
Software Reuse, 1996, pp. 41–50.

[34] A. Nolan, S. Abrahão, Dealing with cost estimation in software product lines:
experiences and future directions, in: Proceedings of the 14th International
Conference on Software Product Lines: Going Beyond (SPLC’10), 2010, pp.
121–135.

[35] A.J. Nolan, S. Abrahão, P. Clements, J. D. Mcgregor, S. Cohen, D. De, M. Hall,
Towards the integration of quality attributes into a software product line cost
model, in: Proceedings of the 2011 15th International Software Product Line
Conference (SPLC ’11), 2011, pp. 203–212.

[36] R. Heradio, D. Fernandez-amoros, L. Torre-cubillo, A.P. Garcia-plaza, Improving
the accuracy of COPLIMO to estimate the payoff of a software product line,
Expert Syst. Appl. 39 (9) (2012) 7919–7928.

[37] B. Boehm, A. W. Brown, R. Madachy, Y. Yang, A software product line life cycle
cost estimation model, in: Proceedings of the 2004 International Symposium
on Empirical Software Engineering (ISESE ’04), 2004, pp. 156–164.

[38] H.P. In, J. Baik, S. Kim, Y. Yang, B. Boehm, A quality-based cost estimation
model for the product line life cycle, Commun. ACM 49 (12) (2006) 85–88.

[39] B.W. Boehm, Clark, Horowitz, Brown, Reifer, Chulani, R. Madachy, B. Steece,
Software Cost Estimation with Cocomo II, first ed., Prentice Hall PTR, Upper
Saddle River, NJ, USA, 2000.

[40] T. Abdel-Hamid, S.E. Madnick, Software Project Dynamics: An Integrated
Approach, Prentice-Hall Inc., Upper Saddle River, NJ, USA, 1991.

[41] R.J. Madachy, Software Process Dynamics, Wiley, 2008, p. 601.

http://refhub.elsevier.com/S0950-5849(14)00207-9/h0085
http://refhub.elsevier.com/S0950-5849(14)00207-9/h0085
http://refhub.elsevier.com/S0950-5849(14)00207-9/h0085
http://refhub.elsevier.com/S0950-5849(14)00207-9/h0090
http://refhub.elsevier.com/S0950-5849(14)00207-9/h0090
http://refhub.elsevier.com/S0950-5849(14)00207-9/h0095
http://refhub.elsevier.com/S0950-5849(14)00207-9/h0095
http://refhub.elsevier.com/S0950-5849(14)00207-9/h0095
http://refhub.elsevier.com/S0950-5849(14)00207-9/h0100
http://refhub.elsevier.com/S0950-5849(14)00207-9/h0100
http://refhub.elsevier.com/S0950-5849(14)00207-9/h0100
http://refhub.elsevier.com/S0950-5849(14)00207-9/h0215
http://refhub.elsevier.com/S0950-5849(14)00207-9/h0215
http://refhub.elsevier.com/S0950-5849(14)00207-9/h0220
http://refhub.elsevier.com/S0950-5849(14)00207-9/h0220
http://refhub.elsevier.com/S0950-5849(14)00207-9/h0120
http://refhub.elsevier.com/S0950-5849(14)00207-9/h0120
http://refhub.elsevier.com/S0950-5849(14)00207-9/h0125
http://refhub.elsevier.com/S0950-5849(14)00207-9/h0125
http://refhub.elsevier.com/S0950-5849(14)00207-9/h0125
http://refhub.elsevier.com/S0950-5849(14)00207-9/h0150
http://refhub.elsevier.com/S0950-5849(14)00207-9/h0150
http://refhub.elsevier.com/S0950-5849(14)00207-9/h0150
http://refhub.elsevier.com/S0950-5849(14)00207-9/h0150
http://refhub.elsevier.com/S0950-5849(14)00207-9/h0155
http://refhub.elsevier.com/S0950-5849(14)00207-9/h0155
http://refhub.elsevier.com/S0950-5849(14)00207-9/h0155
http://refhub.elsevier.com/S0950-5849(14)00207-9/h0160
http://refhub.elsevier.com/S0950-5849(14)00207-9/h0160
http://refhub.elsevier.com/S0950-5849(14)00207-9/h0180
http://refhub.elsevier.com/S0950-5849(14)00207-9/h0180
http://refhub.elsevier.com/S0950-5849(14)00207-9/h0180
http://refhub.elsevier.com/S0950-5849(14)00207-9/h0190
http://refhub.elsevier.com/S0950-5849(14)00207-9/h0190
http://refhub.elsevier.com/S0950-5849(14)00207-9/h0195
http://refhub.elsevier.com/S0950-5849(14)00207-9/h0195
http://refhub.elsevier.com/S0950-5849(14)00207-9/h0195
http://refhub.elsevier.com/S0950-5849(14)00207-9/h0195
http://refhub.elsevier.com/S0950-5849(14)00207-9/h0200
http://refhub.elsevier.com/S0950-5849(14)00207-9/h0200
http://refhub.elsevier.com/S0950-5849(14)00207-9/h0200
http://refhub.elsevier.com/S0950-5849(14)00207-9/h0205
http://refhub.elsevier.com/S0950-5849(14)00207-9/h0205

	Analyzing impact of experience curve on ROI in the software product line adoption process
	1 Introduction
	2 Experience curve effect
	3 Systematic literature review on experience curve effect
	3.1 SLR protocol
	3.2 Data extraction results
	3.2.1 A learning curve primer for software engineers [13]
	3.2.2 Human oriented improvement in the software process [14]
	3.2.3 Learning and forgetting curves in software development [15]
	3.2.4 Learning from experience in software development – multi-level analysis [16]
	3.2.5 A matter of balance: Specialization, task variety, and individual learning in a software maintenance environment [17]
	3.2.6 A learning curve based simulation model for software development [18]
	3.2.7 An empirical study of ICASE learning curves and probability bounds for software eevelopment effort [19]
	3.2.8 Optimal allocation of testing effort during testing and debugging phases a control theoretic approach [20]
	3.2.9 Virtual organizational learning in open source software development projects [21]
	3.2.10 A quantitative learning model for software test process [22]
	3.2.11 Organizational learning in open-source software projects: an analysis of debugging data [23]
	3.2.12 A learning curve explanatory theory for team learning valuation [24]
	3.2.13 A comparative analysis of learning curves implications for new technology implementation management [25]
	3.2.14 Quantitative control of process changes through modeling, simulation and benchmarking [26]
	3.2.15 People applications in software process modeling [28]

	3.3 Threats to validity

	4 Software product line engineering cost models
	5 Integrating experience curve effect in cost models
	5.1 Cost models with experience curve effect
	5.2 Analysis with refined cost models

	6 Application within industrial project
	6.1 Industrial case
	6.2 Impact on decision making for adopting SPLE
	6.3 Threats to validity

	7 Discussion
	8 Related work
	9 Conclusion
	Acknowledgments
	References


